VRF, MPLS and MP-BGP Fundamentals

Similar documents
VRF, MPLS and MP-BGP Fundamentals

MPLS VPN--Inter-AS Option AB

Securizarea Calculatoarelor și a Rețelelor 32. Tehnologia MPLS VPN

MPLS VPN Inter-AS Option AB


MPLS VPN. 5 ian 2010

Multi-VRF Support. Finding Feature Information. Prerequisites for Multi-VRF Support

MPLS VPN Carrier Supporting Carrier Using LDP and an IGP

The CCIE Candidate s Introduction to MPLS L3VPN Networks

The CCIE Candidate s Introduction to MPLS L3VPN Networks

MPLS VPN Carrier Supporting Carrier Using LDP and an IGP

Configuring MPLS and EoMPLS

MPLS VPN Carrier Supporting Carrier IPv4 BGP Label Distribution

MPLS VPN Carrier Supporting Carrier IPv4 BGP Label Distribution

Configuring MPLS, MPLS VPN, MPLS OAM, and EoMPLS

UniNets MPLS LAB MANUAL MPLS. UNiNets Multiprotocol label Switching MPLS LAB MANUAL. UniNets MPLS LAB MANUAL

CCIE R&S Techtorial MPLS

Configuring VRF-lite CHAPTER

Multiprotocol Label Switching Virtual Private Network

Deploy MPLS L3 VPN. APNIC Technical Workshop October 23 to 25, Selangor, Malaysia Hosted by:

IPv6 Switching: Provider Edge Router over MPLS

IPv6 Switching: Provider Edge Router over MPLS

MPLS VPN Inter-AS with ASBRs Exchanging VPN-IPv4 Addresses

Cisco Training - HD Telepresence MPLS: Implementing Cisco MPLS V3.0. Upcoming Dates. Course Description. Course Outline

BGP mvpn BGP safi IPv4

Cisco Tetration Analytics

MPLS VPN Carrier Supporting Carrier

MPLS for R&S CCIE Candidates

WORKSHOP MPLS.

Implementing MPLS Layer 3 VPNs

MPLS over GRE. Finding Feature Information. Prerequisites for MPLS VPN L3VPN over GRE

BGP Best External. Finding Feature Information

MPLS VPN Multipath Support for Inter-AS VPNs

MPLS VPN C H A P T E R S U P P L E M E N T. BGP Advertising IPv4 Prefixes with a Label

WAN Edge MPLSoL2 Service

Lab 1: Static MPLS LSP-RTX4-RTX1 LSP-RTX1-RTX4 LSP-RTX3-RTX2 LSP-RTX2-RTX3

BGP-MVPN SAFI 129 IPv6

InterAS Option B. Information About InterAS. InterAS and ASBR

LARGE SCALE IP ROUTING LECTURE BY SEBASTIAN GRAF

GRE Tunnel with VRF Configuration Example

MPLS design. Massimiliano Sbaraglia

Table of Contents 1 Multicast VPN Configuration 1-1

Применение MPLS в сетях связи. (Часть 2)

Cisco. Maintaining Cisco Service Provider VPNs and MPLS Networks (MSPVM)

Concepts and Operation of MPLS VPNs. Francisco Bolanos

DMVPN for R&S CCIE Candidates Johnny Bass CCIE #6458

Introduction to External Connectivity

Deploying MPLS-based IP VPNs

MPLS VPN Inter-AS IPv4 BGP Label Distribution

Table of Contents Chapter 1 MPLS L3VPN Configuration

BGP MPLS VPNs. Introduction

Deploying MPLS-based IP VPNs

Configuring Virtual Private LAN Services

This document is not restricted to specific software and hardware versions.

