Chapter 2 - Control Structures

Similar documents
Chapter 2 - Control Structures

Chapter 2 - Control Structures

2.11 Assignment Operators. Assignment expression abbreviations c = c + 3; can be abbreviated as c += 3; using the addition assignment operator

Chapter 4 C Program Control

Chapter 4 C Program Control

C Program Control. Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan

Control Statements: Part Pearson Education, Inc. All rights reserved.

Control Statements: Part Pearson Education, Inc. All rights reserved.

CHAPTER 2.1 CONTROL STRUCTURES (SELECTION) Dr. Shady Yehia Elmashad

بسم اهلل الرمحن الرحيم

Introduction to C Programming

IS 0020 Program Design and Software Tools

Chapter 2 - Control Structures

C++ Programming Lecture 7 Control Structure I (Repetition) Part I

In this chapter you will learn:

Assoc. Prof. Dr. Marenglen Biba. (C) 2010 Pearson Education, Inc. All rights reserved.

Programming - 1. Computer Science Department 011COMP-3 لغة البرمجة 1 لطالب كلية الحاسب اآللي ونظم المعلومات 011 عال- 3

Programming for Engineers Iteration

C++ PROGRAMMING SKILLS Part 2 Programming Structures

Control Statements. Musa M. Ameen Computer Engineering Dept.

Introduction to Programming

Fundamentals of Programming Session 9

c++ keywords: ( all lowercase ) Note: cin and cout are NOT keywords.

Kingdom of Saudi Arabia Princes Nora bint Abdul Rahman University College of Computer Since and Information System CS242 ARRAYS

Fundamentals of Programming Session 8

Week 2. Relational Operators. Block or compound statement. if/else. Branching & Looping. Gaddis: Chapters 4 & 5. CS 5301 Spring 2018.

C++ As A "Better C" Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan.

Why Is Repetition Needed?

C++ Programming: From Problem Analysis to Program Design, Fourth Edition. Chapter 5: Control Structures II (Repetition)

IS 0020 Program Design and Software Tools

Outline. Introduction. Arrays declarations and initialization. Const variables. Character arrays. Static arrays. Examples.

Chapter 4 - Arrays. 4.1 Introduction. Arrays Structures of related data items Static entity (same size throughout program) A few types

Structured Program Development in C

Chapter 5. Repetition. Contents. Introduction. Three Types of Program Control. Two Types of Repetition. Three Syntax Structures for Looping in C++

Chapter 15 - C++ As A "Better C"

Chapter 3 Structured Program Development

CHAPTER 2.2 CONTROL STRUCTURES (ITERATION) Dr. Shady Yehia Elmashad

Chapter 5 Control Statements: Part 2 Section 5.2 Essentials of Counter-Controlled Repetition

BITG 1233: Introduction to C++

C++ Programming: From Problem Analysis to Program Design, Third Edition

Chapter 4 - Arrays. 4.1 Introduction. Arrays Structures of related data items Static entity (same size throughout program)

I/O Streams and Standard I/O Devices (cont d.)

Chapter 5: Control Structures II (Repetition) Objectives (cont d.) Objectives. while Looping (Repetition) Structure. Why Is Repetition Needed?

Loops! Loops! Loops! Lecture 5 COP 3014 Fall September 25, 2017

Arrays. Outline. Multidimensional Arrays Case Study: Computing Mean, Median and Mode Using Arrays Prentice Hall, Inc. All rights reserved.

CHAPTER 3 ARRAYS. Dr. Shady Yehia Elmashad

Introduction to Programming

Introduction to C++ Programming Pearson Education, Inc. All rights reserved.

CS 151 Review #3. // More than one variable can be defined // in a statement. Multiple variables are // separated by a comma.

Computer Programming : C++

Chapter 2 Basic Elements of C++

Structured Programming. Flowchart Symbols. Structured Programming. Selection. Sequence. Control Structures ELEC 330 1

Structured Programming. Dr. Mohamed Khedr Lecture 9

1- Write a single C++ statement that: A. Calculates the sum of the two integrates 11 and 12 and outputs the sum to the consol.

Introduction to C++ Programming. Adhi Harmoko S, M.Komp

THE INTEGER DATA TYPES. Laura Marik Spring 2012 C++ Course Notes (Provided by Jason Minski)

Chapter 3 - Functions

Chapter 1 Introduction to Computers and C++ Programming

Arrays. Week 4. Assylbek Jumagaliyev

CHAPTER 1.2 INTRODUCTION TO C++ PROGRAMMING. Dr. Shady Yehia Elmashad

CS 007A Midterm 1 Practice Chapters 1 5

Arithmetic Operators. Binary Arithmetic Operators. Arithmetic Operators. A Closer Look at the / Operator. A Closer Look at the % Operator

LECTURE 5 Control Structures Part 2

o Counter and sentinel controlled loops o Formatting output o Type casting o Top-down, stepwise refinement

Java How to Program, 9/e. Copyright by Pearson Education, Inc. All Rights Reserved.

