The effects of free surface and end cell on flow around a finite circular cylinder with low aspect ratio

Similar documents
Pulsating flow around a stationary cylinder: An experimental study

ITTC Recommended Procedures and Guidelines

Interaction between a tethered sphere and a free surface flow

THE FLUCTUATING VELOCITY FIELD ABOVE THE FREE END OF A SURFACE- MOUNTED FINITE-HEIGHT SQUARE PRISM

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

ITTC Recommended Procedures and Guidelines

FLOW STRUCTURE AROUND A HORIZONTAL CYLINDER AT DIFFERENT ELEVATIONS IN SHALLOW WATER

Experimental Validation of the Computation Method for Strongly Nonlinear Wave-Body Interactions

Proceedings of the ASME st International Conference on Ocean, Offshore and Arctic Engineering OMAE2012 July 1-6, 2012, Rio de Janeiro, Brazil

Figure 1. Schematic representation of the flow past a finite-height square prism mounted normal to a ground plane and partially immersed in a flat-pla

Numerical and experimental investigations into liquid sloshing in a rectangular tank

The viscous forces on the cylinder are proportional to the gradient of the velocity field at the

FLOW CHARACTERISTICS AROUND A CIRCULAR CYLINDER NEAR A PLANE BOUNDARY

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

ANALYSIS OF VORTEX INDUCED VIBRATION USING IFS

Development of the Compliant Mooring Line Model for FLOW-3D

Learn more at

Transactions on Modelling and Simulation vol 16, 1997 WIT Press, ISSN X

INTERACTION BETWEEN TURBULENT DYNAMICAL PROCESSES AND STATISTICS IN DEFORMED AIR-LIQUID INTERFACES, VIA DNS

Cloud Cavitating Flow around an Axisymmetric Projectile in the shallow water

Study on Unsteady Cavitating Flow Simulation around Marine Propeller using a RANS CFD code

ITTC Recommended Procedures and Guidelines. ITTC Quality System Manual. Recommended Procedures and Guidelines

EXPERIMENTAL INVESTIGATION OF THE FLOW-INDUCED VIBRATION OF A CURVED CIRCULAR CYLINDER

ITTC Recommended Procedures and Guidelines

Mathematical Modeling of Drag Coefficient Reduction in Circular Cylinder Using Two Passive Controls at Re = 1000

More recently, some research studies have provided important insights into the numerical analysis of flow past two tandem circular cylinders. Using th

USE OF PROPER ORTHOGONAL DECOMPOSITION TO INVESTIGATE THE TURBULENT WAKE OF A SURFACE-MOUNTED FINITE SQUARE PRISM

EXPERIMENTAL INVESTIGATION OF THE FLOW PATTERN BEHIND CYLINDER. Ing. Rut Vitkovičová, Ing. Vladislav Skála, Ing. Jan Čížek Ph.D.

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

The relationship between near-wake structure and heat transfer for an oscillating circular cylinder in cross-flow. Thesis by Tait Sherman Pottebaum

Flow structure and air entrainment mechanism in a turbulent stationary bore

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

VALIDATION AND VERIFICATION OF HULL RESISTANCE COMPONENTS USING A COMMERCIAL CFD CODE SUMMARY

Visualization Study on Flow Structures past a Rotating Circular Cylinder in a Uniform Stream

A Direct Simulation-Based Study of Radiance in a Dynamic Ocean

Passive jet control of flow around a circular cylinder

WONG HSI, J. J. MIAU,

Numerical Simulations of Vortex Shedding of a Circular Cylinder Experiencing Oscillatory Flow at Low Keulegan-Carpenter Numbers

Introduction to ANSYS CFX

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

Assessment of Turbulence Models for Flow around a Surface-Mounted Cube

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent

ACTIVE SEPARATION CONTROL WITH LONGITUDINAL VORTICES GENERATED BY THREE TYPES OF JET ORIFICE SHAPE

A Passive Method to Control the Wake Flow behind a Circular Cylinder

The Spalart Allmaras turbulence model

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji

Flow Field of Truncated Spherical Turrets

Experimental investigation of Shedding Mode II in circular cylinder wake

Analysis of Flow Dynamics of an Incompressible Viscous Fluid in a Channel

Keywords: flows past a cylinder; detached-eddy-simulations; Spalart-Allmaras model; flow visualizations

