Implementation of the Continuous-Discontinuous Galerkin Finite Element Method

Similar documents
Contents. I The Basic Framework for Stationary Problems 1

Fully discrete Finite Element Approximations of Semilinear Parabolic Equations in a Nonconvex Polygon

Control Volume Finite Difference On Adaptive Meshes

Robust Numerical Methods for Singularly Perturbed Differential Equations SPIN Springer s internal project number, if known

A Study of Isogeometric Analysis for Scalar Convection-Diffusion Equations

Finite element solution of multi-scale transport problems using the least squares based bubble function enrichment

Eulerian Techniques for Fluid-Structure Interactions - Part II: Applications

Chapter 6. Petrov-Galerkin Formulations for Advection Diffusion Equation

H (div) approximations based on hp-adaptive curved meshes using quarter point elements

INTERIOR PENALTY DISCONTINUOUS GALERKIN METHOD ON VERY GENERAL POLYGONAL AND POLYHEDRAL MESHES

A Quintic Spline method for fourth order singularly perturbed Boundary Value Problem of Reaction-Diffusion type

Key words. weak Galerkin, finite element methods, second-order elliptic problems, a posteriori error estimate, polytopal meshes

ADAPTIVE BEM-BASED FEM ON POLYGONAL MESHES FROM VIRTUAL ELEMENT METHODS

An Interface-fitted Mesh Generator and Polytopal Element Methods for Elliptic Interface Problems

3D NURBS-ENHANCED FINITE ELEMENT METHOD

Investigation of a Robust Method for Connecting Dissimilar 3D Finite Element Models. David M. Trujillo 1. December 2005

Adaptive Isogeometric Analysis by Local h-refinement with T-splines

THE MORTAR FINITE ELEMENT METHOD IN 2D: IMPLEMENTATION IN MATLAB

Stabilized Finite Element Method for 3D Navier-Stokes Equations with Physical Boundary Conditions

AUTOMATED ADAPTIVE ERROR CONTROL IN FINITE ELEMENT METHODS USING THE ERROR REPRESENTATION AS ERROR INDICATOR

Incompressible Viscous Flow Simulations Using the Petrov-Galerkin Finite Element Method

arxiv: v1 [math.co] 7 Dec 2018

Massively Parallel Finite Element Simulations with deal.ii

Application of A Priori Error Estimates for Navier-Stokes Equations to Accurate Finite Element Solution

An ε-uniform Initial Value Technique For Convection-Diffusion Singularly Perturbed Problems

1.2 Numerical Solutions of Flow Problems

Non-Linear Finite Element Methods in Solid Mechanics Attilio Frangi, Politecnico di Milano, February 3, 2017, Lesson 1

Discontinuous Galerkin Methods on hp-anisotropic Meshes II: A Posteriori Error Analysis and Adaptivity

arxiv: v1 [math.na] 20 Sep 2016

High-Order Numerical Algorithms for Steady and Unsteady Simulation of Viscous Compressible Flow with Shocks (Grant FA )

Finite Element Convergence for Time-Dependent PDEs with a Point Source in COMSOL 4.2

On Robust Parallel Preconditioning for Incompressible Flow Problems

Final Report. Discontinuous Galerkin Compressible Euler Equation Solver. May 14, Andrey Andreyev. Adviser: Dr. James Baeder

Precise FEM solution of corner singularity using adjusted mesh applied to 2D flow

Parallel hp-finite Element Simulations of 3D Resistivity Logging Instruments

GRADED MESHES FOR HIGHER ORDER FEM *

CS205b/CME306. Lecture 9

Element Quality Metrics for Higher-Order Bernstein Bézier Elements

MODELING MIXED BOUNDARY PROBLEMS WITH THE COMPLEX VARIABLE BOUNDARY ELEMENT METHOD (CVBEM) USING MATLAB AND MATHEMATICA

FINITE ELEMENT APPROXIMATION OF CONVECTION DIFFUSION PROBLEMS USING GRADED MESHES

A Polygonal Spline Method for General 2nd-Order Elliptic Equations and Its Applications

