DDR4 Design And Verification In Hyperlynx LINESIM/Boardsim

Similar documents
High-Speed DDR4 Memory Designs and Power Integrity Analysis

Designing High-Speed Memory Subsystem DDR. using. Cuong Nguyen. Field Application Engineer

LE4ASS21PEH 16GB Unbuffered 2048Mx64 DDR4 SO-DIMM 1.2V Up to PC CL

SDRAM DDR3 256MX8 ½ Density Device Technical Note

SC64G1A08. DDR3-1600F(CL7) 240-Pin XMP(ver 2.0) U-DIMM 1GB (128M x 64-bits)

DDR4: Designing for Power and Performance

SDRAM DDR3 512MX8 ½ Density Device Technical Note

ADQVD1B16. DDR2-800+(CL4) 240-Pin EPP U-DIMM 2GB (256M x 64-bits)

SDRAM DDR3 512MX8 ½ Density Device Technical Note

RML1531MH48D8F-667A. Ver1.0/Oct,05 1/8

HYPERLYNX DDR3 Wizard

PC2-5300/PC DDR2 SDRAM Unbuffered DIMM Design Specification Revision 3.1 October 2008

Breakthrough Insight into DDR4/LPDDR4 Memory Greater Than 2400 Mb/s

Board Design Guidelines for PCI Express Architecture

Organization Row Address Column Address Bank Address Auto Precharge 128Mx8 (1GB) based module A0-A13 A0-A9 BA0-BA2 A10

Technical Note LPSDRAM Unterminated Point-to-Point System Design: Layout and Routing Tips

Memory Solutions. Industry Trends and Solution Overview

Datasheet. Zetta 4Gbit DDR4 SDRAM. Features. RTT_NOM switchable by ODT pin Asynchronous RESET pin supported

PC2-6400/PC2-5300/PC2-4200/PC Registered DIMM Design Specification Revision 3.40 August 2006

AMF-NET-T1021 Optimally Configuring DDR for Custom Boards

ADATA Technology Corp. DDR3-1333(CL9) 204-Pin ECC SO-DIMM 2GB (256M x 72-bit)

ADATA Technology Corp. DDR3-1333(CL9) 240-Pin R-DIMM 8GB (1024M x 72-bit)

HyperLynx DDRx Interface Analysis. Student Workbook

4GB Unbuffered VLP DDR3 SDRAM DIMM with SPD

Features. DDR2 UDIMM w/o ECC Product Specification. Rev. 1.1 Aug. 2011

KVR667D2D8F5/1G 1GB 128M x 72-Bit PC CL5 ECC 240-Pin FBDIMM

Memory Module Specifications KVR667D2Q8F5K2/8G. 8GB (4GB 512M x 72-Bit x 2 pcs.) PC CL5 ECC 240-Pin FBDIMM Kit DESCRIPTION SPECIFICATIONS

2GB DDR3 SDRAM SODIMM with SPD

IMME256M64D2SOD8AG (Die Revision E) 2GByte (256M x 64 Bit)

Technical Note DDR2 (Point-to-Point) Package Sizes and Layout Basics

Technical Note. ONFI 4.0 Design Guide. Introduction. TN-29-83: ONFI 4.0 Design Guide. Introduction

IMME256M64D2DUD8AG (Die Revision E) 2GByte (256M x 64 Bit)

Organization Row Address Column Address Bank Address Auto Precharge 256Mx4 (1GB) based module A0-A13 A0-A9 BA0-BA2 A10

IMM64M64D1SOD16AG (Die Revision D) 512MByte (64M x 64 Bit)

DDR3 Mini DIMM Slot Interposer

Making Your Most Accurate DDR4 Compliance Measurements. Ai-Lee Kuan OPD Memory Product Manager

IMM128M72D1SOD8AG (Die Revision F) 1GByte (128M x 72 Bit)

Datasheet. Zetta 4Gbit DDR3L SDRAM. Features VDD=VDDQ=1.35V / V. Fully differential clock inputs (CK, CK ) operation

Address Summary Table: 1GB 2GB 4GB Module Configuration 128M x M x M x 64

DDR SDRAM UDIMM. Draft 9/ 9/ MT18VDDT6472A 512MB 1 MT18VDDT12872A 1GB For component data sheets, refer to Micron s Web site:

Features. DDR3 Registered DIMM Spec Sheet

1. The values of t RCD and t RP for -335 modules show 18ns to align with industry specifications; actual DDR SDRAM device specifications are 15ns.