Modelling the Unsteady Loads of Plunging Airfoils in Attached, Light and Deep Stall Conditions

THE NUMERICAL INVESTIGATION ON THE EFFECTS OF ASPECT RATIO AND CROSS-SECTIONAL SHAPRE ON THE WAKE STRUCTURE BEHIND A CANTILEVER

Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000

2D FLUID DEFORMATION INDUCED BY A ROTATIONAL RECIPROCATING PLATE IMPELLER IN A CYLINDRICAL VESSEL

The Influence of End Conditions on Vortex Shedding from a Circular Cylinder in Sub-Critical Flow

PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS

9.9 Coherent Structure Detection in a Backward-Facing Step Flow

Lecture # 16: Review for Final Exam

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. Analyzing wind flow around the square plate using ADINA Project. Ankur Bajoria

Estimation of Flow Field & Drag for Aerofoil Wing

LARGE EDDY SIMULATION OF VORTEX SHEDDING WITH TRIANGULAR CYLINDER AHEAD OF A SQUARE CYLINDER

On the flow and noise of a two-dimensional step element in a turbulent boundary layer

Two-Dimensional and Three-Dimensional Simulations of Oscillatory Flow around a Circular Cylinder

LES Analysis on Shock-Vortex Ring Interaction

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

PIV analysis around the Bilge Keel of a Ship Model in Free Roll Decay

FLOW VISUALISATION AROUND A SOLID SPHERE ON A ROUGH BED UNDER REGULAR WAVES

NUMERICAL MODELING STUDY FOR FLOW PATTERN CHANGES INDUCED BY SINGLE GROYNE

Solution Recording and Playback: Vortex Shedding

Using a Single Rotating Reference Frame

Implementation of a new discrete Immersed Boundary Method in OpenFOAM

SPLASH, VORTICES AND TURBULENT SHEARS IN PARTIAL DAM-BREAK FLOWS SPLASH MODEL OF WAVE-BREAKING AND OVERTOPPING

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Leading edge. Leading edge vortex, LE-V. Closed-type Boundary layer separation. Unsteady shedding by axial velocity

Quantifying the Dynamic Ocean Surface Using Underwater Radiometric Measurement

Module 3: Velocity Measurement Lecture 14: Analysis of PIV data. The Lecture Contains: Flow Visualization. Test Cell Flow Quality

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

Numerical Estimation and Validation of Shallow Draft Effect on Roll Damping

Example 13 - Shock Tube

Vehicle Cabin Noise from Turbulence Induced by Side-View Mirrors. Hua-Dong Yao, 2018/8/29 Chalmers University of Technology, Sweden

WAVE PATTERNS, WAVE INDUCED FORCES AND MOMENTS FOR A GRAVITY BASED STRUCTURE PREDICTED USING CFD

Andrew Carter. Vortex shedding off a back facing step in laminar flow.

Simulation Technology for Offshore and Marine Hydrodynamics Status Review and Emerging Capabilities

CFD FOR OFFSHORE APPLICATIONS USING REFRESCO. Arjen Koop - Senior Project Manager Offshore MARIN

ANALYSIS OF THE NON-STATIONARY FLOW AROUND A RECTANGULAR CYLINDER

Application of Hydrodynamics and Dynamics Models for Efficient Operation of Modular Mini-AUVs in Shallow and Very Shallow Waters

Numerical Simulation of Flow around a Spur Dike with Free Surface Flow in Fixed Flat Bed. Mukesh Raj Kafle

Continued Investigation of Small-Scale Air-Sea Coupled Dynamics Using CBLAST Data

Fluid-structure Interaction by the mixed SPH-FE Method with Application to Aircraft Ditching

Recent Progress of NPLS Technique and Its Applications. in Measuring Supersonic Flows

Flow Structures Extracted from Visualization Images: Vector Fields and Topology

PIV and LDV measurements behind a backward facing step

Experimental and Numerical Investigation of Flow Structures around Cylindrical Bluff Bodies

Supercomputing of Tsunami Damage Mitigation Using Offshore Mega-Floating Structures