Configuring MPLS Multi-VRF (VRF-lite)

MPLS VPN over mgre. Finding Feature Information. Last Updated: November 1, 2012

DOiT-200v6 VOLUME II I2 R2 4 N1. DOiT-200v6 Lab 16 Multi-Topic CCIE-Level Scenario. For CCIE Candidates

Configuring VRF-lite. Information About VRF-lite

MPLS Introduction. (C) Herbert Haas 2005/03/11

Multiprotocol BGP 1 MPLS VPN. Agenda. Multiprotocol BGP 2

Alcatel-Lucent 4A Alcatel-Lucent Services Architecture.

HP FlexFabric 7900 Switch Series

Configuring Multicast VPN Inter-AS Support

Configuring IPv6 Provider Edge over MPLS (6PE)

Remote Access MPLS-VPNs

MPLS Virtual Private Networks (VPNs)

MPLS VPN Half-Duplex VRF

Deploying MPLS L3VPN. Apricot Cisco and/or its affiliates. All rights reserved. Cisco Public

OpenStack Enabling DevOps Shannon McFarland CCIE #5245 Distinguished DEVNET-1104

What You Will Learn By the end of this appendix, you should know and be able to explain the following:

Configuring IPv6 VPN Provider Edge over MPLS (6VPE)

MPLS VPN Explicit Null Label Support with BGP. BGP IPv4 Label Session

OSPF Sham-Link Support for MPLS VPN

PASS4TEST. IT Certification Guaranteed, The Easy Way! We offer free update service for one year

Network Configuration Example

Next Generation MULTICAST In-band Signaling (VRF MLDP: Profile 6)

HPE FlexFabric 5940 Switch Series

Zero To Hero CCIE CCNP

Contents. Introduction. Prerequisites. Configure. Requirements. Components Used

Multi Protocol Label Switching (an introduction) Karst Koymans. Thursday, March 12, 2015

Technology Overview MPLS. MPLS Layer 3 VPNs CHAPTER

BGP Cost Community. Prerequisites for the BGP Cost Community Feature

Implementing MPLS VPNs over IP Tunnels

HP FlexFabric 5930 Switch Series

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

LARGE SCALE IP ROUTING LECTURE BY SEBASTIAN GRAF

DMVPN for R&S CCIE Candidates

HP A5820X & A5800 Switch Series MPLS. Configuration Guide. Abstract

Multiprotocol Label Switching (MPLS)

Multiprotocol Label Switching (MPLS)

Troubleshooting LSP Failure in MPLS VPN

Layer3 VPN with OSPF Protocol between CE-PE

MLDP In-Band Signaling/Transit Mode

Configuring MPLS L3VPN

BGP-VPN Distinguisher Attribute

Table of Contents Chapter 1 MPLS Basics Configuration

Configuring Multicast VPN Extranet Support

MPLS VPN Route Target Rewrite

Configuring multicast VPN

AToM (Any Transport over MPLS)

Transcription:

VRF, MPLS and MP-BGP Fundamentals Jason Gooley, CCIEx2 (RS, SP) #38759 Twitter: @ccie38759 LinkedIn: http://www.linkedin.com/in/jgooley

Agenda Introduction to Virtualization VRF-Lite MPLS & BGP Free Core Multiprotocol BGP (MP-BGP) Conclusion Q & A

Introduction

3 networks walk into a 5

What is a VRF? 6

Enterprise Network Virtualization Key Building Blocks Device Partitioning Virtualized Interconnect Si VRF VRF Global Virtualizing the Routing and Forwarding of the Device Extending and Maintaining the Virtualized Devices/Pools over Any Media 7

Device Partioning Layer 2 vs. Layer 3 Virtualization VRF VLAN Virtual LAN Virtualize at Layer 2 forwarding Associates to one or more L2 interfaces on switch Has its own MAC forwarding table and spanning-tree instance per VLAN Interconnect options? VLANs are extended via a physical cable or virtual 802.1q trunk VRF VRF Global VRF Virtual Routing and Forwarding Virtualize at Layer 3 forwarding Associates to one or more Layer 3 interfaces on router/switch Each VRF has its own Forwarding table (CEF) Routing process (RIP, EIGRP, OSPF, BGP) Interconnect options (VRF-Lite)? 802.1q, GRE, sub-interfaces, physical cables, signaling 8

