XMC-FPGA05F. Programmable Xilinx Virtex -5 FPGA PMC/XMC with Quad Fiber-optics. Data Sheet

Similar documents
AD GSPS Analog Input XMC/PMC with Xilinx Virtex -5 FPGA. Data Sheet

FPE320. Xilinx Virtex -5 3U VPX Processor with FMC Site. Data Sheet

HPE720. Dual Xilinx Virtex -5 FPGA & MPC8640D VPX Processor Card. Data Sheet

VXS-610 Dual FPGA and PowerPC VXS Multiprocessor

VXS-621 FPGA & PowerPC VXS Multiprocessor

PMC-440 ProWare FPGA Module & ProWare Design Kit

CHAMP-FX2. FPGA Accelerator Signal Processing Platform. Data Sheet. Features 6U VPX-REDI (VITA 46 and 48) FPGA signal processing platform

XMC Products. High-Performance XMC FPGAs, XMC 10gB Ethernet, and XMC Carrier Cards. XMC FPGAs. FPGA Extension I/O Modules.

CHAMP-AV6. Quad/Octal Freescale Power Architecture MPC8640/8641 VPX Card. Data Sheet

3CPF1. 3U PowerPC/Xilinx Virtex-II Pro Processing Engine. Data Sheet

C900 PowerPC G4+ Rugged 3U CompactPCI SBC

MIL-STD-1553 (T4240/T4160/T4080) 12/8/4 2 PMC/XMC 2.0 WWDT, ETR, RTC, 4 GB DDR3

MIL-STD-1553 (T4240/T4160/T4080) 12/8/4 2 PMC/XMC 2.0 WWDT, ETR, RTC, 4 GB DDR3

Calypso-V6 VME / VXS. Extreme Signal Acquisition. and FPGA-based Processing. Without Compromise

FMC-SFP+ FEATURES APPLICATIONS SOFTWARE. FMC Module with Four SFP+ Ports DESCRIPTION

C th Gen. Intel Core i7 6U VME SBC. Aitech. Rugged 6U VME Single-Slot SBC 5 th Generation Intel Core i7 CPU

QuiXilica V5 Architecture

C901 PowerPC MPC7448 3U CompactPCI SBC

FMC-QSFP+ FEATURES APPLICATIONS SOFTWARE. FMC Module with Dual QSFP+ Ports DESCRIPTION

Analog & Digital I/O

Gemini-V6 VME / VXS. Extreme Signal Acquisition. and FPGA-based Processing. Without Compromise

SPMC/DPMC-214. CANbus, MilCAN, Utility Bus, and Discrete Digital I/O Module. --Based on dual ColdFire 5485 processors with dual FlexCan interfaces

Ensemble 6000 Series OpenVPX HCD6210 Dual QorIQ T4240 Processing Module

C802 Core i7 3U CompactPCI SBC

New! New! New! New! New!

Embedded Tech Trends 2014 Rodger H. Hosking Pentek, Inc. VPX for Rugged, Conduction-Cooled Software Radio Virtex-7 Applications

New! New! New! New! New!

C800 Core 2 Duo CompactPCI SBC

XMC Adapter for 3U cpci/pxi

COMPUTING. MVME8100 NXP QorIQ P5020 VME64x/VXS SBC. Data Sheet

AMC516 Virtex-7 FPGA Carrier for FMC, AMC

C695. 3U VPX PCIe Switch. Aitech. Rugged 3U VPX Single-Slot PCIe Gen2 Switch Two standard configuration options

AMC517 Kintex-7 FPGA Carrier for FMC, AMC

Product Overview. Programmable Network Cards Network Appliances FPGA IP Cores

Procelerant CEQM57XT

C912 Freescale QorIQ T4 3U VPX SBC

T1042-based Single Board Computer

C6100 Ruggedized PowerPC VME SBC

FM680 User Manual V1.4 FM680. User Manual for Virtex-6 XMC card

PXIe FPGA board SMT G Parker

New! New! New! New! New!