Document Information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

EXPERIMENTELLE UNTERSUCHUNG SELBSTINDUZIERTER SCHWINGUNGEN FLEXIBLER STRUKTUREN IN LAMINARER STRÖMUNG

FEMLAB Exercise 1 for ChE366

Transcription:

J Mar Sci Technol (6) :45 53 DOI.7/s773-5-338-x ORIGINAL ARTICLE The effects of free surface and end cell on flow around a finite circular cylinder with low aspect ratio Haruki Fukuoka Shinichiro Hirabayashi Hideyuki Suzuki Received: 6 February 5 / Accepted: 6 August 5 / Published online: 4 September 5 The Author(s) 5. This article is published with open access at Springerlink.com Abstract Vortex-induced motion is an oscillatory phenomenon which occurs to a floating body with low aspect ratio. The basic phenomenological study about the effects of free surface and end cell on flow around a finite fixed circular cylinder was investigated in this study using particle image velocimetry and hydrodynamic force measurement. It was found from the former experiment that the wake of the cylinder is influenced by the both end cell and free surface. Blowup and back flow are generated from the end cell, and their effects are suspended by free surface. The result of hydrodynamic force measurement showed the effect of Reynolds number, Froude number, and the aspect ratio of the floating body on the hydrodynamic force. Fluctuating components of hydrodynamic coefficients decrease for increasing Reynolds number, Froude number, and the aspect ratio. On the other hand, the mean drag coefficient increases as Froude number increases and decreases as the aspect ratio increases. The interpretation to these results was discussed in comparison with flow structures observed in the experiment. In addition, it was found that the effect of Reynolds number on the mean drag coefficient changes at different aspect ratios. A possible interpretation to this phenomenon was proposed. Keywords Vortex-induced motion Free surface End-cell effect Particle image velocimetry Fixed circular cylinder Hydrodynamic force & Shinichiro Hirabayashi hirabayashi@k.u-tokyo.ac.jp Department of Ocean Technology, Policy, and Environment, School of Frontier Sciences, University of Tokyo, 5--5 Kashiwa-no-ha, Kashiwa, Chiba, Tokyo Introduction Offshore wind is recently expected as one of the promising renewable energy sources which may secure domestic energy as well as mitigate greenhouse gas emission. From technical and economical viewpoints, the floating type of wind turbine is considered to be the most feasible in the offshore. Because the motion of floating offshore wind turbines (FOWT) is directly related to the efficiency of power generation, it is necessary to analyze and predict their motions in wind, waves, and currents. FOWT is widely studied experimentally and numerically and the comparison among numerical models is also being carried out these days. In most of the numerical models, the motion of FOWT is mainly caused by wind, waves, and moorings. However, motions induced by vortex are not considered in those models. A floating body in a flow experiences periodic motion which is induced by vortex associated with the separation of boundary layer at the body surface and this motion is called vortex-induced motion (VIM). When VIM occurs to a floating structure such as a FOWT, its periodic motion may increase the possibility of the fatigue fracture of the mooring lines in its long lifetime. Vortex-induced vibration (VIV) has the same generation mechanism as VIM and it can be seen at a linear structure such as a riser pipe. Lie [] stated that VIV occurs to a long cylindrical structure with elasticity and increases drag and tension in axis. He also mentioned that VIM occurs to a platform on the sea surface and amplifies the motion of the platform and increases tension of mooring. Goncalves et al. [] showed another definition. They call VIM as the new name for VIV of floating structure and the characteristic of VIM comes from its low aspect ratio (AR), which is the ratio of length and breadth of the body. In addition to these 3

