CS 4410, Fall 2017 Project 1: My First Shell Assigned: August 27, 2017 Due: Monday, September 11:59PM

Similar documents
CSCI Computer Systems Fundamentals Shell Lab: Writing Your Own Unix Shell

CS 213, Fall 2002 Lab Assignment L5: Writing Your Own Unix Shell Assigned: Oct. 24, Due: Thu., Oct. 31, 11:59PM

CS 213, Fall 2001 Lab Assignment L5: Writing Your Own Unix Shell Assigned: Oct. 25, Due: Fri., Nov. 2, 11:59PM

CS 224 Spring 2015 Lab Assignment Shell Lab: Writing Your Own Unix Shell

CSC374, Spring 2010 Lab Assignment 1: Writing Your Own Unix Shell

COMP 321: Introduction to Computer Systems

HW 1: Shell. Contents CS 162. Due: September 18, Getting started 2. 2 Add support for cd and pwd 2. 3 Program execution 2. 4 Path resolution 3

CSCI0330 Intro Computer Systems Doeppner. Project Shell 2. Due: November 8, 2017 at 11:59pm. 1 Introduction 2

Computer Science 330 Operating Systems Siena College Spring Lab 5: Unix Systems Programming Due: 4:00 PM, Wednesday, February 29, 2012

Multitasking. Programmer s model of multitasking. fork() spawns new process. exit() terminates own process

Signals. Jin-Soo Kim Computer Systems Laboratory Sungkyunkwan University

Programming Assignments will be.. All the PAs are continuous 3 major factors that you should consider

Processes, Signals, I/O, Shell Lab : Introduc>on to Computer Systems Recita>on 9: Monday, Oct. 21, 2013 Marjorie Carlson Sec>on A

CS24: INTRODUCTION TO COMPUTING SYSTEMS. Spring 2018 Lecture 20

Lecture 24: Multitasking and Signals

Processes & Signals. System Runs Many Processes Concurrently. State consists of memory image + register values + program counter

Reading Assignment 4. n Chapter 4 Threads, due 2/7. 1/31/13 CSE325 - Processes 1

Lab 2: Implementing a Shell COMPSCI 310: Introduction to Operating Systems

CS 470 Operating Systems Spring 2013 Shell Project

Exceptions, Processes and Signals

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Summer 2016 Programming Assignment 1 Introduction The purpose of this

Programming Assignment #1: A Simple Shell

Process management. What s in a process? What is a process? The OS s process namespace. A process s address space (idealized)

Shell and Signals. Computer Organization 3/17/2015. CSC252 - Spring The World of Multiprogramming or Multitasking. Unix Process Hierarchy

CSE 451: Operating Systems Winter Module 4 Processes. Mark Zbikowski Allen Center 476

Project 2: Shell with History1

Introduction to OS Processes in Unix, Linux, and Windows MOS 2.1 Mahmoud El-Gayyar

Getting to know you. Anatomy of a Process. Processes. Of Programs and Processes

Creating a Shell or Command Interperter Program CSCI411 Lab

CS213. Exceptional Control Flow Part II. Topics Process Hierarchy Signals

CSE 410: Computer Systems Spring Processes. John Zahorjan Allen Center 534

Processes. CS439: Principles of Computer Systems January 24, 2018

Exceptional Control Flow Exists at All Levels of a System. Systemprogrammering 2007 Föreläsning 3 Exceptional Control Flow Part II

Assignment 1. Teaching Assistant: Michalis Pachilakis (

Each terminal window has a process group associated with it this defines the current foreground process group. Keyboard-generated signals are sent to

The Shell, System Calls, Processes, and Basic Inter-Process Communication

Operating System Structure

Project 1: Implementing a Shell

SE350: Operating Systems

Killing Zombies, Working, Sleeping, and Spawning Children

ECF Exists at All Levels of a System Exceptional Control Flow Part II Oct. 22, 2002 Topics! Process Hierarchy! Shells! Signals!