90000 DSO/DSA Series Oscilloscopes

DDR SDRAM UDIMM MT16VDDT6464A 512MB MT16VDDT12864A 1GB MT16VDDT25664A 2GB

DDR3 DIMM Slot Interposer

IMM64M72D1SCS8AG (Die Revision D) 512MByte (64M x 72 Bit)

DDR SDRAM SODIMM MT16VDDF6464H 512MB MT16VDDF12864H 1GB

QDR II SRAM Board Design Guidelines

2GB DDR3 SDRAM 72bit SO-DIMM

Modeling DDR3 with IBIS

Memory Module Specifications KVR667D2D8F5K2/4G. 4GB (2GB 256M x 72-Bit x 2 pcs.) PC CL5 ECC 240-Pin FBDIMM Kit DESCRIPTION SPECIFICATIONS

LPDDR4: Evolution for new Mobile World

IMM128M64D1DVD8AG (Die Revision F) 1GByte (128M x 64 Bit)

2GB DDR3 SDRAM UDIMM. RoHS Compliant. Product Specifications. January 15, Version 1.2. Apacer Technology Inc.

DDR System Simulation: What Issue to Simulate

204Pin DDR3L 1.35V 1600 SO-DIMM 8GB Based on 512Mx8 AQD-SD3L8GN16-MGI. Advantech. AQD-SD3L8GN16-MGI Datasheet. Rev

DDR2 SDRAM UDIMM MT8HTF12864AZ 1GB

Options. Data Rate (MT/s) CL = 3 CL = 2.5 CL = 2-40B PC PC PC

IMM64M64D1DVS8AG (Die Revision D) 512MByte (64M x 64 Bit)

Memories in Computers Part 2: DDR SDRAMs

D G28RA 128M x 64 HIGH PERFORMANCE PC UNBUFFERED DDR3 SDRAM SODIMM

204PIN DDR SO-DIMM 1024MB With 128Mx8 CL9. Description. Placement. Features PCB: Transcend Information Inc.

Get it right the first time! How to test for compliance to the LPDDR4 JEDEC Specification

4GB Unbuffered DDR3 SDRAM SODIMM

AM43xx EMIF Tools. Application Report. Trademarks. Siva Kothamasu

DDR SDRAM SODIMM MT8VDDT1664H 128MB 1. MT8VDDT3264H 256MB 2 MT8VDDT6464H 512MB For component data sheets, refer to Micron s Web site:

Real Time Embedded Systems

2GB 4GB 8GB Module Configuration 256 x M x x x 8 (16 components)

PC2700/PC3200 SDRAM Registered DIMM Design Specification Revision 2.2 July 2006

260 Pin DDR4 1.2V 2400 SO-DIMM 8GB Based on 1Gx8 AQD-SD4U8GN24-SE. Advantech AQD-SD4U8GN24-SE. Datasheet. Rev

DDR2 SODIMM Module. 256MB based on 256Mbit component 256MB, 512MB and 1GB based on 512Mbit component 1GB and 2GB based on 1Gbit component

TwinDie 1.2V DDR4 SDRAM

Taiwan Micropaq Corporation

Key Features 240-pin, dual in-line memory module (DIMM) ECC 1-bit error detection and correction. Registered inputs with one-clock delay.

2GB Unbuffered DDR3 SDRAM DIMM

Symbol Parameter Min Typ Max VDD_CORE Core power 0.9V 1.0V 1. 1V. VDD33 JTAG/FLASH power 2.97V 3.3V 3.63V

APPROVAL SHEET. Apacer Technology Inc. Apacer Technology Inc. CUSTOMER: 研華股份有限公司 APPROVED NO. : T0031 PCB PART NO. :

MT51J256M32 16 Meg x 32 I/O x 16 banks, 32 Meg x 16 I/O x 16 banks. Options 1. Note:

Introduction to Zynq

DDR SDRAM UDIMM MT8VDDT3264A 256MB MT8VDDT6464A 512MB For component data sheets, refer to Micron s Web site:

TM54S416T SDRAM. Frequency vs. AC Parameter Unit t CK

2GB DDR2 SDRAM VLP DIMM

TwinDie 1.35V DDR3L SDRAM

256MEGX72 (DDR2-SOCDIMM W/PLL)

Features. DDR3 UDIMM w/o ECC Product Specification. Rev. 14 Dec. 2011

ADATA Technology Corp. DDR3L-1600(CL11) 240-Pin VLP R-DIMM 8GB (1024M x 72-bits)

Integrated Device Technology

288 Pin DDR4 1.2V 2400 UDIMM 8GB Based on 1Gx8 AQD-D4U8GN24-SE. Advantech AQD-D4U8GN24-SE. Datasheet. Rev

Technical Note. DDR4 Point-to-Point Design Guide. Introduction. TN-40-40: DDR4 Point-to-Point Design Guide. Introduction

DDR2 SDRAM UDIMM MT16HTF25664AZ 2GB MT16HTF51264AZ 4GB For component data sheets, refer to Micron s Web site:

1024MB DDR2 SDRAM SO-DIMM

PC2700 Unbuffered DDR MicroDIMM Reference Design Specification Revision 0.11 March 25, 2001 JC42.5 Item # BOARD OF DIRECTORS BALLOT

High-speed, high-bandwidth DRAM memory bus with Crosstalk Transfer Logic (XTL) interface. Outline

IMM1G72D2FBD4AG (Die Revision A) 8GByte (1024M x 72 Bit)

Product Brief LPDDR2-PCM and Mobile LPDDR2 121-Ball MCP

Technical Note. Adding ECC to a Data Bus with DDR4 x16 Components. Introduction. TN-40-41: Adding ECC With DDR4 x16 Components.

240Pin DDR3L 1.35V 1866 U-DIMM 8GB Based on 512Mx8 AQD-D3L8GN18-MG. Advantech. AQD-D3L8GN18-MG Datasheet. Rev

200Pin DDR2 1.8V 800 SODIMM 1GB Based on 128Mx8 AQD-SD21GN80-SX. Advantech. AQD-SD21GN80-SX Datasheet. Rev

APPROVAL SHEET. Apacer Technology Inc. Apacer Technology Inc. CUSTOMER: 研華股份有限公司 APPROVED NO. : T0026 PCB PART NO. :

TS9KNH M. 240Pin DDR UDIMM 8GB Based on 512Mx8. Pin Identification. Description. Features. Transcend Information Inc.

Transcription:

DDR4 Design And Verification In Hyperlynx LINESIM/Boardsim Rod Strange Business Development Manager Teraspeed Consulting A Division of Samtec April 2016

Outline Objective/Goal DDR4 vs. DDR3 from the SI/PI Perspective Stackup Design Consideration & SSO Effects Design Considerations: Impedance, ODT and Manufacturing Variations Length Matching Requirements Crosstalk Effects &Timing Analysis Tools Comparison Summary

Objective/Goal Design & verify DDR4 interface across all operational conditions and possible manufacturing variations that meets both vendor requirements (driver and receiver) and the JEDEC standard. The ultimate goal in designing a DDR4 interface is that the signals meet their required eye masks and timing while crosstalk and Simultaneous Switching Output (SSO) effects are taken into consideration.

Outline Objective/Goal DDR4 vs. DDR3 from the SI/PI Perspective Stackup Design Consideration & SSO Effects Design Considerations: Impedance, ODT and Manufacturing Variations Length Matching Requirements Crosstalk Effects &Timing Analysis Tools Comparison Summary