46 J Mar Sci Technol (6) :45 53 definitions, in this study, VIV and VIM are distinguished by the restoring force of oscillation. When the restoring force of the phenomenon comes from elasticity of the structure, it is considered as VIV. On the other hand, when the restoring force comes from mooring lines, it is considered as VIM. A structure with high AR usually has the elasticity and tends to cause VIV while a structure with low AR has little elasticity effect and tends to cause VIM. Therefore, this new definition of VIM is compatible with that of Goncalves et al. []. In this study, the wake of the floating body was divided into three regions. They are the free-surface region, the side-vortex region, and the end-cell region. A structure with high AR has small ratio of the free-surface and the end-cell regions. Therefore, their effects are less important than that of the side-vortex region. On the other hand, a structure with low AR has large ratio of the free-surface and the end-cell regions and the effects of these regions must be taken into consideration. In the side-vortex region, the well-known Kármán vortex can be seen and its pattern is dependent on Reynolds number (Re). Here Re is calculated by Re ¼ DU m ; ðþ where D is the cylinder diameter, U is the flow velocity, and v is the kinematic viscosity. Kinematic viscosity was set as. 9-6 m /s, which is the value of the kinematic viscosity at C. In the free-surface region, it is known that vortex shedding is suspended and small size vortex is shed [3]. Goncalves et al. [4] found that the free surface and the end cell strengthen the 3-dimensionality of the flow around a floating body. In addition, it is obvious that wave making resistance in the free-surface region increases drag coefficient and its influence is dependent on Froude number (Fr). Here Fr is calculated by Fr ¼ p U ffiffiffiffiffiffi ; ðþ gd where g is the gravity acceleration and it was set as 9.8 m/ s. In the end-cell region, some flow structures were classified by Kawamura et al. [5]. They are called recirculation, blowup and trailing vortex. These fluids phenomena in the end-cell region are illustrated in Fig.. The phenomenon called end-cell-induced vibration (ECIV) was discovered by Kitagawa et al. [6]. ECIV is the strong oscillation which occurs at one-third of flow velocity of VIV and it is caused by tip-associated vortex. This tip-associated vortex is also called as the trailing vortex by Sumner [7]. It is obvious that flow structures have effects on VIM but the dependency of free-surface effect, side-vortex effect, and end-cell effect on Re, Fr, and AR are not discussed comprehensively. The aim of this study was the understanding of the effects of free-surface region, side-vortex region, and endcell region to flow around a fixed circular cylinder with low AR and interpretation of its mechanism. To achieve this goal, two experiments were carried out. One is the particle image velocimetry (PIV) and the other is the hydrodynamic force measurement. The former was carried out to investigate flow structures around a fixed circular cylinder and the latter was carried out to analyze the effects of three regions quantitatively. Flow measurement by PIV. Experimental setup The PIV experiment was carried out at a circulating water channel, the observation section of which is m in length,.3 m in breadth, and.3 m in height. Measured planes were set at the horizontal plane and the vertical plane, the latter of which was in-line to the flow across the center of the cylinder. The schematic diagram of experimental setups is shown in Fig.. Three cylinders were used and their diameters are 6, 38, and 6 mm, respectively, and their height was 6 mm in common. Flow velocity, U ranged from. to.6 m/s. Thus the Re ranged in this experiment from 4 to 6. The experimental cases are shown in Table. In the PIV experiment, -dimensional velocity field in the target section was obtained by calculating the shift of particle groups between sequential camera images. A single camera was used in this study and the velocity vector perpendicular to the target section cannot be obtained in principle.. Results Recircula on Blowup Fig. Flow structures around the end cell Trailing vortex The flow field was represented using flow vector and the vorticity vector. The vorticity vector was calculated by 3