Overview. - General Data Types - Categories of Words. - Define Before Use. - The Three S s. - End of Statement - My First Program

Computer Programming. Basic Control Flow - Loops. Adapted from C++ for Everyone and Big C++ by Cay Horstmann, John Wiley & Sons

ADARSH VIDYA KENDRA NAGERCOIL COMPUTER SCIENCE. Grade: IX C++ PROGRAMMING. Department of Computer Science 1

C++ Basics. Data Processing Course, I. Hrivnacova, IPN Orsay

The American University in Cairo Department of Computer Science & Engineering CSCI &09 Dr. KHALIL Exam-I Fall 2011

CS110D: PROGRAMMING LANGUAGE I

Chapter 2. Outline. Simple C++ Programs

Intro to Programming & C Why Program? 1.2 Computer Systems: Hardware and Software. Why Learn to Program?

CS242 COMPUTER PROGRAMMING

Chapter 4 - Notes Control Structures I (Selection)

3 The L oop Control Structure

Full file at C How to Program, 6/e Multiple Choice Test Bank

BBM 101 Introduc/on to Programming I Fall 2014, Lecture 5. Aykut Erdem, Erkut Erdem, Fuat Akal

Chapter 5: Control Structures II (Repetition)

Engineering Problem Solving with C++, Etter/Ingber

INTRODUCTION TO C++ PROGRAM CONTROL. Dept. of Electronic Engineering, NCHU. Original slides are from

Objectives. In this chapter, you will:

C++, How to Program. Spring 2016 CISC1600 Yanjun Li 1

5.1. Chapter 5: The Increment and Decrement Operators. The Increment and Decrement Operators. The Increment and Decrement Operators

Structured Program Development

! A program is a set of instructions that the. ! It must be translated. ! Variable: portion of memory that stores a value. char

2 nd Week Lecture Notes

C++ Programming: From Problem Analysis to Program Design, Third Edition

Control Structures (Deitel chapter 4,5)

Control Structures. Control Structures Conditional Statements COMPUTER PROGRAMMING. Electrical-Electronics Engineering Dept.

Chapter Overview. I/O Streams as an Introduction to Objects and Classes. I/O Streams. Streams and Basic File I/O. Objects

Chapter 2. C++ Basics. Copyright 2014 Pearson Addison-Wesley. All rights reserved.

Chapter 6. I/O Streams as an Introduction to Objects and Classes. Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Fundamental of Programming (C)

Looping. Arizona State University 1

2/29/2016. Definition: Computer Program. A simple model of the computer. Example: Computer Program. Data types, variables, constants

ECET 264 C Programming Language with Applications. C Program Control

The cin Object. cout << "Enter the length and the width of the rectangle? "; cin >> length >> width;

Objectives. Chapter 4: Control Structures I (Selection) Objectives (cont d.) Control Structures. Control Structures (cont d.) Relational Operators

Islamic University of Gaza Computer Engineering Dept. C++ Programming. For Industrial And Electrical Engineering By Instructor: Ruba A.

Transcription:

Chapter 2 - Control Structures 1 2.11 Assignment Operators 2.12 Increment and Decrement Operators 2.13 Essentials of Counter-Controlled Repetition 2.1 for Repetition Structure 2.15 Examples Using the for Structure 2.16 switch Multiple-Selection Structure 2.1 do/while Repetition Structure 2.18 break and continue Statements 2.19 Logical Operators 2.20 Confusing Equality (==) and Assignment (=) Operators 2.21 Structured-Programming Summary

2 2.11 Assignment Operators Assignment expression abbreviations Addition assignment operator c = c + 3; abbreviated to c += 3; Some statements of the form variable = variable operator expression; can be rewritten as variable operator= expression; For example: d -= ; d = d - ; e *= 5; e = e * 5; f /= 3; f = f / 3; g %= 9; g = g % 9;

3 2.12 Increment and Decrement Operators Increment operator (c++ or ++c) can be used instead of c += 1 Decrement operator (c-- or --c) can be used instead of c -= 1 Pre-increment (++c, --c) When the operator is used before the variable (++c or --c) Variable is changed, then the surrounding expression evaluated. Post-increment (c++, c--) When the operator is used after the variable (c++ or c--) Surrounding expression is evaluated/executed, then the variable is changed.

