Agilent AEAT-84AD 14/12 Bit Multi-turn Encoder Module Data Sheet

Similar documents
Agilent AEAS-84AD 14/12 Bit Multi-turn Encoder Module Data Sheet

Data Sheet. AEAT-84AD 14/12 Bit Multi-turn Encoder Module. Description. Features. Specifications. Applications

Two and Three Channel Codewheels for Use with Agilent Optical Encoder Modules. Technical Data

Application Note 5107

Data Sheet MEM 16. Absolute Encoder Multiturn

Data Sheet MEM 22. Absolute Encoder Multiturn

LPM355X USB to Serial Converter

Absolute Encoder Multiturn

EAM 58 B / C - 63 A / D / E BIT PARALLEL - SSI

Technical Overview. Key Features

Rotary Measuring Technology Absolute singleturn encoder shaft version

PTN3310/PTN3311 High-speed serial logic translators

250 Mbps Transceiver in LC FB2M5LVR

Rotary Measuring Technology Absolute encoders, Multiturn, optional with incremental track

Absolute Encoders Multiturn

Technical data. General specifications. Linearity error ± 0.1 Functional safety related parameters MTTF d 130 a at 40 C Mission Time (T M ) L 10

Encoder WDGA 58B SSI.

2:1 MULTIPLEXER CHIP FOR PCI-EXPRESS ICS Description. Features. Block Diagram DATASHEET

OPTICAL MOUSE SENSOR

PRELIMINARY EAMH 58 B / C - 63 A / D / E BIT PARALLEL - SSI SOLID SHAFT MULTITURN ABSOLUTE ENCODER ORDERING CODE BIT PARALLEL

PCA bit multiplexed/1-bit latched 5-bit I 2 C EEPROM DIP switch

Data Sheet. Thumbwheel Switch Multiswitch, Series B

ABSOLUTE ROTARY ENCODER INTERBUS

2:1 MULTIPLEXER CHIP FOR PCI-EXPRESS ICS Features

Absolute encoders - bus interfaces

DATA SHEET ABSOLUTE ROTARY ENCODER SSI

INTEGRATED CIRCUITS. PCA bit I 2 C and SMBus I/0 port with reset. Product data Supersedes data of 2002 May Dec 13

PCA bit multiplexed/1-bit latched 6-bit I 2 C EEPROM DIP switch

Encoder WDGA 58A PROFINET-IO (cov)

Encoder WDGA 58E PROFINET-IO (cov)

TECHNICAL DATASHEET Absolute Motorfeedback Series AD 34

DATA SHEET ABSOLUTE ROTARY ENCODER SSI

PAT9125EL: Optical Tracking Miniature Chip

HT Sound Generator

DiskOnChip 2000 MD2200, MD2201 Data Sheet

Preamplifier Circuit for IR Remote Control

Encoder WDGA 58F PROFINET-IO (cov)

F USB Charger Controller F Release Date: Dec., 2011 Version: V0.11P. Nov., 2011 Data Sheet

TECHNICAL DATASHEET Heavy Duty - Absolute Encoder AR 62/63

Encoder WDGA 36A SSI.

RoHS. Shock / vibration resistant. Short circuit proof. Flexible. . XXXX e. . XXXX e

NOVOTURN Multiturn-Sensor non-contacting. Series RSM2800 digital SSI, SPI

Encoder WDGA 58A CANopen

2 Bit Micro,LLC 2BM-20050(-TS)

SY55854U. General Description. Features. Functional Block Diagram. Applications. 2 x 2 Protection Crosspoint Switch

Motor feedback systems rotary HIPERFACE SFS/SFM60

MX877RTR. 8-Channel, 60V Driver with Push-Pull Output, 3 Wire Interface INTEGRATED CIRCUITS DIVISION. Features. Description.