J Mar Sci Technol (6) :45 53 47 z Flow y x Camera Cylinder Light sheet Fig. Schematic diagram of PIV experiment setup for the measurement of the vertical cross section. The positions of the camera and light sheet are swapped for the measurement of the horizontal cross section Table AR, Re, and Fr of PIV experiment D (m) U (m/s) AR Re Fr.6.6..,., 3., 4. 4 55.3.4.38..,., 3., 4. 6.6.6...,. 64 6.4.7 ow ov x ¼ x x ; x y ; x z ¼ oy oz ; ou ow oz ox ; ov ox ou oy ; ð3þ where vorticity vectors perpendicular to the vertical (X Z) and the horizontal (X Y) planes are represented by x y and x z, respectively. The period of vortex shedding, T e, is estimated by T e ¼ D St U ; ð4þ where St is the Strouhal number, which was approximated to be. for side vortexes. Figure 3 shows sequential contours of the vertical component of instantaneous vorticity vector, x z, around the cylinder for different measurement planes; one is located at the D above the free end of the body with AR = 4., and the other is at the free end of the body with AR = 3.. It is found that vortex is generated from a cylinder and convected downstream in a d. However, similar vortex convection in the downstream of the cylinder cannot be seen in a d. This result indicates the disappearance of vortex with vertical axis at end-cell region. Figure 4 shows timeaveraged streamwise velocity around a cylinder in horizontal planes at D above the end cell in (a) and at the end cell in (b). It is found that there is a region in which the flow speed is small behind a cylinder in (a), while there is no such a region in (b). This result indicates disappearance of low flow speed region: in other words, dead water region, at the end-cell region. Figure 5 shows time-averaged flow vector, streamwise and vertical velocity components around cylinders with different AR. From flow vector, forked flow can be observed. These graphs show blowup flow at the end cell and it separates into back flow and leeward flow. The blowup flow is observed in (b) and (e). The back flow is observed in (c) and (f). This back flow is equivalent to the recirculation. The deformation of flow from the end cell can be observed by comparing the results of AR =. and.. The deformation is schematically illustrated in Fig. 6. The deformation may be because the free surface suspends the vertical flow. Figure 7 shows the minimum local velocity in the time-averaged back flow velocity field nondimensionalized by the inflow velocity, U, for various Fr. It is found that the maximum amplitude of back flow becomes small as Fr increases. This indicates that wave generation at the free surface may consume energy of recirculation and the strength of back flow becomes small. Figure 8 shows instantaneous vorticity around a cylinder in a vertical plane. It is found that there is vortex with horizontal axis around end cell. This vortex seems to be related to the recirculation. Moreover, this vortex is separated at a certain interval and the Strouhal number, St ¼ fd U ; ð5þ where f is the vortex-shedding frequency calculated from the vertical interval of vortexes and the vertical time-averaged velocity, was approximately.6, which is close to St of trailing vortex shown in Kitagawa et al. [6]. From this result, it is deduced that the vortex associated with recirculation is separated periodically by the trailing vortex. 3 Force measurement by towing experiment 3. Experimental setup and methods The hydrodynamic force measurement experiment was carried out in a towing tank, the test section of which is 85 m in length, 3.5 m in breadth, and.4 m in depth. Experimental settings are illustrated in Fig. 9. A semisubmerged cylinder was towed and the force was measured by a three-axis load cell. Three kinds of cylinders were used and their diameters are.,.3, and.4 m, respectively. Table shows conditions of three parameters, Re, Fr, and AR in the towing experiment. AR of underwater 3

48 J Mar Sci Technol (6) :45 53 Fig. 3 Sequential contours of the vertical component of instantaneous vorticity vector, x z, around the circular cylinder at Re = 4 in the horizontal plane. a d are measured at D above the free end of the body with AR = 4., and a d are measured at the free end of the body with AR = 3. region, Re, and Fr ranged from.5 to.5, 8 to 37,. to.57, respectively. The measured time series of force was divided into mean and fluctuating components, the latter of which is calculated by the rootmean-square around mean. Moreover, frequency analysis was carried out to analyze the cause of oscillatory force. 3