Path Isolation Functional Components Device virtualization Control plane virtualization Data plane virtualization Services virtualization Data path virtualization Per VRF: Virtual Routing Table Virtual Forwarding Table VRF VRF Global Hop-by-Hop - VRF-Lite End-to-End Multi-Hop - VRF-Lite GRE MPLS-VPN MPLS VPN over IP 802.1q IP/MPLS MPLS VPN over DMVPN MPLS VPN o GRE/mGRE 9

VRF-Lite

What is VRF-Lite? Functional Components Per VRF: Virtual Routing Table Virtual Forwarding Table WAN/Campus VRF VRF VRF VRF VRF VRF 802.1q, GRE, DLCI A VRF supports it s own Routing Information Base (RIB) and Forwarding Information Base (FIB) Leverages Virtual encapsulation for separation: Ethernet/802.1Q, GRE, Frame Relay Routing protocols are VRF aware RIP/v2, EIGRP, OSPF, BGP, static (per VRF) Layer 3 interfaces can only belong to a single VRF 11

VRF-Lite Things to Remember End-to-End segmentation is done on a per VRF and per hop basis MP-BGP or control plane signaling is not required Labels are not required (i.e. MPLS) Scaling should be limited to a small number of VRFs IGPs VLAN 11 VLAN 21 VLAN 13 VLAN 23 VLAN 15 VLAN 25 VLAN 10 VLAN 20 VLAN 12 VLAN 22 VLAN 14 VLAN 24 VLAN 16 VLAN 26 12

VLAN 14 VLAN 114 VLAN 214 VLAN 23 VLAN 123 VLAN 223 VRF-Lite Sub-interface Example Per VRF: Virtual Routing Table Virtual Forwarding Table Locally Significant Lo1 R1.1.2 R2 Lo1 1.1.1.1 VLAN 12 Lo2 VRF-R VLAN 112 VRF-R VRF-E VRF-E Lo2 2.2.2.2 VRF-O VLAN 212 VRF-O Lo3 Lo1.1.4 F0/0.X VLAN X 10.1.X.0/24 Sub-interface/VLAN/VRF Mapping.2.3 Lo3 Lo1 IGPs: VRF-R = RIP VRF-E = EIGRP VRF-O = OSPF 4.4.4.4 Lo2 Lo3 VRF-R VRF-E VRF-O R4.4 VLAN 34 VLAN 134 VLAN 234.3 VRF-R VRF-E VRF-O R3 Lo3 Lo2 3.3.3.3 13

VRF-Lite Sub-interface Configuration Command Line Interface (CLI) Review ip vrf VRF-R rd 1:1 interface FastEthernet0/0.12 ip vrf forwarding VRF-R interface Loopback1 ip vrf forwarding VRF-R ip vrf VRF-E rd 2:2 interface FastEthernet0/0.112 ip vrf forwarding VRF-E interface Loopback2 ip vrf forwarding VRF-E ip vrf VRF-O rd 3:3 VRF VRF VRF interface FastEthernet0/0.212 ip vrf forwarding VRF-O interface Loopback3 ip vrf forwarding VRF-O 14

VRF Aware RIP Configuration Command Line Interface (CLI) Review Leverage what you already know! router rip version 2 network 1.0.0.0 network 10.0.0.0 no auto-summary router rip! address-family ipv4 vrf VRF-R network 1.0.0.0 network 10.0.0.0 no auto-summary version 2 exit-address-family RIP leverages address-family ipv4 vrf VRF 15

VRF Aware EIGRP Configuration Command Line Interface (CLI) Review router eigrp 10 network 1.1.1.1 0.0.0.0 network 10.1.112.0 0.0.0.255 no auto-summary Leverage what you already know! router eigrp 10 (AS can be the same or different as one of the VRFs!!!) auto-summary! address-family ipv4 vrf VRF-E network 1.1.1.1 0.0.0.0 network 10.1.112.0 0.0.0.255 no auto-summary autonomous-system 10 exit-address-family EIGRP leverages address-family ipv4 vrf VRF Set unique autonomous system number per VRF 16