Lab 4. Out: Friday, February 25th, 2005

Exceptional Control Flow Part II

fork System-Level Function

Processes & Threads. (Chapter 3) CS 4410 Operating Systems. [R. Agarwal, L. Alvisi, A. Bracy, M. George, E. Sirer, R. Van Renesse]

Operating Systemss and Multicore Programming (1DT089)

UNIVERSITY OF NEBRASKA AT OMAHA Computer Science 4500/8506 Operating Systems Fall Programming Assignment 1 (updated 9/16/2017)

CPSC 341 OS & Networks. Processes. Dr. Yingwu Zhu

Most of the work is done in the context of the process rather than handled separately by the kernel

CSci 4061 Introduction to Operating Systems. Processes in C/Unix

Processes. Processes (cont d)

Unix Processes. What is a Process?

Giving credit where credit is due

Processes. CS439: Principles of Computer Systems January 30, 2019

Process Management forks, bombs, zombies, and daemons! Lecture 5, Hands-On Unix System Administration DeCal

bash, part 3 Chris GauthierDickey

Recitation Processes, Signals,UNIX error handling

SOFTWARE ARCHITECTURE 3. SHELL

Windows architecture. user. mode. Env. subsystems. Executive. Device drivers Kernel. kernel. mode HAL. Hardware. Process B. Process C.

What is a Process? Processes and Process Management Details for running a program

CSC209H Lecture 1. Dan Zingaro. January 7, 2015

Signals and Inter-Process Communica.on

CSE 506: Opera.ng Systems Signals and Inter-Process Communica.on

Week 2 Intro to the Shell with Fork, Exec, Wait. Sarah Diesburg Operating Systems CS 3430

Princeton University Computer Science 217: Introduction to Programming Systems. Process Management

1 The Var Shell (vsh)

Processes: Introduction. CS 241 February 13, 2012

OS Structure, Processes & Process Management. Don Porter Portions courtesy Emmett Witchel

Princeton University. Computer Science 217: Introduction to Programming Systems. Process Management

Princeton University Computer Science 217: Introduction to Programming Systems. Process Management

Recitation 8 Processes, Signals, Tshlab

(In columns, of course.)

3. Process Management in xv6

OS lpr. www. nfsd gcc emacs ls 1/27/09. Process Management. CS 537 Lecture 3: Processes. Example OS in operation. Why Processes? Simplicity + Speed

Linux shell scripting Getting started *

CS153: Process 2. Chengyu Song. Slides modified from Harsha Madhyvasta, Nael Abu-Ghazaleh, and Zhiyun Qian

Systems Programming/ C and UNIX

Review of Fundamentals. Todd Kelley CST8207 Todd Kelley 1

3. A Periodic Alarm: intdate.c & sigsend.c

Operating Systems and Networks Assignment 2

What is an Operating System? Signals, Processes, & Threads. Resource Sharing. Resource Abstraction ... Operating Systems 10/20/2010

Advanced Unix Concepts. Satyajit Rai

PROCESS CONTROL BLOCK TWO-STATE MODEL (CONT D)

Process Management! Goals of this Lecture!

CSCE Operating Systems Interrupts, Exceptions, and Signals. Qiang Zeng, Ph.D. Fall 2018

Mon Sep 17, 2007 Lecture 3: Process Management

ESE 333 Real-Time Operating Systems 2 What is an operating system? Two views: 1. Top-down view: Extended machine ffl Covers the details of the hardwar

OS lpr. www. nfsd gcc emacs ls 9/18/11. Process Management. CS 537 Lecture 4: Processes. The Process. Why Processes? Simplicity + Speed

PROCESS CONTROL: PROCESS CREATION: UNIT-VI PROCESS CONTROL III-II R

CS 356, Fall 2018 Data Lab (Part 1): Manipulating Bits Due: Wednesday, Sep. 5, 11:59PM