3D Nearest-Nodes Finite Element Method for Solid Continuum Analysis

On Multi-Mesh H-Adaptive Methods

Discontinuous Galerkin method with arbitrary polygonal finite elements

MATHEMATICAL ANALYSIS, MODELING AND OPTIMIZATION OF COMPLEX HEAT TRANSFER PROCESSES

Meshless techniques for convection dominated problems

Free-Form Shape Optimization using CAD Models

MESHLESS SOLUTION OF INCOMPRESSIBLE FLOW OVER BACKWARD-FACING STEP

An Investigation into Iterative Methods for Solving Elliptic PDE s Andrew M Brown Computer Science/Maths Session (2000/2001)

Techniques for Using the Method of Manufactured Solutions for Verification and Uncertainty Quantification of CFD Simulations Having Discontinuities

Weno Scheme for Transport Equation on Unstructured Grids with a DDFV Approach

Simulations of 3D/4D Precipitation Processes in a Turbulent Flow Field

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Index. C m (Ω), 141 L 2 (Ω) space, 143 p-th order, 17

Department of Computing and Software

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

NUMERICAL VISCOSITY. Convergent Science White Paper. COPYRIGHT 2017 CONVERGENT SCIENCE. All rights reserved.

CHAPTER 1. Introduction

Mathematical Programming and Research Methods (Part II)

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 13: The Lecture deals with:

ACCURACY OF NUMERICAL SOLUTION OF HEAT DIFFUSION EQUATION

CURVILINEAR MESH GENERATION IN 3D

AMS527: Numerical Analysis II

A NURBS-BASED APPROACH FOR SHAPE AND TOPOLOGY OPTIMIZATION OF FLOW DOMAINS

Parameterization of triangular meshes

Domain Decomposition and hp-adaptive Finite Elements

Asymptotic Error Analysis

Uniformly convergent scheme for Convection Diffusion problem

A New Smoothing Algorithm for Quadrilateral and Hexahedral Meshes

H(curl) and H(div) Elements on Polytopes from Generalized Barycentric Coordinates

Numerical comparison of different solution methods for optimal boundary control problems in thermal fluid dynamics

The Immersed Interface Method

Convergence Results for Non-Conforming hp Methods: The Mortar Finite Element Method

Unstructured Mesh Generation for Implicit Moving Geometries and Level Set Applications

A meshfree weak-strong form method

Documentation for Numerical Derivative on Discontinuous Galerkin Space

The 3D DSC in Fluid Simulation

Isogeometric Collocation Method

REINER HORST. License or copyright restrictions may apply to redistribution; see

Combos: Advection-Diffusion and operator splitting

High-Order Navier-Stokes Simulations using a Sparse Line-Based Discontinuous Galerkin Method

Effectiveness of Element Free Galerkin Method over FEM

Simple Mesh Examples to Illustrate Specific Finite Element Mesh Requirements

Accelerating Double Precision FEM Simulations with GPUs

ADAPTIVE FINITE ELEMENT

Traffic flow optimization on roundabouts

Local nonobtuse tetrahedral refinements around an edge

Literature Report. Daniël Pols. 23 May 2018

Transactions on Information and Communications Technologies vol 15, 1997 WIT Press, ISSN

SOLVING PARTIAL DIFFERENTIAL EQUATIONS ON POINT CLOUDS

Computational Flow Simulations around Circular Cylinders Using a Finite Element Method

Higher-order finite element discretizations in a benchmark problem for incompressible flows

Topology optimization of heat conduction problems

Galerkin Projections Between Finite Element Spaces

lecture 8 Groundwater Modelling -1

An Efficient Error Indicator with Mesh Smoothing for Mesh Refinement: Application to Poisson and Laplace Problems

The Development of a 3D Self-Adaptive Goal-Oriented hp-finite Element Software for Simulations of Resistivity Logging Instruments