VRF Aware OSPF Configuration Command Line Interface (CLI) Review Leverage what you already know! router ospf 1 log-adjacency-changes network 1.1.1.1 0.0.0.0 area 1 network 10.1.212.0 0.0.0.255 area 0 router ospf 2 vrf VRF-O log-adjacency-changes network 1.1.1.1 0.0.0.0 area 1 network 10.1.212.0 0.0.0.255 area 0 OSPF leverages vrf after the unique process number VRF 17

Live Exploration

Tunnel 14 Tunnel 114 Tunnel 214 Tunnel 23 Tunnel 123 Tunnel 223 1.1.1.1 No Sub-interface Support? No Problem! GRE Example Lo11 Lo12 R1.1.2 Tunnel 12 VRF-R Tunnel 112 VRF-E Tunnel 212 VRF-O R2 VRF-Lite can also leverage GRE tunnels as a segmentation technology VRF-R VRF-E VRF-O Lo1 Each VRF uses a unique GRE tunnel GRE tunnel interface is VRF aware Lo13.1 Tunnel X 10.1.X.0/24.2 Lo13 Lo11.4 Tunnel/VRF Mapping.3 Lo11 4.4.4.4 Lo12 Lo13 VRF-R VRF-E VRF-O R4.4 Tunnel 34 Tunnel 134 Tunnel 234.3 VRF-R VRF-E VRF-O R3 Lo13 Lo12 3.3.3.3 Configuration Note: Each GRE Tunnel Could Require Unique Source/Destination IP (Platform Dependent) 19

VRF-Lite Tunnel Configuration Command Line Interface (CLI) Review ip vrf VRF-S rd 11:11 interface Loopback101 ip address 11.11.11.11 255.255.255.255 (Global Routing Table) Leverage what you already know! ip route vrf VRF-S 2.2.2.2 255.255.255.255 10.1.12.2 interface Tunnel12 ip vrf forwarding VRF-S ip address 10.1.12.1 255.255.255.0 tunnel source Loopback101 tunnel destination 22.22.22.22 ip vrf VRF-S rd 22:22 interface Loopback102 ip address 22.22.22.22 255.255.255.255 (Global Routing Table) interface Tunnel12 ip vrf forwarding VRF-S ip address 10.1.12.2 255.255.255.0 tunnel source Loopback102 tunnel destination 11.11.11.11 VRF ip route vrf VRF-S 1.1.1.1 255.255.255.255 10.1.12.1 20

Serial1/1.14 Serial1/1.114 Serial1/1.214 Serial1/1.23 Serial1/1.123 Serial1/1.223 Layer 2 Serial Link? No Problem? Back-to-Back Frame Relay Example Lo111 R1 R2.1.2 VRF-Lite can also leverage Frame Relay Sub-interfaces as a segmentation Lo1 technology 1.1.1.1 Lo112 Lo113.1 VRF-R VRF-E VRF-O Serial1/0.12 Serial1/0.112 Serial1/0.212 Serial1/0.X Serial1/1.X 10.1.X.0/24 VRF-R VRF-E Each VRF uses a unique Frame-Relay VRF-O sub-interface and DLCI.2 Lo3 Frame Relay sub-interface is VRF aware Lo111.4 FR VC/VRF Mapping.3 Lo111 4.4.4.4 Lo112 Lo113 VRF-R VRF-E VRF-O R4.4 Serial1/0.34 Serial1/0.134 Serial1/0.234.3 VRF-R VRF-E VRF-O R3 Lo113 Lo112 3.3.3.3 Configuration Note: Leveraging Back-to-Back Frame-Relay Configuration 21