UM3221E/UM3222E/UM3232E

ICS548A-03 LOW SKEW CLOCK INVERTER AND DIVIDER. Description. Features. Block Diagram DATASHEET

EVALUATION KIT AVAILABLE High-Bandwidth, VGA 2:1 Switch with ±15kV ESD Protection

Multiturn absolute encoder

OPTICAL MOUSE SENSOR

Absolute encoders - SSI

Material: Weight: Shaft Loads: Cable: Connector:

Technical data. General specifications. Linearity error ± 0.1 Functional safety related parameters MTTF d 480 a at 40 C Mission Time (T M ) L 10

USB6Bx USB PORT PROTECTION. Application Specific Discretes A.S.D.

0.43" Single Character DLO4135/DLG " Single Character DLO7135/DLG x 7 Dot Matrix Intelligent Display Devices with Memory/Decoder/Driver

Encoder WDGA 58B CANopen

DS1810 5V EconoReset with Push-Pull Output

DS1676 Total Elapsed Time Recorder, Erasable

Type Version Ordering Code Package PEB 2025-N V 1.5 Q67100-H6300 P-LCC-28-R (SMD) PEB 2025-P V 1.5 Q67100-H6241 P-DIP-22

PCA9560 Dual 5-bit multiplexed 1-bit latched I 2 C EEPROM DIP switch

Technical data. General specifications. Linearity error ± 0.1 Functional safety related parameters MTTF d 480 a at 40 C Mission Time (T M ) L 10

Electrical Characteristics

(Serial Periphrial Interface (SPI) Synchronous Bus)

3.3V 1GHz PRECISION 1:22 LVDS FANOUT BUFFER/TRANSLATOR WITH 2:1 INPUT MUX

bidirectionally as well as the rotation sense of shafts. With absolute encoders instead, each incremental

Multiturn absolute encoder

Installation Note. Agilent Technologies 85105A Option 50 Installation Instructions for RF Switch Replacement Kit

Features. Applications. n Embedded Controllers and Processors n Intelligent Instruments n Automotive Systems n Critical µp Power Monitoring

Features. Applications

HM628128BI Series. 131,072-word 8-bit High speed CMOS Static RAM

FM Bytes Memory Card Chip. Datasheet. Dec Datasheet. FM Bytes Memory Card Chip Ver 3.0 1

2 TO 4 DIFFERENTIAL CLOCK MUX ICS Features

FB2M5LVR 250 Mbps Fiber Optic LC Transceiver Data Sheet

Obsolete Product(s) - Obsolete Product(s)

Agilent N4880A Reference Clock Multiplier

Agilent 1GC GHz Integrated Diode Limiter TC231P Data Sheet

Product Information ROC 425 ROQ 437. Absolute Rotary Encoders with Solid Shaft for Safety-Related Applications

Product Information ECI 1118 EQI 1130 ECI 1119 EQI Absolute Rotary Encoders without Integral Bearing

USB-Disk Module 3. RoHS Compliant. Specification. January 13, Preliminary. Apacer Technology Inc.

Product Information ROC 425 ROQ 437. Absolute Rotary Encoders with EnDat 2.2 for Safety-Related Applications

Features INSTRUCTION DECODER CONTROL LOGIC AND CLOCK GENERATORS COMPARATOR AND WRITE ENABLE EEPROM ARRAY READ/WRITE AMPS DATA IN/OUT REGISTER 16 BITS

SPECIFICATIONS FOR LCD MODULE

PRTR5V0U2X. 1. Product profile. Ultra low capacitance double rail-to-rail ESD protection diode in SOT143B. 1.1 General description. 1.

Technical Data Sheet Photolink- Fiber Optic Receiver

CHIP ON BOARD (COB) MODULE 1 WITH 8-BIT MCU KEYBOARD CONTROLLER

TECHNICAL DATASHEET Absolute Encoder AC 58 - Profibus

Han R 23. Circular Connector. Certified acc. to DIN EN ISO 9001 in design/ development, production, installation and servicing.