2.12 Example Exam Questions (c++ vs ++c) Suppose c contains 5. What gets printed? cout << ++c; Answer c is changed to 6, then (cout << c) is evaluated, and 6 is printed. Suppose c contains 5. What gets printed? cout << c++; Answer: 5 is printed. (cout << c) is evaluated before the increment c then becomes 6

5 2.12 Increment and Decrement Operators When variable not in expression Preincrementing and postincrementing have same effect ++c; and cout << c; c++; cout << c; are the same

1 // Fig. 2.1: fig02_1.cpp 2 // Preincrementing and postincrementing. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int c; // declare variable 12 13 // demonstrate postincrement 1 c = 5; // assign 5 to c 15 cout << c << endl; // print 5 16 cout << c++ << endl; // print 5 then postincrement 1 cout << c << endl << endl; // print 6 18 19 // demonstrate preincrement 20 c = 5; // assign 5 to c 21 cout << c << endl; // print 5 22 cout << ++c << endl; // preincrement then print 6 23 cout << c << endl; // print 6 fig02_1.cpp 5 5 6 5 6 6 6 2 25 return 0; // indicate successful termination 26 2 } // end function main

1 // Fig. 2.16: fig02_16.cpp 2 // Counter-controlled repetition. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int counter = 1; // initialization 12 13 while ( counter <= 10 ) { // repetition condition 1 cout << counter << endl; // display counter 15 ++counter; // increment 16 1 } // end while 18 19 return 0; // indicate successful termination 20 21 } // end function main 1 2 3 5 6 8 9 10 fig02_16.cpp (1 of 1) Counter-controlled repetition requires Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.16: fig02_16.cpp 2 // Counter-controlled repetition. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int counter = 1; // initialization 12 13 while ( counter <= 10 ) { // repetition condition 1 cout << counter << endl; // display counter 15 ++counter; // increment 16 1 } // end while 18 19 return 0; // indicate successful termination 20 21 } // end function main 1 2 3 5 6 8 9 10 fig02_16.cpp (1 of 1) Counter-controlled repetition requires Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.16: fig02_16.cpp 2 // Counter-controlled repetition. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int counter = 1; // initialization 12 13 while ( counter <= 10 ) { // repetition condition 1 cout << counter << endl; // display counter 15 ++counter; // increment 16 1 } // end while 18 19 return 0; // indicate successful termination 20 21 } // end function main 1 2 3 5 6 8 9 10 fig02_16.cpp (1 of 1) Counter-controlled repetition requires Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.16: fig02_16.cpp 2 // Counter-controlled repetition. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int counter = 1; // initialization 12 13 while ( counter <= 10 ) { // repetition condition 1 cout << counter << endl; // display counter 15 ++counter; // increment 16 1 } // end while 18 19 return 0; // indicate successful termination 20 21 } // end function main 1 2 3 5 6 8 9 10 fig02_16.cpp (1 of 1) Counter-controlled repetition requires Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.16: fig02_16.cpp 2 // Counter-controlled repetition. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int counter = 1; // initialization 12 13 while ( counter <= 10 ) { // repetition condition 1 cout << counter << endl; // display counter 15 ++counter; // increment 16 1 } // end while 18 19 return 0; // indicate successful termination 20 21 } // end function main 1 2 3 5 6 8 9 10 fig02_16.cpp (1 of 1) Counter-controlled repetition requires Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

2.13 Essentia ls of Counter-Controlled Repetition 8 The declaration int counter = 1; Names counter Declares counter to be an integer Reserves space for counter in memory Sets counter to an initial value of 1

9 2.1 for Repetition Structure General format when using for loops for ( initialization; LoopContinuationTest; increment ) statement Example for( int counter = 1; counter <= 10; counter++ ) cout << counter << endl; Prints integers from one to ten No semicolon after last statement

1 // Fig. 2.1: fig02_1.cpp 2 // Counter-controlled repetition with the for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 // Initialization, repetition condition and incrementing 12 // are all included in the for structure header. 13 1 for ( int counter = 1; counter <= 10; counter++ ) 15 cout << counter << endl; 16 1 return 0; // indicate successful termination 18 19 } // end function main 1 2 3 5 6 8 9 10 fig02_1.cpp (1 of 1) 10 Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.1: fig02_1.cpp 2 // Counter-controlled repetition with the for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 // Initialization, repetition condition and incrementing 12 // are all included in the for structure header. 13 1 for ( int counter = 1; counter <= 10; counter++ ) 15 cout << counter << endl; 16 1 return 0; // indicate successful termination 18 19 } // end function main 1 2 3 5 6 8 9 10 fig02_1.cpp (1 of 1) 10 Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.1: fig02_1.cpp 2 // Counter-controlled repetition with the for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 // Initialization, repetition condition and incrementing 12 // are all included in the for structure header. 13 1 for ( int counter = 1; counter <= 10; counter++ ) 15 cout << counter << endl; 16 1 return 0; // indicate successful termination 18 19 } // end function main 1 2 3 5 6 8 9 10 fig02_1.cpp (1 of 1) 10 Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.1: fig02_1.cpp 2 // Counter-controlled repetition with the for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 // Initialization, repetition condition and incrementing 12 // are all included in the for structure header. 13 1 for ( int counter = 1; counter <= 10; counter++ ) 15 cout << counter << endl; 16 1 return 0; // indicate successful termination 18 19 } // end function main 1 2 3 5 6 8 9 10 fig02_1.cpp (1 of 1) 10 Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