DDR4 vs. DDR3 from the Si/PI Perspective Features/Options DDR3 DDR4 Comments Voltage (core, /IO) 1.5V 1.2V Reduces memory power demand Vref Inputs 2 DQs & CMD/ADDR 1 CMD/ADDR VREFDQ now internal Data Rate - Mb/s 800, 1066, 1333 1600, 1866, 2133 1600, 1866, 2133 2400, 2666, 3200 Migration to higher speed I/O tck DLL enabled 300MHz to 800MHz 667MHz to 1.6GHz (625MHz minimum) Higher data rates DQ Driver (ALT) 40Ω 48Ω Optimized for Point-to-Point (PtP) DQ Bus SSTL15 POD12 Mitigate I/O noise and power Rtt Values 120, 60, 40, 30, 20Ω 240, 120, 80, 60, 48, 40, 34Ω Support higher data rates ODT Control ODT signaling required ODT signaling not required Ease of ODT control, allows non- ODT routing on PtP applications VREFDQ Calibration none supported Optimize internal VREFDQ Data Bus Inversion (DBI) none supported Mitigate I/O noise and power Data Bus Write CRC none supported Error detection of data traffic C/A Parity none supported Error detection of CMD/ADDR bus Courtesy of Micron 5

DDR4 vs. DDR3 from the SI/PI Perspective DDR4 Pins added VDDQ (2) VPP Bank Group (2) DBI_n ACT_n PAR Alert_n TEN DDR3 Pins eliminated VREFDQ Bank Address (1 of 3) VDD (1), VSS (3), VSSQ (1) Micron x8 DDR3 DDR4 VSS 12 9 VDD 9 8 VPP 0 1 VSSQ 5 4 VDDQ 4 6 VREFCA 1 1 VREFDQ 1 0 Bank Group 0 2 Bank Address 3 2 Address 16 16 DQ 8 8 DQS/DQS# 2 2 CK/CK# 2 2 CKE 1 1 CS 1 1 ODT 1 1 ACT 0 1 RAS 1 1 CAS 1 1 WE 1 1 DM/TDQS/DBI 2 2 ZQ 1 1 Reset 1 1 TEN 0 1 PAR 0 1 Alert 0 1 Total 73 75 New for DDR4 6

DDR4 vs. DDR3 from the SI/PI Perspective output Driver and Termination DDR3 Push-Pull (HSTL) DDR4 Pseudo Open Drain (POD) POD drivers have a strong pull-down strength but a weaker pullup strength. Reduced overall power demand compared to using strong pullup Proven GDDR scheme Micron 7

DDR4 vs. DDR3 from the SI/PI Perspective VREFDQ Calibration VCENT_DQ(mean) VREFDQ is determined by the controller s calibration process using training Calibrating VREFDQ determines optimum VREFDQ setting for each DQ - VCENT_DQ(mean) The level halfway between the lowest DQ setting and the highest DQ setting Hyperlynx DDR4 timing wizard supports analysis for various VREFDQ Micron 8

DDR4 vs. DDR3 from the SI/PI Perspective DDR4 Rx Mask and Data-Eye The Data bus timing has changed from the classical setup/hold relationship to DDR4 s data-eye mask The controller must satisfy the data receiver mask requirements Data timing specifications are applicable when referenced to calibrated VREFDQ: Vcent_DQ(midpoint) The calibrated Rx mask takes the place of classical set-up and hold Each DRAM is individually calibrated by the controller to meet the Rx Mask requirements Micron 9

Range 2 Range 1 DDR4 vs. DDR3 from the Si/PI Perspective DDR4 Receiver Data Mask vs Data-Eye VDDQ 90% VDDQ 75% VDDQ Vcent_DQ(midpoint) Rx Mask VdIVW (Rx Mask) VIHL_AC (Minimum AC Input Swing) VDDQ/2 60% VDDQ 45% VDDQ TdIVW (DQ Rx Window) TdIPW (DQ min Pulse) Micron 10

Outline Objective/Goal DDR4 vs. DDR3 from the SI/PI Perspective Stackup Design Consideration & SSO Effects Design Considerations: Impedance, ODT and Manufacturing Variations Length Matching Requirements Crosstalk Effects &Timing Analysis Tools Comparison Summary