C160 Core 2 Duo VME SBC

Phoenix VPF2. MPC8641D and Dual Virtex-5 FPGA Based VXS Processor. Overview

VPX645. NVMe HBA with RAID (0, 1, 5, 6, 10, 50 and 60), 3U VPX. Key Features. Benefits. 3U VPX NVMe Host Bus Adapter with Full support for RAID

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Virtex-5 GTP Aurora v2.8

VPXI epc. Datasheet. AmpliconBenelux.com. Air Cooled 4U 1/2 Rack OpenVPX Windows/Linux Computer with Four Expansion Slots DESCRIPTION

FPGA Solutions: Modular Architecture for Peak Performance

XMC Module with Eight 250 MSPS, 14-bit A/Ds, Xilinx Virtex-6 FPGA, and 4 GB LPDDR2

Cobalt Performance Features

New! New! New! New! New!

C870 Core i7 3U VPX SBC

AMC540. Key Features. Benefits. Xilinx Virtex-7 FPGA AMC with Dual TI DSP AMC540. Xilinx Virtex-7 XC7VX690T FPGA

3U CompactPCI Intel SBCs F14, F15, F17, F18, F19P

FMC154. Key Features. Benefits. Local Oscillator (LO) with Input Reference, FMC FMC154

A23C TI Sitara ARM Cortex-A15 CPU

Air Cooled 4U 1/2 Rack OpenVPX Windows/Linux Computer with Four Expansion Slots DESCRIPTION

AMC524 / AMC524C Quad ADC, 125 MSPS, Dual DAC, Artix-7

X6-250M. XMC Module with Eight 310 MSPS, 14-bit A/Ds, Xilinx Virtex-6 FPGA, and 4 GB LPDDR2 DESCRIPTION FEATURES APPLICATIONS SOFTWARE

VPX754. Intel Xeon SoC, 3U VPX, PCIe Gen3. Key Features. Benefits VPX754

UWB PMC/XMC I/O Module

Applications Include: Functional Diagram: LAN/WAN Networking Telecommunications Serial Interface

Choosing the Right COTS Mezzanine Module

CMX18 FEATURES A 18-SLOT 3U PXI EXPRESS CHASSIS

VPF1. Dual PowerPC, Dual Xilinx Virtex-II Pro FPGA Processing Engine. Features.

AMC GSPS 8-bit ADC, 2 or 4 channel with XCVU190 UltraScale

5051 & 5052 PCIe Card Overview

AMC531 / AMC531C AMC FPGA, Altera EP4S100Gx

XMC-ZU1. XMC Module Xilinx Zynq UltraScale+ MPSoC. Overview. Key Features. Typical Applications

GPM0002 E9171-based Graphics/Compute Engine

StoreEngine TM OpenVPX

E9171-based Graphics/Compute Engine

AXI4 Interconnect Paves the Way to Plug-and-Play IP

XA-TX FEATURES APPLICATIONS SOFTWARE

COM Express Embedded Systems

S950 3U cpci Radiation Tolerant PowerPC SBC

C112 Freescale QorIQ T4 6U VPX SBC

XMC Module with Two 1.8 GSPS, 12-bit A/Ds, Xilinx Virtex-6 FPGA, and 4 GB LPDDR2 DESCRIPTION

Compute Node Design for DAQ and Trigger Subsystem in Giessen. Justus Liebig University in Giessen

PCI-SIO4B Quad Channel High Performance Serial I/O PCI CARD With up to 256Kbytes of FIFO buffering and Multiple Serial Protocols

Accelerating System Designs Requiring High-Bandwidth Connectivity with Targeted Reference Designs

Nutaq Perseus 601X Virtex-6 AMC with FMC site PRODUCT SHEET

G211F 3U CompactPCI Serial Quad Fiber Optics Interface

BittWare s XUPP3R is a 3/4-length PCIe x16 card based on the

VMIPCI-5565* Specifications

Components of a MicroTCA System

GEN-2 / GEN-1 OpenVPX BACKPLANES

C111 Freescale QorIQ T4 6U VME SBC

VMIPCI-5565 Specifications

MicroTCA / AMC Solutions for Real-Time Data Acquisition

XE 900: Fastest EPIC board now available with Windows XPe

COPious-PXIe. Single Board Computer with HPC FMC IO Site DESCRIPTION APPLICATIONS SOFTWARE V0.2 01/17/17

VT988. Key Features. Benefits. High speed 16 ADC at 3 GSPS with Synchronous Capture VT ADC for synchronous capture

ADM-XRC-5TZ. PCI Mezzanine Card. User Guide. Version 2.0

D601 - Conduction-Cooled 6U CPCI Pentium M SBC

User Manual for SMT784

Artisan Technology Group is your source for quality new and certified-used/pre-owned equipment

Ensemble 6000 Series OpenVPX Intel 4 th Generation Core i7 module

PCI Express Desktop/Server Coprocessor with Virtex6 FPGA computing core and FMC IO site DESCRIPTION

With Fixed Point or Floating Point Processors!!

