Cast Corn Sheller. Sand Blaster. File Ruler Calipers

Similar documents
Cast Corn Sheller BUILD-IT

SOLIDWORKS: Lesson III Patterns & Mirrors. UCF Engineering

Nose Cone. Chapter 4. Rocket 3D Print. A. Revolve. Step 1. Click File Menu > New, click Part and OK. SOLIDWORKS 16 Nose Cone ROCKET 3D PRINT Page 4-1

ME 120: Impeller Model in Solidworks 1/6

MOLD DESIGN. Presented by: Nakul Singh, Tim Ralph, Jamie Curtis and Tim Winsor

CO2 Shell Car. Axle Retainer. in the Feature Manager and click Sketch from the Content toolbar, Fig. 1. (L) on the Sketch toolbar. Fig.

JSS. Ping Pong Ball. in the Feature Manager and click Sketch on the Context toolbar, Fig. 1. on the Sketch toolbar.

SOLIDWORKS 2016 and Engineering Graphics

SolidWorks 2013 and Engineering Graphics

Wheel GT-F. Chapter 5. CO2 Shell Car. A. Sketch. Step 1. Click File Menu > New, click Part Metric and OK.

Simple Machines. Wheel. in the Feature Manager and click Sketch. on the Command Manager toolbar.

Memo Block. This lesson includes the commands Sketch, Extruded Boss/Base, Extruded Cut, Shell, Polygon and Fillet.

Extrusion Revolve. ENGR 1182 SolidWorks 02

Feature-Based Modeling and Optional Advanced Modeling. ENGR 1182 SolidWorks 05

Solar Car. Chassis. in the Feature Manager and click Sketch from the Content toolbar, Fig. 2. Origin. on the Command Manager toolbar. Fig.

Design and Communication Graphics

Battery Holder. Chapter 9. Boat. A. Front Extrude. Step 1. Click File Menu > New, click Part and OK. SolidWorks 10 BATTERY HOLDER AA BOAT Page 9-1

Solidworks Tutorial #1: How to create USB head

12 m. 30 m. The Volume of a sphere is 36 cubic units. Find the length of the radius.

SOLIDWORKS: Lesson 1 - Basics and Modeling. Introduction to Robotics

Propeller. Chapter 13. Airplane. A. Base for Blade. Step 1. Click File Menu > New, click Part and OK.

Module 1: Basics of Solids Modeling with SolidWorks

Workshop name: CAD Strategies for 3D Printing

Solid Bodies and Disjointed Bodies

Autodesk Fusion 360 Training: The Future of Making Things Attendee Guide

F1 Car. Wheel. in the Feature Manager and click Sketch on the Context toolbar, Fig. 1. (S) on the

Solid Modeling: Part 1

ME009 Engineering Graphics and Design CAD 1. 1 Create a new part. Click. New Bar. 2 Click the Tutorial tab. 3 Select the Part icon. 4 Click OK.

CO2 Rail Car. Wheel Rear Px. on the Command Manager toolbar.

Introduction to Solid Modeling

SOLIDWORKS: Lesson 1 - Basics and Modeling. UCF Engineering

SOLIDWORKS 2019 Quick Start

Effort Foundry Inc. Technology is the buzzword heard around the foundry today

Chapter 4 Feature Design Tree

Rocket 1. Fin. in the Feature Manager and click Sketch from the Content toolbar, Fig. 1. (L) on the Sketch toolbar. Fig. 1. Fig. 2

Solid Bodies and Disjointed bodies

Skateboard. Hanger. in the Feature Manager and click Sketch. (S) on the Sketch. Line

Autodesk Inventor 2019 and Engineering Graphics

3D printing Workshop Breakdown

Skateboard. Hanger. in the Feature Manager and click Sketch on the Context toolbar, Fig. 1. Fig. 2

3D Modeling and Design Glossary - Beginner

ME Week 3 Project 3 - Plastic Part Thicken Method

SolidWorks Intro Part 1b

Student Outcomes. Lesson Notes. Classwork. Opening Exercise (3 minutes)

F-1 Car. Blank. in the Feature Manager and click Sketch from the Content toolbar, Fig. 3. Origin. on the Features toolbar.

Module 6B: Creating Poly-Conic Sheet Metal Pieces for a Spherical Space

A Comprehensive Introduction to SolidWorks 2011

Lesson 2 Constructive Solid Geometry Concept. Parametric Modeling with I-DEAS 2-1

Inventor 201. Work Planes, Features & Constraints: Advanced part features and constraints

SolidWorks 2½D Parts

Fair Game Review. Chapter 15. Name Date. Find the area of the figure ft

Rapid Prototyping - Vacuum - Investment Casting

Delta Dart. Socket. (L) on the Sketch toolbar. Fig. 1. (S) on the Sketch toolbar. on the Sketch toolbar. on the Standard Views toolbar.