Stackup Design Considerations Power & Ground Planes Placement Minimize inductive path Data Lines Signal Group Placements Need to place adjacent to ground plane Address, Command & Control Signals Placement When possible place adjacent to good reference plane (i.e. ground or power) Layer # Recommended Layer Assignment 1 Signal 1 2 GND_1 3 Signal 2 Address CMD & CNTL 4 PWR_1 VDD =1.2V for Memory Interface 5 Signal 3 Address CMD, CNTL & CLK 6 GND_3 7 Signal 4 DQ & DQS 8 GND_4 9 Signal 5 DQ & DQS 10 GND_4 11 Signal 6 Discrete signals 12 Signal 7 Discrete signals 13 GND_5 14 Signal 8 DQ & DQS 15 GND_6 16 Signal 9 DQ & DQS 17 GND_7 18 Signal 10 Address CMD, CNTL & CLK 19 PWR_2 VDD =1.2V for Memory Interface 20 Signal 11 Address CMD & CNTL 21 GND_8 22 Signal 12 12

Outline Objective/Goal DDR4 vs. DDR3 from the SI/PI Perspective Stackup Design Consideration & SSO Effects Design Considerations: Impedance, ODT and Manufacturing Variations Length Matching Requirements Crosstalk Effects &Timing Analysis Tools Comparison Summary

DDR4 Signal Groups & operating Frequency Signal Groups Nets DDR4 @ 2133 MT/s 1 Clocks Group CLK_N CLK_P 2 Data Group DQS_N/P[7:0] DQ[72:0] DM[7:0]/DBI[7:0]/TDQS[7:0] 3 CTL Group with 1T Timing CS[1:0] CKE[1:0] ODT[1:0] 4 ADD/CMD Group with 1T Timing A[16:0] BA[1:0] BG[1:0] ACT_N PAR_N 4 ADD/CMD Group with 2T Timing A[16:0] BA[1:0] BG[1:0] ACT_N PAR_N 1066.5 MHz 1066.5 MHz 533.25 MHz 533.25 MHz 266.625 MHz

Design Considerations Impedance, ODT, & manufacturing variations DQS POD12 DQ POD12 ADD/CMD/CNTL SSTL12 CLK SSTL12 15

Design Considerations Impedance, ODT, & manufacturing variations OSCILLOSCOPE Design file: MARLUG_DQ_TO_DQS_CMD_ADD_CLK_TIMING_40OHMS_CW.FFS HyperLynx v9.2 Designer: Rula Bakleh OSCILLOSCOPE Design file: MARLUG_DQ_TO_DQS_CMD_ADD_CLK_TIMING_40OHMS_CW.FFS HyperLynx v9.2 Designer: Rula Bakleh 1300.0 2000.0 1200.0 1500.0 1100.0 500.0 Voltage - mv- 900.0 DQ - mv- 0.00 Volt age DQS 800.0-500.0 700.0 - -1500.0 600.0-2000.0 500.0 0.00 200.0 400.0 600.0 800.0 Time (ps) 1200.0 1400.0 1600.0 400.0 V [U2.C3 (at die) / U2.B3 (at die)] 0.00 Date: Tuesday Sep. 22, 2015 Time: 4:55:19 Net name: DQS0_N 200.0 400.0 600.0 800.0 Time (ps) 1200.0 1400.0 1600.0 V [U2.C2 (at die)] Date: Tuesday Sep. 22, 2015 Time: 4:53:06 Net name: DQS0_N OSCILLOSCOPE OSCILLOSCOPE Design file: MARLUG_DQ_TO_DQS_CMD_ADD_CLK_TIMING_40OHMS_CW.FFS HyperLynx v9.2 Design file: MARLUG_DQ_TO_DQS_CMD_ADD_CLK_TIMING_40OHMS_CW.FFS HyperLynx v9.2 Designer: Rula Bakleh Designer: Rula Bakleh 800.0 900.0 600.0 800.0 400.0 ADD/CMD/CNTL @ 1ST, 5TH, & 9TH CHIP 700.0 200.0 600.0 Volt age - mv- -0.00 Voltage - mv- CLK @ ST 1, 5TH, & 9TH CHIP 500.0-200.0 400.0-400.0-600.0 300.0-800.0 200.0 0.00 200.0 400.0 600.0 800.0 Time (ps) V [U10.F7 (at die) / U10.F8 (at die)] V [U6.F7 (at die) / U6.F8 (at die)] V [U2.F7 (at die) / U2.F8 (at die)] Date: Tuesday Sep. 22, 2015 Time: 4:57:42 Net name: DQS0_N 1200.0 1400.0 1600.0 100.0 0.00 200.0 400.0 600.0 800.0 Time (ps) 1200.0 1400.0 1600.0 V [U10.L3 (at die)] V [U6.L3 (at die)] V [U2.L3 (at die)] Date: Tuesday Sep. 22, 2015 Time: 4:52:08 Net name: DQS0_N Optimized Data/Strobe/ADD/CNTL and Clock signals quality after all permutations. High confidence in signal quality was achieved prior to moving forward. 16