1 // Fig. 2.1: fig02_1.cpp 2 // Counter-controlled repetition with the for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 // Initialization, repetition condition and incrementing 12 // are all included in the for structure header. 13 1 for ( int counter = 1; counter <= 10; counter++ ) 15 cout << counter << endl; 16 1 return 0; // indicate successful termination 18 19 } // end function main 1 2 3 5 6 8 9 10 fig02_1.cpp (1 of 1) 10 Control variable (loop counter) Initial value for control variable Condition to test for final value Modify control variable while looping (Increment or decrement)

11 2.1 for Repetition Structure for loops can usually be rewritten as while loops initialization; while ( loopcontinuationtest){ statement increment; } Initialization and increment For multiple variables, use comma-separated lists for (int i = 0, j = 0; j + i <= 10; j++, i++) cout << j + i << endl;

1 // Fig. 2.20: fig02_20.cpp 2 // Summation with for. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int sum = 0; // initialize sum 12 13 // sum even integers from 2 through 100 1 for ( int number = 2; number <= 100; number += 2 ) 15 sum += number; // add number to sum 16 1 cout << "Sum is " << sum << endl; // output sum 18 return 0; // successful termination 19 20 } // end function main fig02_20.cpp (1 of 1) fig02_20.cpp output (1 of 1) 12 Sum is 2550

2.15 Examples Using the for Structure 13 Program to calculate compound interest A person invests $1000.00 in a savings account yielding 5 percent interest. Assuming that all interest is left on deposit in the account, calculate and print the amount of money in the account at the end of each year for 10 years. Use the following formula for determining these amounts: n a = p(1+r) p is the original amount invested (i.e., the principal), r is the annual interest rate, n is the number of years and a is the amount on deposit at the end of the nth year

1 // Fig. 2.21: fig02_21.cpp 2 // Calculating compound interest. 3 #include <iostream> 5 using std::cout; 6 using std::endl; using std::ios; 8 using std::fixed; 9 10 #include <iomanip> 11 12 using std::setw; 13 using std::setprecision; 1 15 #include <cmath> // enables program to use function pow 16 1 // function main begins program execution 18 int main() 19 { 20 double amount; // amount on deposit 21 double principal = 1000.0; // starting principal 22 double rate =.05; // interest rate 23 fig02_21.cpp (1 of 2) 1

1 // Fig. 2.21: fig02_21.cpp 2 // Calculating compound interest. 3 #include <iostream> 5 using std::cout; 6 using std::endl; using std::ios; 8 using std::fixed; 9 10 #include <iomanip> 11 12 using std::setw; 13 using std::setprecision; <cmath> header needed for the pow function (program will not compile without it). 1 15 #include <cmath> // enables program to use function pow 16 1 // function main begins program execution 18 int main() 19 { 20 double amount; // amount on deposit 21 double principal = 1000.0; // starting principal 22 double rate =.05; // interest rate 23 fig02_21.cpp (1 of 2) 1

2 // output table column heads 25 cout << "Year" << setw( 21 ) << "Amount on deposit" << endl; 26 2 // set floating-point number format 28 cout << fixed << setprecision( 2 ); 29 30 // calculate amount on deposit for each of ten years 31 for ( int year = 1; year <= 10; year++ ) { 32 33 // calculate new amount for specified year 3 amount = principal * pow( 1.0 + rate, year ); 35 36 // output one table row 3 cout << setw( ) << year 38 << setw( 21 ) << amount << endl; 39 0 } // end for 1 2 return 0; // indicate successful termination 3 } // end function main fig02_21.cpp (2 of 2) Year Amount on deposit 1 1050.00 2 1102.50 3 115.63 1215.51 5 126.28 6 130.10 10.10 8 1.6 9 1551.33 10 1628.89 15

2 // output table column heads 25 cout << "Year" << setw( 21 ) << "Amount on deposit" << endl; 26 2 // set floating-point number format 28 cout << fixed << setprecision( 2 ); 29 30 // calculate amount on deposit for each of ten years 31 for ( int year = 1; year <= 10; year++ ) { 32 33 // calculate new amount for specified year 3 amount = principal * pow( 1.0 + rate, year ); 35 36 // output one table row 3 cout << setw( ) << year 38 << setw( 21 ) << amount << endl; 39 0 } // end for 1 2 return 0; // indicate successful termination 3 } // end function main Sets the field width to at least 21 characters. If output less than 21, it is right-justified. fig02_21.cpp (2 of 2) Year Amount on deposit 1 1050.00 2 1102.50 3 115.63 1215.51 5 126.28 6 130.10 10.10 8 1.6 9 1551.33 10 1628.89 15