Transcription:

Data Sheet XMC-FPGA05F Programmable Xilinx Virtex -5 FPGA PMC/XMC with Quad s Applications Remote Sensor Interface Data Recorders Distributed Processing Interconnect Protocol Converter Data Encryption Features Up to four fiber-optic transceivers User programmable Xilinx Virtex -5 FPGA (SX95T) Four banks of DDR SDRAM memory PMC/XMC form factor (HSS links or PCI Express ) VxWorks, Linux and Windows host support Commercial and rugged build options Benefits I/O and high performance processing in a single product High bandwidth I/O For use in deployed or commercial environments Industry standard form factor Overview Incorporating quad fiber-optic transceivers with a user programmable Xilinx Virtex-5 FPGA, the XMC-FPGA05F XMC/PMC module combines data processing and I/O in a single module. The FPGA is closely coupled to all interfaces to minimize data bottlenecks. The XMC-FPGA05F can be used for a wide range of tasks including remote sensor I/O, data recording and linking systems in real-time. The FPGA can be used to implement custom protocols, data encryption or a network processor. Xilinx Virtex-5 FPGA The XMC-FPGA05F is designed to be a user programmable FPGA resource and is fitted with a Xilinx Virtex-5 SX95T FPGA (contact Curtiss-Wright for availability of other FPGA variants) which is optimized for a high ratio of DSP blocks to standard logic blocks to support high performance signal processing. The FPGA configuration can be updated and controlled by the host across the PCI/PCI-X or PCI Express (PCIe) interfaces using the FLASH memory to store images. The host issues commands over the PCI/PCIe interface to cause FPGA reconfiguration from any of the stored images. A FLASH bypass mode can be invoked which uses temporary storage in SRAM, instead of FLASH, to provide the FPGA configuration. A bit stream stored in SRAM benefits from faster downloads while bypassing non-volatile storage - useful for secure applications. Learn More Web / sales.cwcembedded.com Email / sales@cwcembedded.com cwcembedded.com

I/O Up to four full duplex low-rider Stratos Optical Technologies fiber-optic transceivers can be fitted to the XMC-FPGA05F for front panel connections. The transceivers can be supplied in frequencies ranging from 1.0625 to over 3GB/s with single and multi-mode options. Each transceiver is driven directly by an FPGA RocketIO highspeed serial (HSS) link and gives the developer full control over the fiber-optic data protocol. The flexibility of the XMC-FPGA05F even allows different protocols on different channels, such as Serial FPDP (sfpdp) and Aurora, to be used at the same time (note there are some restrictions on concurrently using several different transceiver frequencies). The XMC-FPGA05F has a choice of on-board clock sources and, together with flexible multipliers within the Virtex-5 FPGA, allows most major signaling frequencies to be achieved in the standard product. There are also provisions for fitting a custom oscillator as a build option if it is required. Table 1: Example signalling frequencies supported by the XMC-FPGA05F clock sources Speed Protocol Clock Source 3.125GB/s Serial RapidIO type 3, XAUI, Aurora 125MHz 2.5GB/s Serial RapidIO type 2, Aurora, sfpdp 125MHz 2.125GB/s 2x Fibre Channel, Aurora, sfpdp 106.25MHz 1.25GB/s 1x Gigabit Ethernet, Aurora 125MHz 1.0625GB/s 1x Fibre Channel, Aurora, sfpdp 106.25MHz Multiple Memory Banks The XMC-FPGA05F features four banks of DDR2 SDRAM connected to and controlled by the FPGA. The memory banks are available to the developer to use for any purpose. Each memory bank can, for example, be associated with each of the four fiber-optic data streams as large independent data buffers dedicated to each channel, used for look-up tables or DSP processing. Each of the SDRAM banks has a capacity of 128MB (higher capacity options may be available in the future) and provides a 16-bit data path. PCI/PCI-X, PCI Express & Multi-GB/s I/O The XMC-FPGA05F includes a PCI/PCI-X interface, supporting up to 133MHz operation, and a PCIe interface. Depending on the interface being used, the board provides at least four DMA controllers. The PCIe interface uses the Virtex-5 FPGA s RocketIO HSS transceivers and an embedded end-point controller, which is a hard IP block within the Virtex-5 FPGA. The built-in PCIe end-point block supports x4 or x8 lane communications, but can be bypassed to support other protocols like Aurora, sfpdp or Serial RapidIO (SRIO). Protocols like Aurora provide low latency communications at high-speed and can be used as either x1, x4 or x8 wide data paths. Digital I/O Although the XMC-FPGA05F is intended for high-speed serial I/O and FPGA processing applications, it is also equipped with 64-bit digital I/O that can be used as highspeed differential or single-ended I/O including LVDS. The 64-bit digital I/O is provided through either the board s PMC P14 or XMC P16 connectors connected directly to the FPGA. The choice of P14 or P16 connector I/O is defined through a build option. See the PMC P14 and XMC P16 table for details on the connector pinouts. FusionXF Software/HDL Support Curtiss-Wright s FusionXF development kit includes software, HDL and utilities complete with examples for using the XMC-FPGA05F. FusionXF is a common environment used across Curtiss-Wright s Virtex-5 FPGA-based family of products. FusionXF includes a C-API, driver framework and sophisticated DMA support. One of the core elements to the FusionXF development kit is a framework for adding in new IP functionality or capabilities to the FPGA easily and effectively. Example software/hdl illustrates how to interface to on-board devices such as fiber-optics, PCI, PCIe, DDR2 SDRAM and XMC interfaces. Software utilities are provided for configuring the FPGA. These include FLASH programming and commands to configure the FPGA from a given image in FLASH. The 2