VRF-Lite Back-to-Back Frame Relay Configuration Command Line Interface (CLI) Review ip vrf VRF-B rd 111:111 interface Serial1/0 encapsulation frame-relay no keepalive Interface Serial1/0.12 point-to-point ip vrf forwarding VRF-B ip address 10.1.12.1 255.255.255.0 frame-relay interface-dlci 201 ip vrf VRF-B rd 222:222 Leverage what you already know! router bgp 1 address-family ipv4 vrf VRF-B neighbor 10.1.12.2 remote-as 2 neighbor 10.1.12.2 activate no synchronization network 1.1.1.1 mask 255.255.255.255 exit-address-family interface Serial1/0 encapsulation frame-relay no keepalive Interface Serial1/0.12 point-to-point ip vrf forwarding VRF-B ip address 10.1.12.2 255.255.255.0 frame-relay interface-dlci 201 VRF router bgp 2 address-family ipv4 vrf VRF-B neighbor 10.1.12.1 remote-as 1 neighbor 10.1.12.1 activate no synchronization network 2.2.2.2 mask 255.255.255.255 exit-address-family 22

Live Exploration

VRF-Lite Summary Create a VRF in router for RIB/FIB and interface segmentation No MPLS, LDP, or MP-BGP required Optimal solution when VRF count is small (~ <8) Supports multicast and QoS solutions Leverage current routing protocol knowledge and apply it to PE-CE VRF Routing 24

MPLS & BGP Free Core

What Is MPLS? Most Painful Learn Study 26

What Is MPLS? Multi Protocol Label Switching Multi-Protocol: The ability to carry any payload Have: IPv4, IPv6, Ethernet, ATM, FR Uses Labels to tell a node what to do with a packet; separates forwarding (hop by hop behavior) from routing (control plane) Routing based on IPv4/IPv6 lookup. Everything else is label switching. 27

MPLS Component Overview CE routers owned by customer PE routers owned by SP P routers owned by SP Customer peers to PE via IP Exchanges routing with SP via routing protocol (or static route)* SP advertises CE routes to other CEs Customer Site 1 Site 2 CE CE PE SP Demarcation Provider MPLS VPN PE IP Routing Peer (BGP, Static, IGP) * Labels are not exchanged with the SP Customer CE Site 3 28

IP Routing IGP vs. BGP Exchange of IP routes for Loopback Reachability OSPF, IS-IS, EIGRP, etc. ibgp neighbor peering over IGP transport Route towards BGP Next-Hop In Label Forwarding Table Forwarding Table Forwarding Table Address Prefix 10.2 F0/0 PE1 Out Out I face Label F0/0 In Label You Can Reach 2.2 Through Me Address Prefix 10.2 NA P Out Out I face Label F0/0 In Label Address Prefix 10.2 PE2 Out Out I face Label F0/0 F0/0 10.2 BGP Update: You Can Reach 10.2 Thru Me By routing towards 2.2.2.2 Routing Updates (OSPF) You Can Reach 2.2 Thru Me 29

MPLS Label Switched Path (LSP) Setup with LDP Assignment of Remote Labels Local label mappings are sent to connected nodes Receiving nodes update forwarding table Out label LDP label advertisement happens in parallel (downstream unsolicited) Forwarding Table Forwarding Table Forwarding Table In Address Label Prefix - - 2.2 PE1 Out Out I facelabel F0/0 20 F0/0 In Address Label Prefix 20 2.2 P Out Out I facelabel F0/0 F0/0 30 In Address Label Prefix 30 10.2 PE2 Out Out I facelabel F0/0 F0/0 VRF - 10.2 Use Label 20 for 2.2 Use Label 30 for 2.2 Label Distribution Protocol (LDP) (Downstream Allocation) BGP Update: You Can Reach 10.2 Thru Me By routing towards 2.2.2.2 30

