ΗΜΥ 317 Τεχνολογία Υπολογισμού

Similar documents
Formal Specification. Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 10 Slide 1

Chapter 10 Formal Specification

Chapter 27 Formal Specification

Techniques for the unambiguous specification of software

Formal Specification. Objectives

ΗΜΥ 317 Τεχνολογία Υπολογισμού

ΗΜΥ 317 Τεχνολογία Υπολογισμού

Formal Validation of DNA Database Using Theorem Proving Technique

Formal Validation of DNA Database Using Theorem Proving Technique

Q Body of techniques supported by. R precise mathematics. R powerful analysis tools. Q Rigorous, effective mechanisms for system.

You have 45 minutes to work on this exam. It is a "closed-book/closed-notes" test.

! Use of formal notations. ! in software system descriptions. ! for a broad range of effects. ! and varying levels of use. !

Topic Formal Methods. ICS 121 Lecture Notes. What are Formal Methods? What are Formal Methods? Formal Specification in Software Development

LECTURE 6: INTRODUCTION TO FORMAL METHODS. Software Engineering Mike Wooldridge

Methods for requirements engineering

Introduction to Formal Methods

Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 6 Slide 1

A Michael Jackson presentation. CSE503: Software Engineering. The following slides are from his keynote at ICSE 1995

Chapter 3 (part 3) Describing Syntax and Semantics

Programming Languages Third Edition

Static and dynamic Testing

A Short Introduction to Formal Specifications

Verification and Validation

Critical Systems. Objectives. Topics covered. Critical Systems. System dependability. Importance of dependability

Lecture 7: Requirements Modeling III. Formal Methods in RE

3.4 Deduction and Evaluation: Tools Conditional-Equational Logic

NAME (as it appears on your UF ID): (Please PRINT) CEN Software Engineering

Unit-3 Software Design (Lecture Notes)

Formal Foundations of Software Engineering

Solutions to selected exercises

Modeling Issues Modeling Enterprises. Modeling

Formal Methods in Software Design. Markus Roggenbach

Distributed Systems Programming (F21DS1) Formal Verification

Software Engineering 2 A practical course in software engineering. Ekkart Kindler

Handout 9: Imperative Programs and State

Part 5. Verification and Validation

Engineering and Computer Job Fair

MONIKA HEINER.

FORMAL SPECIFICATION APPROACH IN DESIGNING DATABASE SYSTEM USING Z

REQUIREMENTS ANALYSIS. What versus how

Verification and Validation. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 1

Requirements Modelling and Software Systems Implementation Using Formal Languages

Ch 4: Requirements Engineering. What are requirements?

Architectural Design. Topics covered. Architectural Design. Software architecture. Recall the design process

CSCC24 Functional Programming Scheme Part 2

A Small Interpreted Language

Contents. Chapter 1 SPECIFYING SYNTAX 1

Specification-based Testing

Part II. Hoare Logic and Program Verification. Why specify programs? Specification and Verification. Code Verification. Why verify programs?

An Annotated Language

Verification and Validation. Ian Sommerville 2004 Software Engineering, 7th edition. Chapter 22 Slide 1

CMSC 330: Organization of Programming Languages. Operational Semantics

Formal Methods for Software Engineers

Establishing the overall structure of a software system

Computer Science 520/620 Spring 2013 Prof. L. Osterweil" Course Housekeeping" Software Models and Representations" Part 5" Modeling Data and Types"

ISO/IEC INTERNATIONAL STANDARD. Software and system engineering High-level Petri nets Part 1: Concepts, definitions and graphical notation

Objectives. Architectural Design. Software architecture. Topics covered. Architectural design. Advantages of explicit architecture

Requirements engineering

1.1 Software Life Cycle

The SMT-LIB 2 Standard: Overview and Proposed New Theories

Ian Sommerville 2006 Software Engineering, 8th edition. Chapter 22 Slide 1

Computing Fundamentals 2 Introduction to CafeOBJ

CMSC 330: Organization of Programming Languages. Formal Semantics of a Prog. Lang. Specifying Syntax, Semantics

Flight Systems are Cyber-Physical Systems

Sequence-Based Specification

Learning outcomes. Systems Engineering. Debugging Process. Debugging Process. Review