FPGA may also be configured via a FLASH bypass mode or ChipScope Pro/JTAG interface. Host operating systems supported by the FusionXF suite includes Windows, VxWorks and Linux. Rugged Build Options A range of environmental requirements are addressed by the XMC-FPGA05F including commercial, air-cooled rugged and conduction-cooled. For conduction-cooled applications, the host board must be able to incorporate front panel I/O connections. Depending on the application, a suitable heatsink may be required as the FPGA is capable of dissipating high power for demanding applications. Build Options A number of build options are available for the XMC-FPGA05F including: Type of FPGA Number of transceivers Type of transceivers PMC only (no XMC connectors) XMC (P15 or P15 and P16 fitted) Memory Custom clock speed Ruggedization level Table 3: XMC P16 connector digital I/O pinouts Table 2: PMC P14 connector digital I/O pinouts P14 user defined IO Pin Signal Signal Pin 1 USER_LVDS_N_0 USER_LVDS_N_1 2 3 USER_LVDS_P_0 USER_LVDS_P_1 4 5 USER_LVDS_N_2 USER_LVDS_N_3 6 7 USER_LVDS_P_2 USER_LVDS_P_3 8 9 USER_LVDS_N_4 USER_LVDS_N_5 10 11 USER_LVDS_P_4 USER_LVDS_P_5 12 13 USER_LVDS_N_6 USER_LVDS_N_7 14 15 USER_LVDS_P_6 USER_LVDS_P_7 16 17 USER_LVDS_N_8 USER_LVDS_N_9 18 19 USER_LVDS_P_8 USER_LVDS_P_9 20 21 USER_LVDS_N_10 USER_LVDS_N_11 22 23 USER_LVDS_P_10 USER_LVDS_P_11 24 25 USER_LVDS_N_12 USER_LVDS_N_13 26 27 USER_LVDS_P_12 USER_LVDS_P_13 28 29 USER_LVDS_N_14 USER_LVDS_N_15 30 31 USER_LVDS_P_14 USER_LVDS_P_15 32 33 USER_LVDS_N_16 USER_LVDS_N_17 34 35 USER_LVDS_P_16 USER_LVDS_P_17 36 37 USER_LVDS_N_18 USER_LVDS_N_19 38 39 USER_LVDS_P_18 USER_LVDS_P_19 40 41 USER_LVDS_N_20 USER_LVDS_N_21 42 43 USER_LVDS_P_20 USER_LVDS_P_21 44 45 USER_LVDS_N_22 USER_LVDS_N_23 46 47 USER_LVDS_P_22 USER_LVDS_P_23 48 49 USER_LVDS_N_24 USER_LVDS_N_25 50 51 USER_LVDS_P_24 USER_LVDS_P_25 52 53 USER_LVDS_N_26 USER_LVDS_N_27 54 55 USER_LVDS_P_26 USER_LVDS_P_27 56 57 USER_LVDS_N_28 USER_LVDS_N_29 58 59 USER_LVDS_P_28 USER_LVDS_P_29 60 61 USER_LVDS_N_30 USER_LVDS_N_31 62 63 USER_LVDS_P_30 USER_LVDS_P_31 64 P16 user defined I/O A B C D E F 1 USER_LVDS_P_12 USER_LVDS_N_12 NC USER_LVDS_P_13 USER_LVDS_N_13 NC 2 GND GND NC GND GND NC 3 USER_LVDS_P_14 USER_LVDS_N_14 NC USER_LVDS_P_15 USER_LVDS_N_15 NC 4 GND GND NC GND GND NC 5 USER_LVDS_P_0 USER_LVDS_N_0 NC USER_LVDS_P_1 USER_LVDS_N_1 NC 6 GND GND NC GND GND NC 7 USER_LVDS_P_2 USER_LVDS_N_2 NC USER_LVDS_P_3 USER_LVDS_N_3 NC 8 GND GND USER_LVDS_N_21 GND GND USER_LVDS_N_20 9 USER_LVDS_P_4 USER_LVDS_N_4 USER_LVDS_P_21 USER_LVDS_P_5 USER_LVDS_N_5 USER_LVDS_P_20 10 GND GND USER_LVDS_N_23 GND GND USER_LVDS_N_22 11 USER_LVDS_P_16 USER_LVDS_N_16 USER_LVDS_P_23 USER_LVDS_P_17 USER_LVDS_N_17 USER_LVDS_P_22 12 GND GND USER_LVDS_N_25 GND GND USER_LVDS_N_24 13 USER_LVDS_P_18 USER_LVDS_N_18 USER_LVDS_P_25 USER_LVDS_P_19 USER_LVDS_N_19 USER_LVDS_P_24 14 GND GND USER_LVDS_N_27 GND GND USER_LVDS_N_26 15 USER_LVDS_P_6 USER_LVDS_N_6 USER_LVDS_P_27 USER_LVDS_P_7 USER_LVDS_N_7 USER_LVDS_P_26 16 GND GND USER_LVDS_N_29 GND GND USER_LVDS_N_28 17 USER_LVDS_P_8 USER_LVDS_N_8 USER_LVDS_P_29 USER_LVDS_P_9 USER_LVDS_N_9 USER_LVDS_P_28 18 GND GND USER_LVDS_N_31 GND GND USER_LVDS_N_30 19 USER_LVDS_P_10 USER_LVDS_N_10 USER_LVDS_P_31 USER_LVDS_P_11 USER_LVDS_N_11 USER_LVDS_P_30 3