Exploiting a database to predict the in-flight stability of the F-16

Computer Project 3. AA Computational Fluid Dyanmics University of Washington. Mishaal Aleem March 17, 2015

A Moving Mesh Method for Time Dependent Problems based on Schwarz Waveform Relaxation

Transcription:

Implementation of the Continuous-Discontinuous Galerkin Finite Element Method Andrea Cangiani, John Chapman, Emmanuil Georgoulis and Max Jensen Abstract For the stationary advection-diffusion problem the standard continuous Galerkin method is unstable without some additional control on the mesh or method. The interior penalty discontinuous Galerkin method is more stable but at the expense of an increased number of degrees of freedom. The hybrid method proposed in [5] combines the computational complexity of the continuous method with the stability of the discontinuous method without a significant increase in degrees of freedom. We discuss the implementation of this method using the finite element library deal.ii and present some numerical experiments. Introduction We consider the advection-diffusion equation ε u+b u= f in Ω R d () u=g on Ω (2) with < ε, b W (div,ω), f L 2 (Ω) and g H /2 (Ω). For simplicity we assume the region Ω is polygonal. We also assume ρ := 2 b and then we have a weak solution u H (Ω). It is well known that this problem can exhibit boundary or internal layers in the convection dominated regime and that for the standard continuous Galerkin (cg) formulation these layers cause non-physical oscillations in the numerical solution. John Chapman, Max Jensen Department of Mathematics, Durham University, Durham, United Kingdom, e-mail: john.chapman/m.p.j.jensen@durham.ac.uk Andrea Cangiani, Emmanuil Georgoulis Department of Mathematics, University of Leicester, University Road, Leicester, United Kingdom, e-mail: andrea.cangiani/emmanuil.georgoulis@le.ac.uk

2 A. Cangiani et al. Several adaptations to the cg method are effective but space does not allow their discussion here. We refer readers to [9] for a full description of these approaches. Discontinuous Galerkin (dg) methods also offer a more stable approach for approximating this problem. However the number of degrees of freedom required for dg methods is in general considerably larger than for cg methods. We describe an alternative approach also studied in [5, 6, 7]. A dg method is applied on the layers and a cg method away from the layers. We call this approach the continuous-discontinuous Galerkin (cdg) method. The hypothesis is that provided the layers are entirely contained in the dg region the instability they cause will not propagate to the cg region. Note that in our formulation there are no transmission conditions at the interface between the two regions. Here we present the cdg method and discuss its implementation using the deal.ii finite element library. We additionally provide some numerical experiments to highlight the performance of the method. 2 Finite Element Formulation Assume that we can identify a decomposition of Ω := Ω cg Ω dg where it is appropriate to apply the cg and dg methods respectively. We do not consider specific procedures to achieve this here, but generally it will be that we wish all boundary and internal layers to be within Ω dg. Identifying these regions can be done a priori in some cases or a posteriori based on the solution of a dg finite element method. Consider a triangulation T h of Ω which is split into two regions Th cg and Th dg where we will apply the cg and dg methods respectively. For simplicity we assume that the regions Th cg and Th dg are aligned with the regions Ω cg and Ω dg and the set J contains edges which lie in the intersection of the two regions. Call the mesh skeleton E h and the internal skeleton Eh o. Define Γ as the union of boundary edges and the inflow and outflow boundaries by Γ in ={x Ω : b n } Γ out ={x Ω : b n>} where n is the outward pointing normal. Define Γ cg (resp. Γ dg ) to be the intersection of Γ with Th cg (resp. Th dg ). By convention we say that the edges of J are part of the discontinuous skeleton Eh dg and Eh cg := E h \Eh dg. With this convention there is potentially a discontinuity of the numerical solution at J. Elements of the mesh are denoted E, edges (resp. faces in 3d) by e and denote by h E and h e the diameter of an element and an edge, defined in the usual way. The jump and average { } of a scalar or vector function on the edges in E h are defined as in, e.g., []. Definition. Define the cdg space to be