Body. Chapter 2. CO2 Rail Car E. A. Save as "BODY RAIL E". Step 1. Open your BLANK file.

3 D Printed Pencil Topper

Chapter 12 Test Review Part 2 (12.1, 12-4 to 12-6, 12-8) - GH

R(-14, 4) R'(-10, -2) S(-10, 7) S'(-6, 1) T(-5, 4) T'(-1, -2)

Solidworks tutorial. simulation. Author : M.Ghasemi. Contact us: solidworksadvisor.com

Chair. Top Rail. on the Standard Views toolbar. (Ctrl-7) on the Weldments toolbar. at bottom left corner of display to deter- mine sketch plane.

UNIT 11: Revolved and Extruded Shapes

7 th Grade CCGPS Math LFS Unit 5: Geometry

Chapter 1. SolidWorks Overview

H Stab and V Stab. Chapter 6. Glider. A. Open and Save as "H STAB". Step 1. Open your STABILIZER BLANK file.

Terminal. Chapter 16. E-Car. A. Component from Design Library. SOLIDWORKS 17 Terminal E-CAR Page 16-1

Battery Holder 2 x AA

To find the surface area of a pyramid and a cone

Glider. Clay. Fig. 1 Side face. Step 5. In the Convert Entities Property Manager: click side face, Fig. 3 click OK twice, Fig. 3. Fig. 3.

SolidWorks Tutorial 1 Axis

Lesson 10: Loft Features

SOLIDWORKS 2016: A Power Guide for Beginners and Intermediate Users

Modeling a Scanned Object with RapidWorks

Chapter 25-3D Printing Tools

TUTORIAL 2. OBJECTIVE: Use SolidWorks/COSMOS to model and analyze a cattle gate bracket that is subjected to a force of 100,000 lbs.

3. Preprocessing of ABAQUS/CAE

Module 4A: Creating the 3D Model of Right and Oblique Pyramids

Glider. Wing. Top face click Sketch. on the Standard Views. (S) on the Sketch toolbar.

Getting started with Solid Edge with Synchronous Technology

3D Design with 123D Design

Aim: How do we find the volume of a figure with a given base? Get Ready: The region R is bounded by the curves. y = x 2 + 1

CS 285 Final Project - Design, Modeling and Fabrication of the Möbius Gear

Study Guide and Review

Creating T-Spline Forms

Freeform / Freeform PLUS

Exercise Guide. Published: August MecSoft Corpotation

Geometry. Week 32: April 13-17, 2015

Blank. Chapter 1. CO2 Rail Car. A. New Metric Part. Step 1. Click File Menu > New. B. Body. Step 1. Click Right Plane

Lesson 4: Volumes of Pyramids and Cones

Creo MOLDESIGN. Prerequisites. Stats

Appendix C: STEM Course Outline

CATIA V5 Parametric Surface Modeling

Clay. Chapter 9. Glider. A. Open Assembly File. Step 1. Open your GLIDER ASSEMBLY file.

ELEC 391 3D Printing D Printing ECE Lightning Lab. 3D Printing

3 AXIS STANDARD CAD. BobCAD-CAM Version 28 Training Workbook 3 Axis Standard CAD

Chapter 2 Parametric Modeling Fundamentals

Delta IV Heavy. Interstage. in the Feature Manager and click Sketch on the Context toolbar, Fig. 1. on the Command Man- on the Features

August 29, Reverse Engineering Equipment:

Name: Period: 2018 Geometry Spring Final Exam Review

Lesson 5 Solid Modeling - Constructive Solid Geometry

Week 3 - Lecture Detailed Component Design. ME Introduction to CAD/CAE Tools

Boat. Battery Holder AA

Transcription:

BUILD IT BUILD-IT Cast Corn Sheller This project is a low-cost device for removing corn kernels from the cob. It is cast in aluminum using a casting pattern made on the 3-D printer. This project is inspired by a plastic corn sheller from Malawi and a cast aluminum sheller from Ghana. In order to make it you will need to make a solid model of the part and print it on the 3-D printer. You will use this as a casting pattern to make a cast aluminum sheller. To make it, you will learn to use the 3-D printer, sand blaster and various hand tools. Materials Needed ABS and support material for 3D Printer Casting Flask Sand Aluminum Tools/Machines Needed Induction Furnace 3-D Printer Solidworks Modeling Program Sand Blaster Hack Saw File Ruler Calipers 1