2 // output table column heads 25 cout << "Year" << setw( 21 ) << "Amount on deposit" << endl; 26 2 // set floating-point number format 28 cout << fixed << setprecision( 2 ); 29 30 // calculate amount on deposit for each of ten years 31 for ( int year = 1; year <= 10; year++ ) { 32 33 // calculate new amount for specified year 3 amount = principal * pow( 1.0 + rate, year ); 35 36 // output one table row 3 cout << setw( ) << year 38 << setw( 21 ) << amount << endl; 39 0 } // end for 1 2 return 0; // indicate successful termination 3 } // end function main pow(x,y) = x raised to the yth power. fig02_21.cpp (2 of 2) Year Amount on deposit 1 1050.00 2 1102.50 3 115.63 1215.51 5 126.28 6 130.10 10.10 8 1.6 9 1551.33 10 1628.89 15

2.16 switch Multiple-Selection Structure 16 switch Test variable for multiple values Series of case labels and optional default case switch ( variable ) { case value1: // taken if variable == value1 statements break; // necessary to exit switch case value2: case value3: // taken if variable == value2 or == value3 statements break; } default: // taken if variable matches no other cases statements break;

2.16 switch Multiple-Selection Structure 1 true case a case a action(s) break false true case b case b action(s) break... false true case z case z action(s) break false default action(s)

2.16 char data type Example of switch Multiple-Selection Structure upcoming... Program to read grades (A-F) Display number of each grade entered First a few details about characters Single characters typically stored in a char data type char a 1-byte integer, so chars can be stored as ints Can treat character as int or char 9 is the numerical representation of lowercase a (ASCII) 65 is upper case 'A' Use single quotes Cast to int to get numerical representation cout << "The character (" << 'a' << ") has the value " << static_cast< int > ( 'a' ) << endl; 18 The character (a) has the value 9

1 // Fig. 2.22: fig02_22.cpp 2 // Counting letter grades. 3 #include <iostream> 5 using std::cout; 6 using std::cin; using std::endl; 8 9 // function main begins program execution 10 int main() 11 { 12 int grade; // one grade 13 int acount = 0; // number of As 1 int bcount = 0; // number of Bs 15 int ccount = 0; // number of Cs 16 int dcount = 0; // number of Ds 1 int fcount = 0; // number of Fs 18 19 cout << "Enter the letter grades." << endl 20 << "Enter the EOF character to end input." << endl; 21 fig02_22.cpp (1 of ) 19 Enter the letter grades. Enter the EOF character to end input.

22 // loop until user types end-of-file key sequence 23 while ( ( grade = cin.get() )!= EOF ) { 2 25 // determine which grade was input 26 switch ( grade ) { // switch structure nested in while 2 28 case 'A': // grade was uppercase A 29 case 'a': // or lowercase a 30 ++acount; // increment acount 31 break; // necessary to exit switch 32 33 case 'B': // grade was uppercase B 3 case 'b': // or lowercase b 35 ++bcount; // increment bcount 36 break; // exit switch 3 38 case 'C': // grade was uppercase C 39 case 'c': // or lowercase c 0 ++ccount; // increment ccount 1 break; // exit switch 2 fig02_22.cpp (2 of ) Enter the EOF character to end input. a B c C A d f C E Incorrect letter grade entered. Enter a new grade. D A b ^Z 20

22 // loop until user types end-of-file key sequence 23 while ( ( grade = cin.get() )!= EOF ) { 2 25 // determine which grade was input 26 switch ( grade ) { // switch structure nested in while 2 28 case 'A': // grade was uppercase A 29 case 'a': // or lowercase a 30 ++acount; // increment acount 31 break; // necessary to exit switch 32 33 case 'B': // grade was uppercase B 3 case 'b': // or lowercase b 35 ++bcount; // increment bcount 36 break; // exit switch 3 38 case 'C': // grade was uppercase C 39 case 'c': // or lowercase c 0 ++ccount; // increment ccount 1 break; // exit switch 2 fig02_22.cpp (2 of ) Enter the EOF character to end input. a B c C A d f C E cin.get() uses dot notation (explained chapter 6). This function gets 1 character from the keyboard (after Enter pressed), and it is assigned to grade. cin.get() returns EOF (end-of-file) after the EOF character is input, to indicate the end of data. EOF may be ctrl-d or ctrl-z, depending on your OS. Incorrect letter grade entered. Enter a new grade. D A b ^Z 20