Rotary Position Technology Absolute Encoders, Singleturn

USB/Charger and Over-Voltage Detection Device

PT 3-PB-ST. Extract from the online catalog. Order No.:

ABSOLUTE ROTARY ENCODER SSI PROGRAMMABLE

Absolute encoders ARS60 SSI/Parallel

SGM mA, Ultra Low Dropout, Low Power, RF Linear Regulators

NOVOHALL Rotary Sensor touchless transmissiv. Series RFC4800 SSI, SPI, Incremental

HB5M. Hollow Bore Optical Encoder Page 1 of 5. Description. Mechanical Drawing. Features

2-Wire, 5-Bit DAC with Three Digital Outputs

TIL311 HEXADECIMAL DISPLAY WITH LOGIC

Agilent U2941A Parametric Test Fixture

Transcription:

Agilent AEAT-84AD 4/2 Bit Multi-turn Encoder Module Data Sheet Description The AEAT-84AD provides all functions as an optoelectronicmechanical unit in order to implement, with single turn absolute encoder, an absolute multi-turn encoder with a combined capacity of up to 3 bits at extended temperature. The unit consists of an IR-LED circuit board, a phototransistor (PT) circuit board, and 6 or 7 gear wheels arranged in between the PCBs. Specifications The multi-turn unit is available in the following versions: 2-bit solid shaft 4-bit solid shaft Features 6384 (4bits) and 496 (2bits) revolution count versions Optical, absolute multi-turn assembly with max. Ø55 mm and typical height 2.2 mm. Operating temperatures of -4 C to +25 C Mechanical coupling by means of 4 teeth gear pinion with module of.3 Operating speeds up to 2, rpm A 2x4-pole pin strip for power supply and signal Applications Major component of Multi-turn housed encoder Cost effective solution for direct integration into OEM systems Linear positioning system Benefits No battery or capacitor required for number of revolution counting during power failure Immediate position detection on power up

Package Dimensions Notes:. 3rd Angle Projection 2. Dimensions are in millimeters 3. Example of matching connector: MPE GARRY 52 Series, No. BL2-43GGG-8 Figure. Package dimensions Block Diagram and Detailed Description In the following descriptions, the I/O pins are enclosed by a box, e.g., MTMUX[2:]. VCC (+5V) 7x 3 PT's 7x 3 IR's of 8-Decoder 3 MTMUX[2:] 3 x 4K7 3 3 x K 3 3 x 4K7 3 MTDAT[2:] Comparator GND Figure 2. Block Diagram 2

Multiplexing and Position Data Each of the :4 reduced 7 coded gear wheels generates a 3-bit code, from which the 4- bit Gray code can be generated as position data through V-bit processing. The 3-bit code is identical electrically for all gear wheels, only the projection on the mechanical angle (the revolutions) is different according to the :4 divisions. The code and the data bits and V-bits to be generated are shown in the Figure 3 for the gear wheel : Shaft Turns 2 3 4 MSB Singleturn. Wheel Turns. MTDAT[]. MTDAT[]. MTDAT[2] Gray Code (generated) Data-Bit Data-Bit2 V-Bit2 Figure 3. Multiplexing Diagram for gear wheel The 3-bit codes of the gear wheels to 7 are output on MTDAT[2:] de-multiplexed with MTMUX[2:]. Here, the binary value on MTMUX[2:] corresponds to the gear-wheel number ( = gear wheel, 2 = gear wheel 2, etc.). The configuration is displayed with the value. Table shows the assignments: Table. Demultiplexing Diagram for all gear wheels Bin/ Dec MTMUX [2:] MTDAT[2] MTDAT[] MTDAT[] Notes / / 2 to / 7 Notes:. Applicable for AEAx-84AD solid shaft version only 3-bit gear wheel 3-bit gear wheel 2 to 3-bit gear wheel 7 / always = 2 bit = 4 bit = Solid Shaft 3