Ingegneria del Software II academic year: Course Web-site: [

Lesson 06. Requirement Engineering Processes

UNIT II SOFTWARE REQUIREMENTS 9

Computer Science 520/620 Spring 2014 Prof. L. Osterweil" Modeling Data and Types" Software Models and Representations" Part 5"

CITS5501 Software Testing and Quality Assurance Formal methods

Introduction to Software Specifications and Data Flow Diagrams. Neelam Gupta The University of Arizona

Module 3. Requirements Analysis and Specification. Version 2 CSE IIT, Kharagpur

Software Testing. Software Testing

Chapter 3. Describing Syntax and Semantics

Parnas Tables: A Practical Formalism. Joanne M. Atlee Department of Computer Science University of Waterloo

Lecture 5 - Axiomatic semantics

Abstract Specifications: A Review. Algebraic Specification

Shell CSCE 314 TAMU. Haskell Functions

Z Notation. June 21, 2018

Software dependability. Critical systems development. Objectives. Dependability achievement. Diversity and redundancy.

Verification of the Requirements Specification

CSE 307: Principles of Programming Languages

Computer Science 520/620 Spring 2013 Prof. L. Osterweil" Software Models and Representations" Part 5" Modeling Data and Types" Course Housekeeping"

UNIVERSITY OF SOUTHAMPTON Faculty of Engineering and Applied Science Department of Electronics and Computer Science

Modelling ODP Viewpoints. 1 Introduction. 2 Basic Modelling and Specification Concepts

The requirements engineering process

5. VHDL - Introduction - 5. VHDL - Design flow - 5. VHDL - Entities and Architectures (1) - 5. VHDL - Entities and Architectures (2) -

Objectives. Chapter 19. Verification vs. validation. Topics covered. Static and dynamic verification. The V&V process

An Evolution of Mathematical Tools

Chapter 3. Describing Syntax and Semantics ISBN

SMT-LIB for HOL. Daniel Kroening Philipp Rümmer Georg Weissenbacher Oxford University Computing Laboratory. ITP Workshop MSR Cambridge 25 August 2009

Chapter 3. Describing Syntax and Semantics

Scheme. Functional Programming. Lambda Calculus. CSC 4101: Programming Languages 1. Textbook, Sections , 13.7

FORMALIZED SOFTWARE DEVELOPMENT IN AN INDUSTRIAL ENVIRONMENT

COSC252: Programming Languages: Semantic Specification. Jeremy Bolton, PhD Adjunct Professor

1 A question of semantics

To be or not programmable Dimitri Papadimitriou, Bernard Sales Alcatel-Lucent April 2013 COPYRIGHT 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Implementing an abstract datatype. Linked lists and queues

CS 242. Fundamentals. Reading: See last slide

Transcription:

ΗΜΥ 317 Τεχνολογία Υπολογισμού Εαρινό Εξάμηνο 2008 ΙΑΛΕΞΗ 11: Τυποποιημένες (Formal) Προδιαγραφές ΧΑΡΗΣ ΘΕΟΧΑΡΙ ΗΣ Λέκτορας ΗΜΜΥ (ttheocharides@ucy.ac.cy) [Προσαρμογή από Ian Sommerville, Software Engineering, 8 th Edition] Chapter 10