Implementation of the Continuous-Discontinuous Galerkin Finite Element Method 3 V k cdg :={v L2 (Ω) : v E P k,v Ω Ω cg = g,v Ω cg H (Ω cg )} (3) where P k is the space of polynomials of degree at most k supported on E. This is equivalent to applying the usual cg space on Ω cg and a dg space on Ω dg. We may now define the interior penalty cdg method: Find u h V k for all v h VcdG k where B d (u h,v h )= E T h B a (u h,v h )= e E o h and B ε (u h,v h )=B d (u h,v h )+B a (u h,v h )=L ε ( f,g;v h ) [ + e E h e ε u h v h E [ E σ ε u h v h e h e b v h u h + e Γ out L ε ( f,g;v h )= E T h E f v h + e Γ [ e ] (b v h )u h ( b)u h v h E e e cdg such that ] ({ε u h } v h +ϑ {ε v h } u h ) (b n)u h v h ) ] (σ εhe v h ϑε v h g (b n)v h g. e Γ in e Here σ is the penalization parameter and ϑ {,,}. Note that through the definition of VcdG k the edge terms are zero on E cg h and the method reduces to the standard cg FEM. If we take T h = Th dg, i.e., the entire triangulation as discontinuous, we get the interior penalty (IP) family of dg FEMs (see, e.g., []). The work of [8] shows that the cg method is the limit of the dg method as σ. A reasonable hypothesis is that the solution to the cdg method is the limit of the solutions to the dg method as the penalty parameter σ on e Eh cg, i.e., super penalising the edges in Eh cg. Call σ cg and σ dg the penalty parameters for edges in Eh cg and Eh dg respectively. Call the numerical solution for the cdg problem u cdg,h VcdG k. The solution to the pure dg problem on the same mesh is denoted u dg,h VdG k where V dg k is the usual piecewise discontinuous polynomial space on T h. Then we have: Theorem. The dg solution converges to the cdg solution of ()-(2) as σ cg, i.e., lim σ cg (u cdg,h u dg,h )=. We do not prove this result here but direct readers to [4] for a full discussion. Although this result does not imply stability of the cdg method (indeed, for the case where the Ω cg region is taken to be the whole of Ω it shows that the cdg method has the same problems as the cg method), it does indicate that investigation of the cdg method as an intermediate stage between cg and dg is justified. Hence it aids

4 A. Cangiani et al. in building an understanding of the convergence and stability properties of the cdg method, based on what is known for cg and dg. This, in turn, is of interest as the cdg method offers substantial reduction in the degrees of freedom of the method compared to dg. 3 Numerical Implementation The cdg method poses several difficulties in implementation. One approach is to use the super penalty result of Theorem to get a good approximation to the cdg solution. However this will give a method with the same number of degrees of freedom as dg. We therefore present an approach to implement the cdg method with the appropriate finite element structure. We discuss this approach with particular reference to the deal.ii finite element library [2, 3]. This is an open source C++ library designed to streamline the creation of finite element codes and give straightforward access to algorithms and data structures. We also present some numerical experiments. 3. Implementation in deal.ii The main difficulty in implementing a cdg method in deal.ii is the understandable lack of a native cdg element type. In order to assign degrees of freedom to a mesh in deal.ii the code must be initialised with a Triangulation and then instructed to use a particular finite element basis to place the degrees of freedom. Although it is possible to initialise a Triangulation with the dg and cg regions set via the material id flag, no appropriate element exists. In the existing deal.ii framework it would be difficult to code an element with the appropriate properties. A far more robust approach is to use the existing capabilities of the library and therefore allow access to other features of deal.ii. For instance without the correct distribution of degrees of freedom the resulting sparsity pattern of the finite element matrix would be suboptimal, i.e., containing more entries than required by the theory and therefore reducing the benefit of shrinking the number of degrees of freedom relative to a dg method. The deal.ii library has the capability to handle problems with multiple equations applied to a single mesh such as the case of a elastic solid fluid interaction problem. In our case we wish to apply different methods to the same equation on different regions of the mesh, which is conceptually the same problem in the deal.ii framework. In addition we will use the hp capability of the library. The deal.ii library has the capability to create collections of finite elements, hp::fecollection. Here multiple finite elements are grouped into one data structure. As the syntax suggests the usual use is for hp refinement to create a set of finite elements of the same type (e.g., scalar Lagrange elements FE Q or discontinu-