MPLS Traffic Forwarding with LDP Hop-by-hop Traffic Forwarding Using Labels Ingress PE node adds label to packet (push) Via MPLS forwarding table Downstream P node uses label for forwarding decision (swap) Outgoing interface Out label Egress PE removes label and forwards original packet (pop) Forwarding Table Forwarding Table Forwarding Table In Address Label Prefix - - 2.2 PE1 Out Out I facelabel F0/0 F0/0 20 In Address Label Prefix 20 10.2.1.1 Data 20 2.2.2.2 Data 2.2 F0/0 Forwarding based on Label towards BGP Next-Hop (Loopback of far end router) - P Out Out I facelabel F0/0 30 30 In Address Label Prefix 30 2.2.2.2 Data 10.2 PE2 Out Out I facelabel F0/0 F0/0 VRF - 10.2 10.2.1.1 Data BGP Update: You Can Reach 10.2 Thru Me By routing towards 2.2.2.2 31

BGP Free Core Component Overview 10.1.1.0/24 10.2.1.0/24 Site 1 10.1.1.0/24 Next-Hop=CE1 VPNv4 ibgp Relationship Next-Hop=CE2 Site 2 CE1 CE2 10.2.1.0/24 10.2.1.0/24 Next-Hop=PE1 PE1 P1 P2 PE2 10.1.1.0/24 Next-Hop=PE2 Redistribute IGP/Static Into BGP 1. Always route towards BGP Next-Hop 2. Routes will be valid on PE Routers P3 P4 OSPF Area 0 Redistribute IGP/Static Into BGP 3. Will label switch towards BGP Next-Hop of PE with MPLS enabled End-to-End BGP and redistribution of routes into OSPF core not necessary! 32

Multiprotocol BGP (MP-BGP)

Multiprotocol BGP (MP-BGP) Bringing It All Together 10.1.1.0/24 10.1.1.0/24 10.2.1.0/24 VPNv4 ibgp Relationship Site 1 Next-Hop=CE1 Next-Hop=CE2 Site 2 CE1 10.2.1.0/24 Next-Hop=PE1 VRF PE1 P1 P2 VRF PE2 CE2 10.1.1.0/24 Next-Hop=PE2 10.2.1.0/24 Redistribute IGP/Static Into BGP P3 P4 OSPF Area 0 Redistribute IGP/Static Into BGP 1. PE receives an IPv4 update on a VRF interface (ebgp/ospf/rip/eigrp) 2. PE translates it into VPNv4 address (96-bit address) (64-bit RD + 32 bit IPv4 address) Assigns an RT per VRF configuration Rewrites next-hop attribute to itself Assigns a label based on VRF and/or interface 3. PE sends MP-iBGP update to other PE routers 34

Why an RD and VPNv4 Address? Use Case 10.1.1.0/24 VPNv4 ibgp Relationship 111:1:10.1.1.0/24 Cust A Site 1 Cust A Site 2 Cust B Site 1 10.1.1.0/24 CE1 CE1 10.1.1.0/24 VRF A 10.2.1.0/24 111:1:10.2.1.0/24 CE2 P3 OSPF Area 0 10.2.1.0/24 P1 P2 PE1 VRF B PE2 Cust B Site 2 10.1.1.0/24 222:1:10.2.1.0/24 1. PE routers service multiple customers 2. Once PE redistributes customer routes into MP-BGP, they must be unique 3. RD is prepended to each prefix to make routes unique VPNv4 prefixes are the combination of a 64-bit RD and a 32-bit IPv4 prefix. VPNv4 prefixes are 96-bits in length P4 222:1:10.1.1.0/24 VRF A VRF B CE2 10.2.1.0/24 10.2.1.0/24 35

Why are Route Targets Important? Use Case 10.1.1.0/24 VPNv4 ibgp Relationship VRF A Import 222:1 Cust A Site 1 Cust A Site 2 Cust A Site 3 10.1.3.0/24 CE1 CE1 Import 333:1 Import 111:1 10.1.2.0/24 Import 444:1 Export 222:1 CE1 Export 111:1 VRF A P1 P2 VRF B PE1 VRF C PE2 Cust A Site 4 VRF C Import 111:1 Export 333:1 OSPF Area 0 1. Route Targets dictate which VRF will receive what routes 2. Can be used to allow specific sites access to centralized services 3. Cust A Site 2, Site 3 and Site 4 will not be able to exchange routes with each other Route Targets are a 64-bit value and are carried in BGP as an extended community P3 P4 VRF B VRF D VRF D CE1 Import 111:1 Export 444:1 10.1.4.0/24 36