22 // loop until user types end-of-file key sequence 23 while ( ( grade = cin.get() )!= EOF ) { 2 25 // determine which grade was input 26 switch ( grade ) { // switch structure nested in while 2 28 case 'A': // grade was uppercase A 29 case 'a': // or lowercase a 30 ++acount; // increment acount 31 break; // necessary to exit switch 32 Assignment statements have a 33 case 'B': // grade value, was which uppercase is the same B as the B 3 case 'b': // or variable lowercase on the b left of the =. c 35 ++bcount; // increment The value bcount of this statement isc 36 break; // exit switch A the same as the value returned by cin.get(). 3 38 case 'C': // grade was uppercase C 39 case 'c': // or lowercase c 0 ++ccount; // increment ccount 1 break; // exit switch 2 a = b = c = 0; This can also be used to initialize multiple variables: fig02_22.cpp (2 of ) Enter the EOF character to end input. d f C E Incorrect letter grade entered. Enter a new grade. D A b ^Z 20

22 // loop until user types end-of-file key sequence 23 while ( ( grade = cin.get() )!= EOF ) { 2 25 // determine which grade was input 26 switch ( grade ) { // switch structure nested in while 2 28 case 'A': // grade was uppercase A 29 case 'a': // or lowercase a 30 ++acount; // increment acount 31 break; // necessary to exit switch 32 33 case 'B': // grade was uppercase B 3 case 'b': // or lowercase b 35 ++bcount; // increment bcount 36 break; // exit switch Compares grade (an int) 3 38 to the numerical case 'C': // grade was uppercase C 39 representations case of 'c': A and a. // or lowercase c 0 ++ccount; // increment ccount 1 break; // exit switch 2 fig02_22.cpp (2 of ) Enter the EOF character to end input. a B c C A d f C E Incorrect letter grade entered. Enter a new grade. D A b ^Z 20

22 // loop until user types end-of-file key sequence 23 while ( ( grade = cin.get() )!= EOF ) { 2 25 // determine which grade was input 26 switch ( grade ) { // switch structure nested in while 2 28 case 'A': // grade was uppercase A 29 case 'a': // or lowercase a 30 ++acount; // increment acount 31 break; // necessary to exit switch 32 33 case 'B': // grade was uppercase B 3 case 'b': // or lowercase b 35 ++bcount; // increment bcount 36 break; // exit switch 3 38 case 'C': // grade was uppercase C 39 case 'c': // or lowercase c 0 ++ccount; // increment ccount 1 break; // exit switch 2 break causes switch to end and the program continues with the first statement after the switch structure. fig02_22.cpp (2 of ) Enter the EOF character to end input. a B c C A d f C E Incorrect letter grade entered. Enter a new grade. D A b ^Z 20

3 case 'D': // grade was uppercase D case 'd': // or lowercase d 5 ++dcount; // increment dcount 6 break; // exit switch 8 case 'F': // grade was uppercase F 9 case 'f': // or lowercase f 50 ++fcount; // increment fcount 51 break; // exit switch 52 53 case '\n': // ignore newlines, 5 case '\t': // tabs, 55 case ' ': // and spaces in input 56 break; // exit switch 5 58 default: // catch all other characters 59 cout << "Incorrect letter grade entered." 60 << " Enter a new grade." << endl; 61 break; // optional; will exit switch anyway 62 63 } // end switch 6 65 } // end while 66 fig02_22.cpp (3 of ) 21 Enter the EOF character to en a B c C A d f C E Incorrect letter grade entere a new grade. D A b ^Z

3 case 'D': // grade was uppercase D case 'd': // or lowercase d 5 ++dcount; // increment dcount 6 break; // exit switch 8 case 'F': // grade was Enter uppercase is pressed F after each 9 case 'f': // or lowercase f 50 ++fcount; // increment fcount 51 break; // exit switch be removed. Likewise, we 52 53 case '\n': // ignore newlines, want to ignore any 5 case '\t': // tabs, whitespace. 55 case ' ': // and spaces in input 56 break; // exit switch 5 58 default: // catch all other characters 59 cout << "Incorrect letter grade entered." 60 << " Enter a new grade." << endl; 61 break; // optional; will exit switch anyway 62 63 } // end switch 6 65 } // end while 66 This test is necessary because letter grade is input. This adds a newline character that must fig02_22.cpp (3 of ) 21 Enter the EOF character to en a B c C A d f C E Incorrect letter grade entere a new grade. D A b ^Z

3 case 'D': // grade was uppercase D case 'd': // or lowercase d 5 ++dcount; // increment dcount 6 break; // exit switch 8 case 'F': // grade was uppercase F 9 case 'f': // or lowercase f 50 ++fcount; // increment fcount 51 break; // exit switch 52 53 case '\n': // ignore newlines, 5 case '\t': // tabs, 55 case ' ': // and spaces in input 56 break; // exit switch 5 catches all other cases. 58 default: // catch all other characters 59 cout << "Incorrect letter grade entered." 60 << " Enter a new grade." << endl; 61 break; // optional; will exit switch anyway 62 63 } // end switch 6 65 } // end while 66 Notice the default statement, which fig02_22.cpp (3 of ) 21 Enter the EOF character to en a B c C A d f C E Incorrect letter grade entere a new grade. D A b ^Z