Objectives To explain why formal specification techniques help discover problems in system requirements To describe the use of algebraic techniques for interface specification To describe the use of model-based techniques for behavioural specification ΗΜΥ317 11 Formal Specifications.2 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Topics covered Formal specification in the software process Sub-system interface specification Behavioural specification ΗΜΥ317 11 Formal Specifications.3 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Formal methods Formal specification is part of a more general collection of techniques that are known as formal methods. These are all based on mathematical representation and analysis of software. Formal methods include Formal specification; Specification analysis and proof; Transformational development; Program verification. ΗΜΥ317 11 Formal Specifications.4 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Acceptance of formal methods Formal methods have not become mainstream software development techniques as was once predicted Other software engineering techniques have been successful at increasing system quality. Hence the need for formal methods has been reduced; Market changes have made time-to-market rather than software with a low error count the key factor. Formal methods do not reduce time to market; The scope of formal methods is limited. They are not well-suited to specifying and analysing user interfaces and user interaction; Formal methods are still hard to scale up to large systems. ΗΜΥ317 11 Formal Specifications.5 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Use of formal methods The principal benefits of formal methods are in reducing the number of faults in systems. Consequently, their main area of applicability is in critical systems engineering. There have been several successful projects where formal methods have been used in this area. In this area, the use of formal methods is most likely to be cost-effective because high system failure costs must be avoided. ΗΜΥ317 11 Formal Specifications.6 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Specification in the software process Specification and design are inextricably intermingled. Architectural design is essential to structure a specification and the specification process. Formal specifications are expressed in a mathematical notation with precisely defined vocabulary, syntax and semantics. ΗΜΥ317 11 Formal Specifications.7 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Specification and design ΗΜΥ317 11 Formal Specifications.8 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Specification in the software process ΗΜΥ317 11 Formal Specifications.9 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Use of formal specification Formal specification involves investing more effort in the early phases of software development. This reduces requirements errors as it forces a detailed analysis of the requirements. Incompleteness and inconsistencies can be discovered and resolved. Hence, savings as made as the amount of rework due to requirements problems is reduced. ΗΜΥ317 11 Formal Specifications.10 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Cost profile The use of formal specification means that the cost profile of a project changes There are greater up front costs as more time and effort are spent developing the specification; However, implementation and validation costs should be reduced as the specification process reduces errors and ambiguities in the requirements. ΗΜΥ317 11 Formal Specifications.11 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Development costs with formal specification ΗΜΥ317 11 Formal Specifications.12 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Specification techniques Algebraic specification The system is specified in terms of its operations and their relationships. Model-based specification The system is specified in terms of a state model that is constructed using mathematical constructs such as sets and sequences. Operations are defined by modifications to the system s state. ΗΜΥ317 11 Formal Specifications.13 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Formal specification languages Sequential Algebraic Larch (Guttag et al., 1993) }, OBJ (Futatsugi et al., 1985)} Model-based Z (Spivey, 1992)} VDM (Jones, 1980)} B (Wordsworth, 1996)} Concurrent Lotos (Bolognesi and Brinksma, 1987)}, CSP (Hoare, 1985)} Petri Nets (Peterson, 1981)} ΗΜΥ317 11 Formal Specifications.14 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Interface specification Large systems are decomposed into subsystems with well-defined interfaces between these subsystems. Specification of subsystem interfaces allows independent development of the different subsystems. Interfaces may be defined as abstract data types or object classes. The algebraic approach to formal specification is particularly wellsuited to interface specification as it is focused on the defined operations in an object. ΗΜΥ317 11 Formal Specifications.15 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Sub-system interfaces ΗΜΥ317 11 Formal Specifications.16 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

The structure of an algebraic specification <SPECIFICATION NAME> sort < name > imports <List of Specifications Names> Informal description of the sort and its operations Operation signatures setting out the names and the types of the parameters to the operations defined over the sort Axioms defining the operations over the sort ΗΜΥ317 11 Formal Specifications.17 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Specification components Introduction Defines the sort (the type name) and declares other specifications that are used. Description Informally describes the operations on the type. Signature Defines the syntax of the operations in the interface and their parameters. Axioms Defines the operation semantics by defining axioms which characterise behaviour. ΗΜΥ317 11 Formal Specifications.18 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Systematic algebraic specification Algebraic specifications of a system may be developed in a systematic way Specification structuring; Specification naming; Operation selection; Informal operation specification; Syntax definition; Axiom definition. ΗΜΥ317 11 Formal Specifications.19 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Specification operations Constructor operations. Operations which create entities of the type being specified. Inspection operations. Operations which evaluate entities of the type being specified. To specify behaviour, define the inspector operations for each constructor operation. ΗΜΥ317 11 Formal Specifications.20 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Operations on a list ADT Constructor operations which evaluate to sort List Create, Cons and Tail. Inspection operations which take sort list as a parameter and return some other sort Head and Length. Tail can be defined using the simpler constructors Create and Cons. No need to define Head and Length with Tail. ΗΜΥ317 11 Formal Specifications.21 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