Gray code-generation Logic Diagram For the readout schematic of the multi-turn code gears, i.e. with the user s microcontroller, there must be a logical replication of the V-bit multiplexers. This can be done by a bit manipulation or by look up tables. Care needs to be taken with the real time readout conditions. The procedure is as follows : From MTDAT-Demux (Code-Wheel x) Cx[2] Cx[] S Y 4x MUX2 S Y V2 (V-Bit2) D2 (Data-Bit2). The 3 bits ( MTDAT[2:] ) of each gear (C[2:] to C7[2:]) are continuously de-multiplexed. Thus there are maximal 3 bits x 7gears = 2-bit AEAT-84AD data in parallel. Cx[] XOR S Y 2. Synchronous to the readout of the single turn absolute encoder, those AEAT-84AD bits (depending on the MSB bit, i.e. -bit, of the single turn encoder) needs to be complemented to the complete Gray code word (cascading). S Y D (Data-Bit) 3. The bit change of the complete Gray code will be synchronized by the single turn absolute encoder and thus electronically eliminating gear play. Cx[] Cx[] Cx[2] D D2 V2 The logic diagram for ONE gear is shown in the following diagram (V-bit-Multiplexer), Figure 4. Figure 4. Logic Diagram and Truth Table for one of the gear wheels 4

The Figure 5 shows the cascading of the V-bit- Multiplexer of all gear wheels. The outputs are the 4bits Gray code in parallel. The MSB of the complete code is dependant on the total resolution of the system. It can be used in steps of 2 bits (4Bit,2Bit, etc). Unused higher bits should be masked to logical zero. With the data-multiplexer IC version of the multi-turn encoder module, the data multiplexer IC will perform the complete driving and data processing of the encoder units while maintaining all time constraints. There is an IC available to combine both the AEAS-7x 3/6bit single turn component and the AEAx-84AD 2/4bit multiturn module into onesingle powerful multi-turn absolute encoder. This onestop solution enables the design of a high-end absolute encoder with minimum component count at integration level. Figure 6 shows an application example of integration of single-turn absolute encoder and multiturn module using MUIC. Note: To simplify the synchronization with single-turn absolute encoder(e.g. AEAS-7), the total solution has been embedded into a single chip - MUIC. Please refer to the Ordering Information for this device. V-bit-Multiplexer Cascade C7[2] Cx[2] V2 Demuxed Code-Wheel 7 C7[] Cx[] D2 C7[] Cx[] D C6[2] Cx[2] V2 Demuxed Code-Wheel 6 C6[] Cx[] D2 C6[] Cx[] D C5[2] Cx[2] V2 Demuxed Code-Wheel 5 C5[] Cx[] D2 C5[] Cx[] D C2[2] Cx[2] V2 Demuxed Code-Wheel 2 C2[] Cx[] D2 C2[] Cx[] D C[2] Cx[2] V2 Demuxed Code-Wheel C[] Cx[] D2 C[] Cx[] D Sample AEAS-7 MSB Figure 5. The cascading of V-bit-Multiplexer of all gear wheels Gray-Bit4 Gray-Bit3 (MSB for 4Bit) Gray-Bit2 Gray-Bit2 Gray-Bit (MSB for 2Bit) Gray-Bit Gray-Bit9 Gray-Bit8 Gray-Bit3 Gray-Bit2 Gray-Bit Gray-Bit 5

Application Example of Multiturn Absolute Encoder Figure 6. Application example of integration of single-turn absolute encoder module and multiturn module using MUIC. Device Selection Guide Part Number Resolution Operating Temperature ( C) Output Format DC Supply Voltage (V) AEAT-84AD-LBSC 2 bit -4 to 25 Multiplexed 5. to 5.5 AEAT-84AD-LBSF 4 bit -4 to 25 Multiplexed 5. to 5.5 Notes:. SSI interface is enabled through MUIC. Please refer to Ordering Information for MUIC. 6