Typical DDR4 Signal Groups Length Matching Guidelines Groups Group Matching Description Length Matching (mils) 1 Clock Group: CLK_N & CLK_P CLK_N to CLK_P + 10 2 Data Groups: DQ[72:0]/DM[7:0]/DBI[7:0]/T DQS[7:0] & DQS[7:0] DQ to DQ within byte lane DQ to DQS_N/P DQS_N to DQS_P + 50 + 50 + 10 3 CTL Group: CS[1:0] CKE[1:0] ODT[1:0] 4 ADD/CMD Group: A[16:0] BA[1:0] BG[1:0] ACT_N PAR_N Maximum trace segment routing to each memory chip CTL to CTL CTL signals to CLK_N/P to each memory chip Maximum trace segment routing to each memory chip Maintain equal length between trace segment to each memory chip within Add/CMD to Add/CMD Add/CMD signals to CLK_N/P to each memory chip NA* + 20 + 20 NA* + 20 + 20 + 20 All a Data lines within a byte lane must be length matched to their associated strobes within that byte lane To be determined through eye diagram analysis and validated through timing analysis *To be determined by topology

Typical DDR4 Signal Groups Crosstalk Routing Guidelines Signal Groups Coupling Description Coupling Distances (in terms of line width) 1 Clocks Group CLK from other signals 2W 2 Data Group DQ to DQ within same byte lane DQ to DQS within same byte lane DQ to other byte lanes DQS to other signal groups 3 CTL Group with 1T Timing CTL to CTL CTL to other signal groups 1.5W 1.5W 1.5W 4W-5W 2.5W 4W-5W 4 ADD/CMD Group with 1T Timing ADD/CMD to ADD/CMD ADD/CMD to other signal groups 2.5W 4W-5W Designed for a 40 ohm system with minimum trace width of 5 mils for the ADD group and 7.9 mils for the DQ group To be determined through eye diagram analysis and validated through timing analysis Don t route the entire DDR4 bus then simulate

Hyperlynx DDR4 Sample Signal Groups Timing Reports Per The length matching guidelines & crosstalk rules Typical-Corner Case JEDEC Timing Spreadsheet from simulations DQ to DQ within same byte lane = 1.5W DQ to DQS within same byte lane = 1.5W DQ to other byte lanes = 1.5W DQS to other signal groups = 4W-5W ADD/CMD to ADD/CMD = 2.5W CTL to CTL = 2.5W ADD/CMD/CTL to other signal groups = 4W -5W CLK from other signals = 2W

Hyperlynx DDR4 Sample Signal Groups Timing Reports for Data Byte Lanes Received Data Signals Timing Spreadsheet and Eye Mask listed per Bit The timing wizard allows you to assess your signal quality across many possible variation (i.e. design and manufacturing variations) with multiple timing reports

Outline Objective/Goal DDR4 vs. DDR3 from the SI/PI Perspective Stackup Design Consideration & SSO Effects Design Considerations: Impedance, ODT and Manufacturing Variations Length Matching Requirements Crosstalk Effects &Timing Analysis Tools Comparison Summary

Analysis Tools Comparison (Data Signal) Hyperlynx Boardsim results vs 2½ D field solver s-parameter extracted results overlaid OSCILLOSCOPE Design file: DDR0_BYTE_LANE3_VER6.FFS HyperLynx v9.2 Designer: Rula Bakleh 1400.0 1300.0 1200.0 1100.0 Voltage -mv- 900.0 800.0 700.0 600.0 500.0 0.00 200.0 400.0 600.0 800.0 Time (ps) 1200.0 1400.0 V [U1.42 (EBD-U80) (at die)] V [U0.42 (EBD-U80) (at die)] DDR0_DQ25_60_ODT.V V [U1.42 (EBD-U80) (at die)] DDR0_DQ25_60_ODT.V V [U0.42 (EBD-U80) (at die)] Date: Tuesday Sep. 22, 2015 Time: 2:24:31 Net name: DQS8_P_O Cursor 1, Voltage = 550.5mV, Time = 1.0025ns Royal Blue & Orange Waveforms = 2 ½-D Field Solver Results Red & Light Blue Waveforms = Hyperlynx Boardsim Results High confidence can be extrapolated from the Hyperlynx Boardsim simulations when the signals are ground referenced. 22 1600.0 1021 ports