List specification LIST ( Elem ) sort List imports INTEGER Defines a list where elements are added at the end and removed from the front. The operations are Create, which brings an empty list into existence, Cons, which creates a newlist with an added member, Length, which evaluates the list size, Head, which evaluates the front element of the list, and Tail, which creates a list by removing the head from its input list. Undefined represents an undefined value of type Elem. Create List Cons (List, Elem) List Head (List) Elem Length (List) Integer Tail (List) List Head (Create) = Undefined exception (empty list) Head (Cons (L, v)) = if L = Create then v else Head (L) Length (Create) = 0 Length (Cons (L, v)) = Leng th (L) + 1 Tail (Create ) = Create Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v) ΗΜΥ317 11 Formal Specifications.22 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Recursion in specifications Operations are often specified recursively. Tail (Cons (L, v)) = if L = Create then Create else Cons (Tail (L), v). Cons ([5, 7], 9) = [5, 7, 9] Tail ([5, 7, 9]) = Tail (Cons ( [5, 7], 9)) = Cons (Tail ([5, 7]), 9) = Cons (Tail (Cons ([5], 7)), 9) = Cons (Cons (Tail ([5]), 7), 9) = Cons (Cons (Tail (Cons ([], 5)), 7), 9) = Cons (Cons ([Create], 7), 9) = Cons ([7], 9) = [7, 9] ΗΜΥ317 11 Formal Specifications.23 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Interface specification in critical systems Consider an air traffic control system where aircraft fly through managed sectors of airspace. Each sector may include a number of aircraft but, for safety reasons, these must be separated. In this example, a simple vertical separation of 300m is proposed. The system should warn the controller if aircraft are instructed to move so that the separation rule is breached. ΗΜΥ317 11 Formal Specifications.24 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

A sector object Critical operations on an object representing a controlled sector are Enter. Add an aircraft to the controlled airspace; Leave. Remove an aircraft from the controlled airspace; Move. Move an aircraft from one height to another; Lookup. Given an aircraft identifier, return its current height; ΗΜΥ317 11 Formal Specifications.25 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Primitive operations It is sometimes necessary to introduce additional operations to simplify the specification. The other operations can then be defined using these more primitive operations. Primitive operations Create. Bring an instance of a sector into existence; Put. Add an aircraft without safety checks; In-space. Determine if a given aircraft is in the sector; Occupied. Given a height, determine if there is an aircraft within 300m of that height. ΗΜΥ317 11 Formal Specifications.26 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Sector specification (1) ΗΜΥ317 11 Formal Specifications.27 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Sector specification (2) ΗΜΥ317 11 Formal Specifications.28 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Specification commentary Use the basic constructors Create and Put to specify other operations. Define Occupied and In-space using Create and Put and use them to make checks in other operation definitions. All operations that result in changes to the sector must check that the safety criterion holds. ΗΜΥ317 11 Formal Specifications.29 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Behavioural specification Algebraic specification can be cumbersome when the object operations are not independent of the object state. Model-based specification exposes the system state and defines the operations in terms of changes to that state. The Z notation is a mature technique for model-based specification. It combines formal and informal description and uses graphical highlighting when presenting specifications. ΗΜΥ317 11 Formal Specifications.30 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

The structure of a Z schema Schema name Schema signature Schema predicate Container contents: capacity: contents Š capacity ΗΜΥ317 11 Formal Specifications.31 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Modelling the insulin pump The Z schema for the insulin pump declares a number of state variables including: Input variables such as switch? (the device switch), InsulinReservoir? (the current quantity of insulin in the reservoir) and Reading? (the reading from the sensor); Output variables such as alarm! (a system alarm), display1!, display2! (the displays on the pump) and dose! (the dose of insulin to be delivered). ΗΜΥ317 11 Formal Specifications.32 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Schema invariant Each Z schema has an invariant part which defines conditions that are always true. For the insulin pump schema it is always true that The dose must be less than or equal to the capacity of the insulin reservoir; No single dose may be more than 4 units of insulin and the total dose delivered in a time period must not exceed 25 units of insulin. This is a safety constraint; display2! shows the amount of insulin to be delivered. ΗΜΥ317 11 Formal Specifications.33 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Insulin pump schema INSULIN_PUMP_STATE //Input device definition switch?: (off, manual, auto) ManualDeliveryButton?: N Reading?: N HardwareTest?: (OK, batterylow, pumpfail, sensorfail, deliveryfail) InsulinReservoir?: (present, notpresent) Needle?: (present, notpresent) clock?: TIME //Output device definition alarm! = (on, off) display1!, string display2!: string clock!: TIME dose!: N // State variables used for dose computation status: (running, warning, error) r0, r1, r2: N capacity, insulin_available : N max_daily_dose, max_single_dose, minimum_dose: N safemin, safemax: N CompDose, cumulative_dose: N ΗΜΥ317 11 Formal Specifications.34 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