Serial FPDP Serial Front Panel Data Port (sfpdp) is an open standard (ANSI/VITA 17.1-2003) with broad appeal in the industry to users of remote subsystems and sensors. Data is transferred over a 2.5Gbit/s link using a simple point to point protocol which is both low overhead and deterministic: resulting in sustained data throughputs of 247MB/s. The XMC-FPGA05F XMC/PMC module can be supplied preconfigured to support four independent channels of sfpdp data through the front panel fiber optic transceivers. The sfpdp link_core includes the PLL, the MGT and registers for control and configuration. To ensure smooth dataflow, each incoming channel is buffered using an independent 128MB DDR2 SDRAM block as a FIFO. For transmitted data, 64KB BlockRAM FIFOs are used. Data movement between the host card and the XMC-FPGA05F is via DMA through PCI-X or PCI Express. The HDL for the application may also be supplied as a sfpdp IP core allowing developers to modify functionality or add data processing as part of the application within the FPGA on the XMC-FPGA05F. In either case, the application HDL presents a capability list which is fully compliant with the FusionXF SDK allowing developers to use the standard software development tools supplied with the board for development purposes. As part of the package, the preconfigured board and the IP core is supplied with example software source code to provide an easy jump off point to customized software. The IP core is supplied with VHDL source code and testbench for HDL development. Figure 1: Simplified sfpdp Core Dataflow Block Diagram 4x DDR2 SDRAM FIFO (128MB) sfpdp Data 4x sfpdp channel 4x DMA FIFO PCI DMA 4x BlockRAM FIFO (64KB) 4