Implementation of the Continuous-Discontinuous Galerkin Finite Element Method 5 ous elements FE DGQ) of varying degree. Unfortunately it is not sufficient to create a hp::fecollection of cg and dg elements as the interface between the two regions will still be undefined. In order to create an admissible collection of finite elements we use FE NOTHING. This is a finite element type in deal.ii with zero degrees of freedom. Using the FESystem class we create two vector-valued finite element types (FE Q,FE NOTHING) and (FE NOTHING,FE DGQ) and combine them in a hp::fecollection. We apply the first FESystem on the cg region, and the second on the dg region. Now when we create a Triangulation initialised with the location of cg and dg elements the degrees of freedom can be correctly distributed according to the finite element defined by hp::fecollection. When assembling the matrix for the finite element method we need only be careful that we are using the correct element of hp::fecollection and the correct part of FESystem. The most difficult case is on the boundary J where from a dg element we must evaluate the contribution from the neighbouring cg element (recall that in the cdg method a jump is permissible on J). If we implement the cdg method in deal.ii in this way we create two solutions: one for the FE Q-FE NOTHING component and another for the FE NOTHING - FE DGQ component. Consider a domain Ω =(,) 2 inr 2, b=(,) and ϑ =. The Dirichlet boundary conditions and the forcing function f are chosen so that the analytical solution is u(x,y)=x+y( x)+ e ε e ( x)( y) ε e ε. (4) This solution exhibits an exponential boundary layer along x= and y= of width O(ε). For illustration we solve the finite element problem on a 256 element grid and fix Ω cg =[,.6875) 2, ε = 6 and show the results in Figure. This Ω cg region larger than is required for stability (see Example below) but shows the behaviour of FE NOTHING more clearly. We show each of the components of FE SYSTEM and the combined solution. For comparison we also show the dg finite element solution for the same problem. One advantage of following the deal.ii framework is that the data structures will allow the implementation of hp methods. In fact we can envisage the implementation of a hpe method in which refinement may be undertaken in either mesh size h, polynomial degree p or element type e (either cg or dg elements). We propose no specific scheme here but simply remark that implementing a hpe method is relatively straightforward with the FE NOTHING approach. 3.2 Numerical Examples We present two numerical experiments highlighting the performance of the cdg method. Both examples present layers when ε is small enough. In each case we fix the region where the continuous method is to be applied then vary ε. This causes the

6 A. Cangiani et al. (a) cg-fe NOTHING (b) FE NOTHING-dG (c) Combined cdg solution (d) dg solution Fig. Solution components of FE NOTHING implementation applied to Example with ε = 6. layer to steepen. In the advection dominated regime, i.e., ε large and no steep layer present, we see the cdg solution approximates the true solution well. As we make ε smaller the layer forms and extends into the continuous region. As ε becomes smaller still the layer leaves the continuous region and the performance of the dg and cdg method is indistinguishable. In each experiment we pick the Ω cg and Ω dg regions so that with the given refinement the region Th dg consists of exactly one layer of elements and coincides with Ω dg. We use bilinear elements on quadrilaterals. In each example the time for matrix assembly and solution (using a direct solver) is faster by a factor of approximately 3 using the cdg method as opposed to the dg method. The dg method in either example has 496 degrees of freedom compared to 276 (resp. 32) for the cdg method in Example (resp. Example 2). Example Consider again the problem with true solution (4) presented above. We solve the finite element problem on a 24 element grid and fix Ω cg =[,.96875) 2 so exactly one row of elements is in Ω dg. As we vary ε the layer sharpens and moves entirely into the dg region. As we can see from Figure 2 before the layer has formed the two methods perform well. As the layer begins to form with decreasing ε it is not entirely contained