MPLS VPN and MP-BGP Command Line Interface (CLI) Review Customer 1 VRF VRF-1 EIGRP, OSPF, RIPv2, BGP, Static CE VRF VRF-2 Customer 2 VRF Configuration (PE)! PE Router Multiple VRFs ip vrf VRF-1 rd 65100:10 route-target import 65102:10 route-target export 65102:10 ip vrf VRF-2 rd 65100:20 route-target import 65102:20 route-target export 65102:20! Interface FastEthernet0/1.10 ip vrf forwarding VRF-1 Interface FastEthernet0/1.20 ip vrf forwarding VRF-2 CE! PE router router bgp 65102 no bgp default ipv4-unicast neighbor 2.2.2.2 remote-as 65102! address-family vpnv4 neighbor 2.2.2.2 activate neighbor 2.2.2.2 send-community extended exit-address-family! PE address-family ipv4 vrf VRF-1 redistribute rip P VPN Backbone IGP P P MP-iBGP Configuration (PE) exit-address-family P PE VRF VRF-1 VRF VRF-2 MP-iBGP VPNv4 Label Exchange CE CE 37

Live Exploration

MPLS VPN Technology Summary MPLS VPN Connection Model CE Routers VPN 2 VPN 1 VRF Associates to one or more interfaces on PE Has its own routing table and forwarding table (CEF) VRF has its own instance for the routing protocol (static, RIP, BGP, EIGRP, OSPF) CE EIGRP, OSPF, RIPv2, BGP, Static CE PE Routers VRF Green VRF Blue MPLS Edge routers PE MPLS forwarding to P routers IGP/BGP IP to CE routers Distributes VPN information through MP- BGP to other PE routers with VPNv4 addresses, extended community, VPN labels Push labels onto incoming IP packets P VPN Backbone IGP P MP-iBGP VPNv4 Label Exchange P P Global Address Space P Routers PE P routers are in the core of the MPLS cloud P routers do not need to run BGP Do not have knowledge of VPNs Switch packets based on labels (swap/pop) not IP 39

dcloud dcloud.cisco.com Log in with CCO account Click Home Search for MPLS Fundamentals Sandbox 40

Closing Thoughts Break MPLS into smaller, more manageable chunks to accelerate learning Leverage current routing protocol knowledge learning PE-CE VRF routing MP-BGP and traditional IPv4 BGP configuration is very similar If routes are not present on CE routers check route-target import/export, communities and redistribution between IPv4 VRF address-families under IGP and BGP If routes are present but you are having problems with reachability, check MPLS configuration Remember on PE devices you are living in a VRF world (Ping, Traceroute etc.) HAVE FUN!!!!! Remember, it s a journey not a destination! 41

Complete Your Online Session Evaluation Give us your feedback to be entered into a Daily Survey Drawing. A daily winner will receive a $750 Amazon gift card. Complete your session surveys through the Cisco Live mobile app or from the Session Catalog on CiscoLive.com/us. Don t forget: Cisco Live sessions will be available for viewing on-demand after the event at CiscoLive.com/Online 42

Continue Your Education Demos in the Cisco campus Walk-in Self-Paced Labs Lunch & Learn Meet the Engineer 1:1 meetings Related sessions dcloud Cisco Press BGP Troubleshooting 43

What Is MPLS? Master Share Practice Learn 44

Please join us for the Service Provider Innovation Talk featuring: Yvette Kanouff Senior Vice President and General Manager, SP Business Joe Cozzolino Senior Vice President, Cisco Services Thursday, July 14 th, 2016 11:30 am - 12:30pm, In the Oceanside A room What to expect from this innovation talk Insights on market trends and forecasts Preview of key technologies and capabilities Innovative demonstrations of the latest and greatest products Better understanding of how Cisco can help you succeed Register to attend the session live now or watch the broadcast on cisco.com