State invariants r2 = Reading? dose! Š insulin_available insulin_available Š capacity // The cumulative dose of insulin delivered is set to zero once every 24 hours clock? = 000000 cumulative_dose = 0 // If the cumulative dose exceeds the limit then operation is suspended cumulative_dose max_daily_dose status = error display1! = Daily dose exceeded // Pump configuration parameters capacity = 100 safemin = 6 safemax = 14 max_daily_dose = 25 max_single_dose = 4 minimum_dose = 1 display2! = nat_to_string (dose!) clock! = clock? ΗΜΥ317 11 Formal Specifications.35 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

The dosage computation The insulin pump computes the amount of insulin required by comparing the current reading with two previous readings. If these suggest that blood glucose is rising then insulin is delivered. Information about the total dose delivered is maintained to allow the safety check invariant to be applied. Note that this invariant always applies - there is no need to repeat it in the dosage computation. ΗΜΥ317 11 Formal Specifications.36 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

RUN ΔINSULIN_PUMP_STATE RUN schema (1) switch? = auto status = running status = warning insulin_available max_single_dose cumulative_dose < max_daily_dose // The dose of insulin is computed depending on the blood sugar level (SUGAR_LOW SUGAR_OK SUGAR_HIGH) // 1. If the computed insulin dose is zero, don t deliver any insulin CompDose = 0 dose! = 0 // 2. The maximum daily dose would be exceeded if the computed dose was delivered so the insulin dose is set to the difference between the maximum allowed daily dose and the cumulative dose delivered so far CompDose + cumulative_dose > max_daily_dose alarm! = on status = warning dose! = max_daily_dose cumulative_dose ΗΜΥ317 11 Formal Specifications.37 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

RUN schema (2) // 3. The normal situation. If maximum single dose is not exceeded then deliver the computed dose. If the single dose computed is too high, restrict the dose delivered to the maximum single dose CompDose + cumulative_dose < max_daily_dose ( CompDose Š max_single_dose dose! = CompDose CompDose > max_single_dose dose! = max_single_dose ) insulin_available = insulin_available dose! cumulative_dose = cumulative_dose + dose! insulin_available Š max_single_dose * 4 status = warning display1! = Insulin low r1 = r2 r0 = r1 ΗΜΥ317 11 Formal Specifications.38 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Sugar OK schema SUGAR_OK r2 safemin r2 Š safemax // sugar level stable or falling r2 Š r1 CompDose = 0 // sugar level increasing but rate of increase falling r2 > r1 (r2-r1) < (r1-r0) CompDose = 0 // sugar level increasing and rate of increase increasing compute dose // a minimum dose must be delivered if rounded to zero r2 > r1 (r2-r1) (r1-r0) (round ((r2-r1)/4) = 0) CompDose = minimum_dose r2 > r1 (r2-r1) (r1-r0) (round ((r2-r1)/4) > 0) CompDose = round ((r2-r1)/4) ΗΜΥ317 11 Formal Specifications.39 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Key points Formal system specification complements informal specification techniques. Formal specifications are precise and unambiguous. They remove areas of doubt in a specification. Formal specification forces an analysis of the system requirements at an early stage. Correcting errors at this stage is cheaper than modifying a delivered system. Formal specification techniques are most applicable in the development of critical systems and standards. ΗΜΥ317 11 Formal Specifications.40 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008

Key points Algebraic techniques are suited to interface specification where the interface is defined as a set of object classes. Model-based techniques model the system using sets and functions. This simplifies some types of behavioural specification. Operations are defined in a model-based spec. by defining pre and post conditions on the system state. ΗΜΥ317 11 Formal Specifications.41 Sommerville, Θεοχαρίδης, ΗΜΥ, 2008