J Mar Sci Technol (6) :45 53 49 Fig. 4 Time-averaged streamwise velocity around a circular cylinder at Re = 4 in the horizontal plane at D above the free end of the body with AR = 4. (a), and at the free end of the body with AR = 3. (b) 3. Results Mean drag coefficient (C D ), root-mean-squared drag coefficient (C Drms ), and root-mean-squared lift coefficient (C Lrms) were obtained by cylinder towing experiment. The definitions of C D, C Drms, and C Lrms are F x C D ¼ ð6þ AR qd U C Drms ¼ h i ðf x F x Þ AR qd U ð7þ h i F y F y C Lrms ¼ ; ð8þ AR qd U respectively, where overbar denotes temporal mean, q is the density of water, and F x, F y are the hydrodynamic forces in the streamwise and the cross-streamwise directions, respectively. Figure shows the effect of Re on C D, C Drms, and C Lrms for AR =.5 in (a) and.5 in (b). It is found that C Drms and C Lrms become small as Re increases in the both ARs. It is considered that this is because of the disordering of vortex as Re increases. It is found that C D becomes large as Re increases in (a), while C D becomes small as Re increases in (b). This indicates that the dependency of C D on Re changes by AR. The reason of this change will be considered later in the discussion. Figure shows the effect of AR on C D, C Drms, and C Lrms at Re = 53 and Fr =. in which the effect of free surface is considered to be small. It is found that C D becomes large and C Drms and C Lrms become small as AR increases. This indicates that for body with low AR, C D becomes small and C Drms and C Lrms become large by the effects of end cell and free surface. Because the effect of the trailing vortex becomes relatively small as AR increases, C Drms and C Lrms become small. Figure shows the effect of Re on C D, C Drms, and C Lrms at higher Fr than Fig.. Although Fr is different in between Figs. and, the same tendency is observed. C Drms and C Lrms become small as Re increases and the dependency of C D on Re changes between in (a) and (b). Figure 3 shows the effect of Fr on C D, C Drms, and C Lrms. It is found that C D becomes large and C Drms and C Lrms become small as Fr increases. This is considered to be because wave generation makes resistance and waves break the vortex near the free surface. Figure 4 shows frequency-based power spectra of lift coefficient. When AR =.5, the dominant fluctuation is at St =. and as AR increases, it is shifted to St =.5. Similar results were shown in Iungo et al. [8]. They analyzed the pressure fluctuation on the cylinder and indicated that lower frequency dominates fluctuation of pressure at end cell. 4 Discussion 4. Dependency of C Drms and C Lrms on Re, AR, and Fr The dependency of C Drms and C Lrms on Re, AR, and Fr were shown in Tables 3, 4, 5. Frequency analysis of time series of hydrodynamic force showed that low-frequency component dominates phenomenon at low aspect ratio and this low-frequency component was considered to be caused by the trailing vortex. C Drms and C Lrms decrease as Re increases, which is considered to be caused by vortex 3

5 J Mar Sci Technol (6) :45 53 Fig. 5 Flow around circular cylinders with different ARs at Re = 64. AR =.: a flow vector, b streamwise velocity, and c vertical velocity. AR =.: d flow vector, e streamwise velocity, and f vertical velocity disordering. C Drms and C Lrms decrease as AR increases, which is considered to be caused by relative decrease of the effect of the end-cell region, in which the trailing vortex is dominant. It is true that the free surface suspends the fluctuating component of forces as shown in Fig. 3 and it increases C Drms and C Lrms as AR increases. However, it is considered that its effect is less dominant compared with the end-cell effect. C Drms and C Lrms decrease as Fr increases, which is considered to be caused by waves which break vortex near the free surface. 3

J Mar Sci Technol (6) :45 53 5 Fig. 6 Conceptual images of deformation of end-cell flow caused by the free surface in steady state Minumum velocity of back flow nondimensionalized by U -. AR= -. AR= -.3 -.4 -.5 -.6 -.7...3.4.5 Fr Fig. 7 Effect of Fr on the strength of back flow for AR = and AR = Fig. 9 Schematic diagram of the force measurement Table AR, Re, and Fr of the hydrodynamic force measurement D (m) U (m/s) AR Re Fr..4.56.8.3.7.53.69.4..4.79.5,.5,.,.5,.5 8 6.5,.5,.,.5,.5 5 6 6.5,.5,.,.5 79 6 37..4.57..3.4...4 Fig. 8 Vertical cross section of vorticity vector, x y, around a circular cylinder with AR =. at Re = 94 4. Dependency of C D on Re, AR, and Fr PIV results indicate that recirculation from the end cell induces back flow which pushes back the cylinder and it causes decrease of C D. As shown in Fig., C D increases as AR increases, which is considered to be caused by the relative decrease of the effect of recirculation. As shown in Fig. 3, C D increases as Fr increases and this is simply considered to be caused by wave generation resistance. 4.3 Explanation for the variety of dependency of C D on Re It was found that dependency of C D on Re varies with different ARs. A hypothesis is proposed in the following to explain the reason of this phenomenon. 3