Thank you

Live Exploration Diagrams

VLAN 14 VLAN 114 VLAN 214 VLAN 23 VLAN 123 VLAN 223 VRF-Lite Sub-interface Example Per VRF: Virtual Routing Table Virtual Forwarding Table Locally Significant Lo1 R1.1.2 R2 Lo1 1.1.1.1 VLAN 12 Lo2 VRF-R VLAN 112 VRF-R VRF-E VRF-E Lo2 2.2.2.2 VRF-O VLAN 212 VRF-O Lo3 Lo1.1.4 E0/0.X VLAN X 10.1.X.0/24 Sub-interface/VLAN/VRF Mapping.2.3 Lo3 Lo1 IGPs: VRF-R = RIP VRF-E = EIGRP VRF-O = OSPF 4.4.4.4 Lo2 Lo3 VRF-R VRF-E VRF-O R4.4 VLAN 34 VLAN 134 VLAN 234.3 VRF-R VRF-E VRF-O R3 Lo3 Lo2 3.3.3.3 49

Tunnel 14 Tunnel 114 Tunnel 214 Tunnel 23 Tunnel 123 Tunnel 223 1.1.1.1 No Sub-interface Support/No Problem GRE Example Lo11 Lo12 R1.1.2 Tunnel 12 VRF-R Tunnel 112 VRF-E Tunnel 212 VRF-O R2 VRF Lite can also leverage GRE tunnels as a segmentation technology VRF-R VRF-E VRF-O Lo1 Each VRF uses a unique GRE tunnel GRE tunnel interface is VRF aware Lo13.1 Tunnel X 10.1.X.0/24.2 Lo13 Lo11.4 Tunnel/VRF Mapping.3 Lo11 4.4.4.4 Lo12 Lo13 VRF-R VRF-E VRF-O R4.4 Tunnel 34 Tunnel 134 Tunnel 234.3 VRF-R VRF-E VRF-O R3 Lo13 Lo12 3.3.3.3 Configuration Note: Each GRE Tunnel Could Require Unique Source/Destination IP (Platform Dependent) 50

Serial1/1.14 Serial1/1.114 Serial1/1.214 Serial1/1.23 Serial1/1.123 Serial1/1.223 Layer 2 Serial Link/No Problem Back-to-Back Frame Relay Example Lo111 R1 R2.1.2 VRF Lite can also leverage Frame Relay Sub-interfaces as a segmentation Lo1 technology 1.1.1.1 Lo112 Lo113.1 VRF-R VRF-E VRF-O Serial1/0.12 Serial1/0.112 Serial1/0.212 Serial1/0.X Serial1/1.X 10.1.X.0/24 VRF-R VRF-E Each VRF uses a unique Frame-Relay VRF-O sub-interface and DLCI.2 Lo3 Frame Relay sub-interface is VRF aware Lo111.4 FR VC/VRF Mapping.3 Lo111 4.4.4.4 Lo112 Lo113 VRF-R VRF-E VRF-O R4.4 Serial1/0.34 Serial1/0.134 Serial1/0.234.3 VRF-R VRF-E VRF-O R3 Lo113 Lo112 3.3.3.3 Configuration Note: Leveraging Back-to-Back Frame-Relay Configuration 51

Multiprotocol BGP (MP-BGP) Bringing It All Together 10.1.1.0/24 ibgp Relationship Site 1 Site 2 E0/1 10.1.1.0/24 Next-Hop=R8 VRF Instance CE1 E0/1 E0/1 E0/0 E0/2 E0/2 E0/2 P1 P2 E0/2 PE1 E0/1 E0/1 E0/3 E0/0 E0/3 P4 P3 E0/3 OSPF Area 0 E0/3 E0/1 PE2 VRF Instance E0/1 CE2 10.2.1.0/24 10.2.1.0/24 Next-Hop=R6 R8 52