Session 1 Edgerton Student Shop & MechE Cluster 3-D printers make three-dimensional parts by depositing material one layer at a time. Since each layer is put down independently of previous layers, it allows you to make very complicated parts with great ease. Different types of 3-D printers use different materials for making the parts. The 3-D printer at the Edgerton Shop uses ABS (acrylonitrile butadiene styrene) which is a tough plastic and therefore the parts it produces can actually be functional. However there are some limitations on the level of detail that you can produce, furthermore the parts are not as strong as if they were printed from solid ABS. Other 3-D printers print starch, which produces parts that are more fragile, but have greater detail. We will be making a 3-D printed version of the corn sheller to use it as a casting pattern for an aluminum corn sheller. Printing the sheller A tutorial for making the SolidWorks model of the sheller can be found at the end of this handout. The tutorial instructs you in making a basic sheller you may also add ridges or other features to the outside surface of the sheller. The model should be completed before class so that it can be printed during class. You will need to sand the surface of the part to make it smooth so that the sand won t stick to it while making the mold for the casting. Sand paper is available in D-Lab. Examples of objects made with a 3D printer. 2

Session 2 Foundry Sand cast parts are made by packing sand around a pattern, removing the pattern to form a cavity in the sand and then pouring molten metal into the cavity. The sand has been mixed with additives such as clay so that it retains the shape of the pattern. After the metal has cooled, the part can be removed. Forming the cavity and pouring the metal We will form the cavity in two parts, pressing the outside surface into one box of sand, and build up the inside surface on the other. Then we will join the two halves together. The molten metal can then be poured into the mold. Molds for sandcasing a corn sheller at Suame Magazine, Ghana, Africa. Session 3 Finishing the sheller The excess metal from where the metal was poured in (the sprue) should be cut off, as should any metal that leaked out from the pattern cavity (the flash). In addition, the part can be sand blasted to give it a nice finish. Pouring molten metal into the molds. A cast corn sheller with sprues attached. 3

Solidworks Tutorial by Jessica Leon, updated by Mike Kozlowski, February 2010 SolidWorks is installed on MechE computer clusters in the following labs: Ralph Cross Lab, der Torossian Lab, Ralph Cross Lounge, Papallardo Lab, Mechatronics Lab, AMP Lab. MIT computer cluster. Starting Solidworks Open Solidworks 2007 SP5.0 by going to: Start > All Documents > Solidworks 2007 SP5.0 > Solidworks 2007 Start a new document by clicking on the new document button or File > New Document. In the menu click on New Part a 3D representation of a single design component. Run through the Solidworks Tutorial lessons 1 and 2 to practice making simple objects and assemblies. Screenshots of SolidWorks menus SolidWorks Corp. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/fairuse. 4

Making the Solid Model of the Sheller Chose a plane to draw your object on - Click on Front Plane in the left side tool bar, then Sketch in the toolbar. - It helps if you draw while Normal To the plane Draw the cross section of the cone - Draw a Horizontal Centerline through the origin of the plane and another one 2 inches above it for drawing reference. This represents the height of the sheller. Draw the base lines One on the bottom centerline and one on the top centerline. Smart Dimension the length of one line to be 0.25. Add a Relation to the lines to make them equal. Smart Dimension the distance between the origin and the inside edge to be 1 inch. 5

Connect the lines on each side and Smart Dimension one by clicking on the angled line and then the centerline to make the angle 85 degrees. Your cross section is now done. Revolve your piece - Draw the line that will be the axis of rotation going from the origin to the top centerline. - Go to the toolbar and click on Features. A new toolbar will appear. Click on Revolved Boss/Base. - Choose the axis you just drew to be the center of rotation and rotate 360 degrees Draw the cross section of the fin In a new Sketch on the Front Plane, make the cross section of the fin. Trace the profile of the sheller body with lines. Add a Relation to make the lines parallel slanting. Smart Dimension the inside edge to be 5/8 (0.63 ) from the origin. 6

Rotate the fin - Click Revolved Boss/Base and choose the angled line nearest to the origin as the center of rotation. - Choose Two Direction, and set the rotation to 45 degrees for each Add multiple fins - Insert an Axis of rotation in the Reference Geometry window. - Click on the Cylindrical/Conical Face option and choosing the inside face of the body of the sheller. - Click on Revolve 2 in the left-hand side bar to select the fin you just drew then select Circular Pattern in the top tool bar. Revolve around the Axis you added. Choose 5 fins with Equal Spacing. 7

Clean up the top surface - Create a Reference Geometry Plane 2 inches from the top plane. - Make a drawing on this plane of a circle the diameter of the sheller s outer edge. - Extrude cut upwards through all. You re Done! Save the file as a Solidworks Part (.sldprt) and then Save As an STL (.stl) file since this is the format processed by the 3D printer. These materials are provided under the Attribution-Non-Commercial 3.0Creative Commons License, http://creativecommons.org/licenses/by-nc/3.0/. If you choose to reuse or repost the materials, you must give proper attribution to MIT, and you must include a copy of the noncommercial Creative Commons license, or a reasonable link to its url with every copy of the MIT materials or the derivative work you create from it. Please use the following citation format: D-Lab Cast Corn Sheller Build-It Copyright Massachusetts Institute of Technology (Accessed on [insert date]). 8

MIT OpenCourseWare http://ocw.mit.edu EC.720J / 2.722J D-Lab II: Design Spring 2010 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.