Table 4: Specifications FPGA Device Configuration Memory Type Capacity Interface Number of s Connector s PCI and PCI-X Interface PCI Compliance PMC P14 User I/O Xilinx Virtex-5 SX95T Speed grade 2 Over PCI, PCI-X or PCIe interface - 1Gbit FLASH (FPGA boot/configuration including rescue image) - FLASH bypass - images stored in SRAM - JTAG/ChipScope pro port DDR2 SDRAM Total: 512MB Arranged as four banks, each 64M x 16-bit 2 or 4 full duplex transceivers connected to FPGA RocketIO HSS LC (contact Curtiss-Wright for alternatives) single-mode and multi-mode 2.5 and 3.125GB/s 850nm, multi-mode Contact Curtiss-Wright for alternative speeds and single-mode PCI 33/66MHz, PCI-X 66/100/133MHz Master/slave/DMA, Interrupt support 3.3V VIO only 64-bit I/O arranged as 32 differential pairs connected directly to the FPGA (note this is a mutually exclusive build option with XMC P16 I/O) XMC Interface Compliance VITA 42.0 XMC P15 8x RocketIO GTP @ up to 3.75GB/s (LXT/SXT) or x4/x8 PCIe release 1.1 XMC P16 Software/HDL Host Drivers Support/Utilities HDL examples Miscellaneous Weight Power MTBF 64-bit I/O compliant with VITA 46.9 X20d24s connected directly to the FPGA (note this is a mutually exclusive build option with XMC P16 I/O) Windows XP, VxWorks, Linux FusionXF development kit FPGA/FLASH programming, diagnostics I/O (RocketIO), memory interfaces, PCI-X, PCIe, data DMA TBA TBA TBA Table 5: Environmental Specifications Commercial Air-cooled Rugged Conduction-cooled Level 100 1 Level 100 1 Temperature Operational (at sea level) 0 C to +55 C -40 C to +70 C -40 C to +70 C (15 CFM air flow) 2 (20 CFM air flow) 2 (Card Edge Temp) 3 Non-Operational -40 C to +85 C -50 C to +100 C -50 C to +100 C Vibration Operational (Random) - 0.04g2/Hz 0.1g2/Hz Shock Operational - Humidity Operational 5-95% non-condensing 30g peak, 11ms half sine 40g peak, 11ms half sine Up to 95% Up to 95% Altitude 4 Operational - -1,500 to 60,000ft -1,500 to 60,000ft Conformal Coating 5 No Yes Yes Notes 1. Availability of the ruggedization levels are subject to qualifications for each product. 2. For operation at altitudes above sea level, the minimum volume flow rate should be adjusted to provide the same mass flow rate as would be provided at sea level. Additional airflow might be required if the card is mounted together with, or next to, cards that dissipate excessive amounts of heat. Some higher-powered products may require additional airflow. 3. The contacting surface on the rack/enclosure must be at a lower temperature to account for the thermal resistance between the plug-in unit and rack/enclosure. 4. Depending on the technology used, the risk for Single Event Upsets will increase with altitude. 5. Coated with Humiseal 1B31 or 1B73EPA. (ref. http://humiseal.com for details)_ *While the XMC-FPGA05F is designed to meet these environmental requirements, formal qualification testing has not been performed to these levels. Please contact your local sales representative to discuss your program specific requirements. 5

Figure 2: XMC-FPGA05F Block Diagram DDR2 SDRAM 128MB 128MB RocketIO 64-bit User I/O I/O build option P16 Xilinx Virtex-5 FPGA SX95T 16-bit 8x RocketIO 64-bit, 133MHz PCI-X 1Gbit FLASH PCI-X/PCI-X Bridge P15 DDR2 SDRAM 128MB 128MB Config SRAM Warranty This product has a one year warranty. Contact Information To find your appropriate sales representative, please visit: Website: www.cwcembedded.com/sales Email: sales@cwcembedded.com The information in this document is subject to change without notice and should not be construed as a commitment by Curtiss-Wright Controls Embedded Computing. While reasonable precautions have been taken, Curtiss-Wright Controls assumes no responsibility for any errors that may appear in this document. All products shown or mentioned are trademarks or registered trademarks of their respective owners. For technical support, please visit: Website: www.cwcembedded.com/support1 Email: support1@cwcembedded.com Copyright 2008, Curtiss-Wright Controls All Rights Reserved. MKT-DS-XMC-FPGA05F-090809v3 6