6 // output summary of results 68 cout << "\n\ntotals for each letter grade are:" 69 << "\na: " << acount // display number of A grades 0 << "\nb: " << bcount // display number of B grades 1 << "\nc: " << ccount // display number of C grades 2 << "\nd: " << dcount // display number of D grades 3 << "\nf: " << fcount // display number of F grades << endl; 5 6 return 0; // indicate successful termination 8 } // end function main fig02_22.cpp ( of ) Totals for each letter grade are: A: 3 B: 2 C: 3 D: 2 F: 1 22

Enter the letter grades. Enter the EOF character to end input. a B c C A d f C E Incorrect letter grade entered. Enter a new grade. D A b ^Z fig02_22.cpp output (1 of 1) 23 Totals for each letter grade are: A: 3 B: 2 C: 3 D: 2 F: 1

2 2.1 do/ while Repetition Structure Similar to while structure Makes loop continuation test at end, not beginning Loop body executes at least once Format do { statement } while ( condition ); Conrad's preferred indentation: do { statement } while ( condition ); action(s) condition false true

1 // Fig. 2.2: fig02_2.cpp 2 // Using the do/while repetition structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int counter = 1; // initialize counter 12 13 do { 1 cout << counter << " "; // display counter 15 } while ( ++counter <= 10 ); // end do/while 16 1 cout << endl; 18 19 return 0; // indicate successful termination 20 21 } // end function main fig02_2.cpp (1 of 1) fig02_2.cpp output (1 of 1) 25 1 2 3 5 6 8 9 10

1 // Fig. 2.2: fig02_2.cpp 2 // Using the do/while repetition structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 int counter = 1; // initialize counter Notice the preincrement in loop-continuation test. 12 13 do { 1 cout << counter << " "; // display counter 15 } while ( ++counter <= 10 ); // end do/while 16 1 cout << endl; 18 19 return 0; // indicate successful termination 20 21 } // end function main fig02_2.cpp (1 of 1) fig02_2.cpp output (1 of 1) 25 1 2 3 5 6 8 9 10

26 2.18 break and continue Statements break statement Immediate exit from while, for, do/while, switch Program continues with first statement after structure Common uses Escape early from a loop Skip the remainder of switch

1 // Fig. 2.26: fig02_26.cpp 2 // Using the break statement in a for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 12 int x; // x declared here so it can be used after the loop 13 1 // loop 10 times 15 for ( x = 1; x <= 10; x++ ) { 16 1 // if x is 5, terminate loop 18 if ( x == 5 ) 19 break; // break loop only if x is 5 20 21 cout << x << " "; // display value of x 22 23 } // end for 2 25 cout << "\nbroke out of loop when x became " << x << endl; 26 2 return 0; // indicate successful termination 28 29 } // end function main fig02_26.cpp (1 of 1) 2

1 // Fig. 2.26: fig02_26.cpp 2 // Using the break statement in a for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 12 int x; // x declared here so it can be used after the loop 13 1 // loop 10 times 15 for ( x = 1; x <= 10; x++ ) { Exits for structure when break executed. 16 1 // if x is 5, terminate loop 18 if ( x == 5 ) 19 break; // break loop only if x is 5 20 21 cout << x << " "; // display value of x 22 23 } // end for 2 25 cout << "\nbroke out of loop when x became " << x << endl; 26 2 return 0; // indicate successful termination 28 29 } // end function main fig02_26.cpp (1 of 1) 2

1 // Fig. 2.26: fig02_26.cpp 2 // Using the break statement in a for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 12 int x; // x declared here so it can be used after the loop 13 1 // loop 10 times 15 for ( x = 1; x <= 10; x++ ) { Exits for structure when break executed. 16 1 // if x is 5, terminate loop 18 if ( x == 5 ) 19 break; // break loop only if x is 5 20 21 cout << x << " "; // display value of x 22 23 } // end for 2 25 cout << "\nbroke out of loop when x became " << x << endl; fig02_26.cpp (1 of 1) 2 1 2 3 Broke out of loop when x became 5 26 2 return 0; // indicate successful termination 28 29 } // end function main

28 2.18 break and continue Statements continue statement Used in while, for, do/while Skips remainder of loop body Proceeds with next iteration of loop while and do/while structure Loop-continuation test evaluated immediately after the continue statement for structure Increment expression executed Next, loop-continuation test evaluated