Implementation of the Continuous-Discontinuous Galerkin Finite Element Method 7.5.8.6.4 ucdg,h udg,h L 2..5 ucdg,h udg,h H.2.8.6.4.2 6 5 4 3 2 ε 6 5 4 3 2 ε Fig. 2 Decreasing ε with a fixed Ω decomposition in Example. The maximum difference in either norm occurs when the layer is sharp but not contained entirely in Ω dg. in the discontinuous region and the error peaks. As the layer sharpens further it is entirely contained in the discontinuous region and the difference between the two solutions becomes negligible. Example 2 Now we look at a problem with an internal layer. Let the advection coefficient be given by b = ( x,y) and pick the boundary conditions and right hand side f so that the true solution is ( x u(x,y)=( y 2 )erf ), 2ε where erf denotes the error function. We solve on the region Ω =(,) 2. The solution has an internal layer along y= of width O( ε) and we fix Ω cg = {(x,y) : x [,.625) (.625,],y [,]}. In Figure 4 we notice the same behaviour as in Example. When the internal layer is present it must be contained within the discontinuous region for the two methods to perform equivalently. In Figure 3 we can see the cdg solution for various ε with the oscillations clearly visible when ε = 4. When the layer is sharpened, the oscillations disappear. References. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 749 779 (2)

8 A. Cangiani et al..5.5.5.5.5.5 -.5 -.5 -.5 - - - -.5.5 -.5 - - -.5.5 -.5.5 -.5 - - -.5.5 -.5.5 -.5 - - -.5.5 (a) ε = 2 (b) ε = 4 (c) ε = 6 Fig. 3 The cdg solutions for Example 2 for various ε. When ε = 4 the layer is steep enough to cause oscillations but not sharp enough to be contained entirely in Ω dg. In this case the oscillations are clearly visible, but they are not present when ε = 6 as the layer has moved entirely within Ω dg..3.4.2.25 ucdg,h udg,h L 2.2.5. ucdg,h udg,h H.8.6.4.5.2 7 6 5 4 3 2 ε 7 6 5 4 3 2 ε Fig. 4 Decreasing ε with a fixed Ω decomposition in Example 2. As in Figure 2 the maximum difference in either norm occurs when the layer is sharp but not contained entirely in Ω dg. 2. Bangerth, W., Hartmann, R., Kanschat, G.: deal.ii a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33(4), 24/ 24/27 (27) 3. Bangerth, W., Kanschat, G.: deal.ii Differential Equations Analysis Library, Technical Reference. http://www.dealii.org 4. Cangiani, A., Chapman, J., Georgoulis, E.H., Jensen, M.: Super penalties for the continuous discontinuous Galerkin method. In Preparation 5. Cangiani, A., Georgoulis, E.H., Jensen, M.: Continuous and discontinuous finite element methods for convection-diffusion problems: A comparison. In: International Conference on Boundary and Interior Layers. Göttingen (26) 6. Dawson, C., Proft, J.: Coupling of continuous and discontinuous Galerkin methods for transport problems. Comput. Meth. in Appl. Mech. and Eng. 9(29-3), 323 323 (22) 7. Devloo, P.R.B., Forti, T., Gomes, S.M.: A combined continuous-discontinuous finite element method for convection-diffusion problems. Lat. Am. J. Solids Stru. 2(3), 229 246 (27) 8. Larson, M.G., Niklasson, A.J.: Conservation properties for the continuous and discontinuous Galerkin methods. Tech. Rep. 2-8, Chalmers University of Technology (2) 9. Roos, H.G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion and Flow Problems, Second edn. Springer-Verlag, Berlin (28)