Lab 03 - x86-64: atoi

Exceptional Control Flow Part II Nov. 2, 2009"

Programs. Program: Set of commands stored in a file Stored on disk Starting a program creates a process static Process: Program loaded in RAM dynamic

2 Processes. 2 Processes. 2 Processes. 2.1 The Process Model. 2.1 The Process Model PROCESSES OPERATING SYSTEMS

CSE 390a Lecture 3. bash shell continued: processes; multi-user systems; remote login; editors

Recitation: Bomb Lab. September 17 th 2018

Getting started with Hugs on Linux

CS 220: Introduction to Parallel Computing. Input/Output. Lecture 7

Final Precept: Ish. Slides Originally Prepared by: Wonho Kim

Prepared by Prof. Hui Jiang Process. Prof. Hui Jiang Dept of Electrical Engineering and Computer Science, York University

Transcription:

CS 4410, Fall 2017 Project 1: My First Shell Assigned: August 27, 2017 Due: Monday, September 11th @ 11:59PM Introduction The purpose of this assignment is to become more familiar with the concepts of process control and signaling. You ll do this by writing a simple Unix shell program that supports job control. Logistics This is an individual assignment to be worked on by yourself. The assignment is distributed over Cornell Github, and it must be submitted on CMS. Any clarifications and revisions to the assignment will be posted on Piazza. This pdf will also be updated as needed, so please refresh before you begin working each time. Please be sure to read the directions fully and carefully before starting! VM and Github Instructions Start by cloning the Github repository to the desired location in which you plan to do your work. Then do the following: cd into the directory containing the files Type the command make to compile and link some test routines. Type your name and net ID in the header comment at the top of hsk.c. Looking at hsk.c ( husk, or a Corn(ell) shell), you will see that it contains a functional skeleton of a simple Unix shell. To help you get started, we have already implemented the less interesting functions. Your assignment is to complete the remaining empty functions listed below. As a sanity check for you, we ve listed the approximate number of lines of code for each of these functions in our reference solution (which do NOT include spaces and comments). 1

eval: Main routine that parses and interprets the command line. [35 lines] exec builtin: Recognizes and interprets the built-in commands: quit, fg, bg, and jobs. [15 lines] exec bgfg: Implements the bg and fg built-in commands. [40 lines] waitonfg: Waits for a foreground job to complete. [10 lines] sigchld handler: Catches SIGCHILD signals. [45 lines] sigint handler: Catches SIGINT (ctrl-c) signals. [10 lines] sigtstp handler: Catches SIGTSTP (ctrl-z) signals. [10 lines] Each time you modify your hsk.c file, type make to recompile it. To run your shell, type hsk to the command line: unix>./hsk hsk> [type commands to your shell here] General Overview of Unix Shells A shell is an interactive command-line interpreter that runs programs on behalf of the user. A shell repeatedly prints a prompt, waits for a command line on stdin, and then carries out some action, as directed by the contents of the command line. The command line is a sequence of ASCII text words delimited by whitespace. The first word in the command line is either the name of a built-in command or the pathname of an executable file. The remaining words are command-line arguments. If the first word is a built-in command, the shell immediately executes the command in the current process. Otherwise, the word is assumed to be the pathname of an executable program. In this case, the shell forks a child process, then loads and runs the program in the context of the child. The child processes created as a result of interpreting a single command line are known collectively as a job. In general, a job can consist of multiple child processes connected by Unix pipes. If the command line ends with an ampersand &, then the job runs in the background, which means that the shell does not wait for the job to terminate before printing the prompt and awaiting the next command line. Otherwise, the job runs in the foreground, which means that the shell waits for the job to terminate before awaiting the next command line. Thus, at any point in time, at most one job can be running in the foreground. However, an arbitrary number of jobs can run in the background. For example, typing the command line hsk> jobs causes the shell to execute the built-in jobs command. Typing the command line hsk> /bin/ls -l -d 2