Absolute Maximum Ratings, 2 Parameter Symbol Limits Units DC Supply Voltage VCC -.3 to + 6. V Input Voltage V i -.5 to 5.5 V Output Voltage V o -.5 to +VCC +.5 V Moisture Level (Non-Condensing) %RH 85 % Encoder Shaft Speed S RPM Max 2 rpm Storage Temperature T stg -4 to 25 C Notes:. Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. 2. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 3. This device meets the ESD ratings of the IEC6-4-2 Level 2 (4KV). Recommended Operating Conditions Parameter Symbol Values Units Notes DC Supply Voltage VCC +5. / +5.5 V Ambient Temperature T amb -4 to +25 C Multiplex Read Delay t DMUXRD 64 µs Encoder Shaft Speed S RPM or below rpm Notes:. As unique coded gear-wheels techniques are implemented to generate unambigous positional information, the interactions between these highly wearresistant gear wheels are subjected to mechanical wear and tear. DC Characteristics DC Characteristics over Recommended Operating Range, typical at 25 C Values Parameter Symbol Condition Min Typ. Max Units MTDAT[2:] V OH I OH = -5µA 4. V Output High Voltage (k Pull-up) MTDAT[2:] Output Low Voltage (4k7 Series-R) V OL I OL = -5µA.4 V Input High Voltage V IH VCC=5.V VCC=5.5V Input Low Voltage V IL.8 V MTMUX[2:] Input Current, VIN-VCC or V I IL /I IH k Pull-down - µa VCC Supply Current I CC 68 76 ma 3.2 3.9 V 7

Timing Characteristics Timing Characteristics over Recommended Operating Range, typical at 25 C Values Parameter Symbol Condition Min Typ. Max Units Input Transition Rise/Fall Time t R /t F.8V/3.V 5 ns Multiplex Read Delay t DMUXRD 64 µs Encoder Shaft Speed S RPM Max 2 2 rpm MTMUX[2:] old value new value t DMUXRD MTDAT[2:] old value new value Figure 7. Timing Characteristics of MTMUX[2:] and MTDAT[2:] Electrical Connections See Detail Pin Description GND 2 MTDAT2 3 MTDAT 4 MTDAT 7 3 5 4 8 6 2 5 MTMUX2 6 MTMUX Detail 7 MTMUX 8 VCC Figure 8. Pin Configuration 8

Application Note The encoder is mechanically fixed by means of holes in adapters, which accommodate M3 threads. The encoder has 2 adapters for attaching in a 3 x 2 and 4 x 9 arrangement. For details, please refer to the mechanical drawings in Figure. The mechanical coupling of the encoder shaft is realised by means of gear pinion with a module of.3, 4 teeth. The zero positions of the coupling wheels are locked with a plastic plug for alignment to the single turn absolute encoder, with the coupling wheel being able to compensate for an angle error of about +/-7. The electrical connection is realized by means of a 2x4 pin strip (.27mm pitch), which is plugged into a corresponding female connector. The encoder is attached with a plastic plug that locks the absolute zero position. During the mating of the gear pinion and the encoder coupling gear wheel it may be necessary to align the teeth of the gears for proper matching. The plastic plug can be removed upon integration with the gear wheel. Plastic plug is removed upon integration with gearwheel. Zero position of coupling wheel Plastic plug Pinion, module.3, 4 teeth Figure 9. Mechanical coupling with Multiturn Encoder Module 9

Ordering Information AEAT-84AD-LBSC AEAT-84AD-LBSF multi-turn, -4 to +25 o C, solid shaft, serial, 2 bit multi-turn, -4 to +25 o C, solid shaft, serial, 4 bit Ordering information for MUIC: MUIC-VA leaded, extended temperature range +25 C MUIC-VA-X79 lead-free, extended temperature range +25 C Note: The manufacturer contact for the above MUIC part numbers is as follows: OPTOLAB Microsystems AG Konrad-Zuse-Str.4 DE-9999 Erfurt / Germany Phone: +49-36-5544- Fax: +49-36-5544-5 Email: agilent@optolab.com www.agilent.com/ semiconductors For product information and a complete list of distributors, please go to our web site. For technical assistance call: Americas/Canada: + (8) 235-32 or (48) 654-8675 Europe: +49 () 644 9246 China: 8 65 7 Hong Kong: (+65) 6756 2394 India, Australia, New Zealand: (+65) 6755 939 Japan: (+8 3) 3335-852(Domestic/International), or 2-6-28(Domestic Only) Korea: (+65) 6755 989 Singapore, Malaysia, Vietnam, Thailand, Philippines, Indonesia: (+65) 6755 244 Taiwan: (+65) 6755 843 Data subject to change. Copyright 24 Agilent Technologies, Inc. December 23, 24 5989-952EN