1 // Fig. 2.2: fig02_2.cpp 2 // Using the continue statement in a for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 // loop 10 times 12 for ( int x = 1; x <= 10; x++ ) { 13 1 // if x is 5, continue with next iteration of loop 15 if ( x == 5 ) 16 continue; // skip remaining code in loop body 1 18 cout << x << " "; // display value of x 19 20 } // end for structure 21 22 cout << "\nused continue to skip printing the value 5" 23 << endl; 2 25 return 0; // indicate successful termination fig02_2.cpp (1 of 1) 1 2 3 6 8 9 10 Used continue to skip printing the value 5 29 26 2 } // end function main

1 // Fig. 2.2: fig02_2.cpp 2 // Using the continue statement in a for structure. 3 #include <iostream> 5 using std::cout; 6 using std::endl; 8 // function main begins program execution 9 int main() 10 { 11 // loop 10 times 12 for ( int x = 1; x <= 10; x++ ) { 13 Skips to next iteration of the loop. 1 // if x is 5, continue with next iteration of loop 15 if ( x == 5 ) 16 continue; // skip remaining code in loop body 1 18 cout << x << " "; // display value of x 19 20 } // end for structure 21 22 cout << "\nused continue to skip printing the value 5" 23 << endl; 2 25 return 0; // indicate successful termination fig02_2.cpp (1 of 1) 1 2 3 6 8 9 10 Used continue to skip printing the value 5 29 26 2 } // end function main

30 2.19 Logical Operators Used as conditions in loops, if statements && (logical AND) true if both conditions are true if ( gender == 1 && age >= 65 ) ++seniorfemales; (logical OR) true if either of condition is true if ( semesteraverage >= 90 finalexam >= 90 ) cout << "Student grade is A" << endl;

31 2.19 Logical Operators! (logical NOT, logical negation) Returns true when its condition is false, & vice versa if (!( grade == sentinelvalue ) ) cout << "The next grade is " << grade << endl; Alternative: if ( grade!= sentinelvalue ) cout << "The next grade is " << grade << endl;

2.20 Confusing Equa lity (==) a nd Assignment (=) Operators Does not typically cause syntax errors Expressions that have a value can be used for decision Zero = false, nonzero = true Assignment statements produce a value Example if ( paycode == ) cout << "You get a bonus!" << endl; bonus given only if paycode is If == was replaced with = if ( paycode = ) cout << "You get a bonus!" << endl; Paycode set to (no matter what it was before) yields "true" (since is non-zero), so bonus always given 32

2.20 lvalues vs. rvalues lvalues (pronounced "ell values") Expressions that can appear on left side of equation Can be changed (i.e., variables) x = ; target of an assignment statement; where the data gets stored. "arrr values" ) 33

2.20 lvalues vs. rvalues lvalues (pronounced "ell values") Expressions that can appear on left side of equation Can be changed (i.e., variables) x = ; target of an assignment statement; where the data gets stored. rvalues (pronounced "arrr values" ) 33

2.20 lvalues vs. rvalues lvalues (pronounced "ell values") Expressions that can appear on left side of equation Can be changed (i.e., variables) x = ; target of an assignment statement; where the data gets stored. rvalues (pronounced "arrr values" ) 33

2.20 lvalues vs. rvalues lvalues (pronounced "ell values") Expressions that can appear on left side of equation Can be changed (i.e., variables) x = ; target of an assignment statement; where the data gets stored. "arrr values" ) rvalues (pronounced ) appear on right side of equation may be variables, constants, or expressions, e.g. x = ; x = y ; x = y + ; 33

2.20 lvalues vs. rvalues lvalues (pronounced "ell values") Expressions that can appear on left side of equation Can be changed (i.e., variables) x = ; target of an assignment statement; where the data gets stored. "arrr values" ) rvalues (pronounced ) appear on right side of equation may be variables, constants, or expressions, e.g. x = ; x = y ; x = y + ; lvalues can be used as rvalues, but not vice versa (i.e. cannot write = x; or y + = x) 33

2.21 Structured-Progra mming Summa ry According to Bohm and Jacopini, all programs can be broken down into 3 Sequence Selection if, if/else, or switch Any selection can be rewritten as an if statement Repetition while, do/while or for Any repetition structure can be rewritten as a while statement

2.21 Structured-Progra mming Summa ry 35 Only use single-entry/single-exit control structures Easier to understand, test, debug and modify Rules 1) start with a single rectangle, then apply rules (2) and (3) in either order, as many times as necessary 2) Any rectangle (action) can be replaced by two rectangles (actions) in sequence 3) Any rectangle (action) can be replaced by any control structure (sequence, if, if/else, switch, while, do/while or for) Rule 2 Rule 3 Rule 1

2.21 Structured-Progra mming Summa ry 36 Representation of Rule 3 (replacing any rectangle with a control structure) Rule 3 Rule 3 Rule 3