5 J Mar Sci Technol (6) :45 53 (a) 5 4 3 (a).8.6.4. 4 6 8 Re 3 4 Re (b).5.5 (b).8.6.4. 4 6 8 Re Fig. Effect of Re on C D, C Drms, and C Lrms at Fr =. with a AR =.5, and b AR =.5 3 4 Re Fig. Effect of Re on C D, C Drms, and C Lrms at Fr =.4 with a AR =.5, and b AR =.5.5.5.5.5 AR Flow around a cylinder with low AR is likely to become 3-dimensional because of the end-cell effect. It is deduced that the flow with vertical variation disturbs the boundary layer near the cylinder surface and consequently causes separation of boundary layer even when Re is smaller than its critical value. This causes reduction of C D with increasing Re when the effect of end cell is less dominant. On the other hand, the structure of recirculation is considered to become complicated with increasing Re and this may cause reduction of pressure recovery from recirculation in dimensionless quantity. Therefore, C D becomes Fig. Effect of AR on C D, C Drms, and C Lrms at Re = 53 and Fr =. (a) (b).8.6.4....3.4.5.6 Fr.8.6.4....3.4.5.6 Fr Fig. 3 Effect of Fr on C D, C Drms, and C Lrms at Re = 6 with a AR =.5, and b AR =.5 3

J Mar Sci Technol (6) :45 53 53 Power of CL 4.x -4 AR=.5 AR=.5 3.x -4.x -4.x -4.x +..4.6.8 fd/u Fig. 4 Frequency-based power spectra of lift coefficient at Re = 368 with AR =.5 and AR =.5 Table 3 Dependency of C D, C Drms, and C Lrms on Re Small Re Large Depends on AR C D Depends on AR Large C Drms, C Lrms Small Fr, and AR on drag and lift coefficients are analyzed comprehensively. It was shown that AR is strongly related to the effects of free surface and end cell; their effects become large for low AR. It was newly found that the dependency of C D on Re is different for different ARs. A possible explanation to this was proposed and its verification requires further investigation. The result of this study was restricted to a fixed cylinder. The expansion to a moored cylinder is necessary to analyze the effect of end cell and free surface on VIM. This is left to our future work. Acknowledgments This work was supported by JSPS KAKENHI Grant Number 5893. Open Access This article is distributed under the terms of the Creative Commons Attribution 4. International License (http://crea tivecommons.org/licenses/by/4./), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References Table 4 Dependency of C D, C Drms, and C Lrms on Fr Table 5 Dependency of C D, C Drms, and C Lrms on AR Small Fr Large Small C D Large Large C Drms, C Lrms Small Small AR Large Small C D Large Large C Drms, C Lrms Small large with increasing Re when the effect of the end cell is dominant. With these two reasons, C D becomes large with increasing Re in low AR case in which the end-cell effect is dominant and C D becomes small with increasing Re in higher AR case in which the end-cell effect is less dominant. To prove this hypothesis, understanding of pressure distribution in the wake of the cylinder is necessary. Some experimental approaches or computational simulations will be effective for this purpose.. Lie H () Report from Vortex Induced Vibration Specialist Committee of the 6th ITTC, International Towing Tank Conference, Rio de Janeiro. Gonçalves RT, Freire CM, Rosetti GF et al () Experimental comparison to assure the similarity between VIM (vortex-induced motion) and VIV (vortex-induced vibration) phenomena, OMAE 3. Suh J, Yang J, Stern F () The effect of air water interface on the vortex shedding from a vertical circular cylinder. J Fluids Struct 7: 4. Goncalves R, Rosetti GF, Franzini GR, Meneghini JR, Fujarra ALC (3) Two-degree-of-freedom vortex-induced vibration of circular cylinders with very low aspect ratio and small mass ratio. J Fluids Struct 5:65 658 5. Kawamura T, Hiwada M, Hibino T, Mabuchi I, Kumada M (984) Flow around a finite circular cylinder on a flat plate (Cylinder height greater than turbulent boundary layer thickness). Bull JSME 7:4 5 6. Kitagawa T, Fujino Y, Kimura K (999) Effects of free-end condition on end-cell-induced vibration. J Fluids Struct 3:499 58 7. Sumner D (3) Flow above the free end of a surface-mounted finite-height circular cylinder: a review. J Fluids Struct 43:4 63 8. Iungo GV, Pii LM, Buresti G () Experimental investigation on the aerodynamic loads and wake flow features of a low aspect-ratio circular cylinder. J Fluids Struct 8:79 9 5 Conclusion The dependency of C D, C Drms, and C Lrms on Re, Fr, and AR and their mechanisms were investigated using flow measurement by PIV and force measurement. The effect of Re, 3