Analysis Tools Comparison (ADD Signal) OSCILLOSCOPE OSCILLOSCOPE Design file: MARLUG_DDR0_MA0.FFS HyperLynx v9.2 Design file: MARLUG_DDR0_MA0.FFS HyperLynx v9.2 Designer: Rula Bakleh Designer: Rula Bakleh 1600.0 1600.0 Hyperlynx Boardsim results vs 2½ D field solver s-parameter extracted results overlaid 1ST Chip 1400.0 1400.0 1200.0 1200.0 800.0 800.0 Volt age Volt age 400.0 400.0 200.0 200.0 - mv- 600.0 - mv- 600.0 5TH Chip OSCILLOSCOPE Design file: MARLUG_DDR0_MA0.FFS HyperLynx v9.2 Designer: Rula Bakleh 1600.0 0.00 0.00 1400.0-200.0-200.0-500.0 0.00 500.0 1500.0 1200.0 2000.0 Time (ps) V [U1.98 (EBD-U81) (at die)] V [U0.98 (EBD-U81) (at die)] DDR0_MA0_Dual_Die_1T_timing.V V [U1.98 (EBD-U81) (at die)] DDR0_MA0_Dual_Die_1T_timing.V V [U0.98 (EBD-U81) (at die)] 2500.0 3000.0-500.0 4000.0 3500.0 0.00 500.0 1500.0 2000.0 Time (ps) 2500.0 3000.0 Date: Tuesday Sep. 22, 2015 Time: 2:11:09 Net name: MA0_O_9 Date: Tuesday Sep. 22, 2015 Time: 2:06:37 Net name: MA0_O_9 4000.0 9TH Chip 800.0 - mv- 600.0 3500.0 V [U1.98 (EBD-U85) (at die)] V [U0.98 (EBD-U85) (at die)] DDR0_MA0_Dual_Die_1T_timing.V V [U1.98 (EBD-U85) (at die)] DDR0_MA0_Dual_Die_1T_timing.V V [U0.98 (EBD-U85) (at die)] Volt age Royal Blue & Orange Waveforms = 2½ D Field Solver Results Red & Light Blue Waveforms = Hyperlynx Boardsim Results 400.0 200.0 0.00-200.0 Again reasonably high confidence can be extrapolated from the Hyperlynx Boardsim simulations when the signals are power referenced. 0.00 500.0 1500.0 2000.0 Time (ps) V [U1.98 (EBD-U80) (at die)] V [U0.98 (EBD-U80) (at die)] DDR0_MA0_Dual_Die_1T_timing.V V [U1.98 (EBD-U80) (at die)] DDR0_MA0_Dual_Die_1T_timing.V V [U0.98 (EBD-U80) (at die)] Date: Tuesday Sep. 22, 2015 Time: 2:04:30 Net name: MA0_O_9 23 2500.0 3000.0 3500.0 4000.0

Outline Objective/Goal DDR4 vs. DDR3 from the SI/PI Perspective Stackup Design Consideration & SSO Effects Design Considerations: Impedance, ODT and Manufacturing Variations Length Matching Requirements Crosstalk Effects &Timing Analysis Tools Comparison Summary

Summary We have discussed the differences between DDR3 and DDR4 from SI/PI perfective to help us assess what is need to evaluate DDR4 interface We have discussed and shown the necessary steps required for achieving a successful DDR4 interface across all operating conditions and timing requirements and standards. We have shown some very insightful tool correlation on a routed board between Hyperlynx BoardSim and a 2½ D field solver. Original paper from Rula Bakleh, SI/PI Consultant at Teraspeed Consulting 25