runs the ls program in the foreground. By convention, the shell ensures that when the program begins executing its main routine int main(int argc, char *argv[]) the argc and argv arguments have the following values: argc == 3, argv[0] == /bin/ls, argv[1]== -l, argv[2]== -d. Alternatively, typing the command line hsk> /bin/ls -l -d & runs the ls program in the background. Unix shells support the notion of job control, which allows users to move jobs back and forth between background and foreground, and to change the process state (running, stopped, or terminated) of the processes in a job. Typing ctrl-c causes a SIGINT signal to be delivered to each process in the foreground job. The default action for SIGINT is to terminate the process. Similarly, typing ctrl-z causes a SIGTSTP signal to be delivered to each process in the foreground job. The default action for SIGTSTP is to place a process in the stopped state, where it remains until it is awakened by the receipt of a SIGCONT signal. Unix shells also provide various built-in commands that support job control. For example: jobs: List the background jobs (both running and stopped). bg <job>: Change a stopped background job to a running background job. fg <job>: Change a stopped or running background job to a running in the foreground. kill <job>: Terminate a job. Note: The built-in commands do not classify as foreground jobs. As an example, jobs does NOT function as ps does in Unix systems, where the ps command that is being called appears as a currently running process. Try it to see what we mean. The hsk Specification Your hsk shell should have the following features: The prompt should be the string hsk>. 3

The command line typed by the user should consist of a name and zero or more arguments, all separated by one or more spaces. These arguments behave the same as in a regular Unix shell. hsk need not support pipes ( ) or I/O redirection (< and >). Typing ctrl-c (ctrl-z) should cause a SIGINT (SIGTSTP) signal to be sent to the current foreground job, as well as any descendents of that job (e.g., any child processes that it forked). If there is no foreground job, then the signal should have no effect. If the command line ends with an ampersand &, then hsk should run the job in the background. Otherwise, it should run the job in the foreground. Each job can be identified by either a process ID (PID) or a job ID (JID), which is a positive integer assigned by hsk. JIDs should be denoted on the command line by the prefix %. For example, %5 denotes JID 5, and 5 denotes PID 5. (We have provided you with all of the routines you need for manipulating the job list.) hsk should support the following built-in commands: The quit command terminates the shell. It does not have to clean up children. The jobs command lists all background jobs (both running and stopped). The bg <job> command restarts <job> by sending it a SIGCONT signal, and then runs it in the background. The <job> argument can be either a PID or a JID. The fg <job> command restarts <job> by sending it a SIGCONT signal, and then runs it in the foreground. The <job> argument can be either a PID or a JID. hsk should reap all of its zombie children. If any job terminates because it receives a signal that it didn t catch, then hsk should recognize this event and print a message with the job s PID and a description of the offending signal. Checking Your Work We have provided some tools to help you check your work. Reference solution. The Linux executable hskref is the reference solution for the shell. Run this program to resolve any questions you have about how your shell should behave. Your shell should emit output that is identical to the reference solution (except for PIDs, of course, which change from run to run). Shell driver. The sdriver.pl program executes a shell as a child process, sends it commands and signals as directed by a trace file, and captures and displays the output from the shell. Use the -h argument to find out the usage of sdriver.pl: unix>./sdriver.pl -h Usage: sdriver.pl [-hv] -t <trace> -s <shellprog> -a <args> Options: -h Print this message 4

-v Be more verbose -t <trace> Trace file -s <shell> Shell program to test -a <args> Shell arguments -g Generate output for autograder We have also provided 16 trace files (trace{01-16}.txt) that you will use in conjunction with the shell driver to test the correctness of your shell. The lower-numbered trace files do very simple tests, and the higher-numbered tests do more complicated tests. You can run the shell driver on your shell using trace file trace01.txt (for instance) by typing: unix>./sdriver.pl -t trace01.txt -s./hsk -a "-p" (the -a "-p" argument tells your shell not to emit a prompt), or unix> make test01 Similarly, to compare your result with the reference shell, you can run the trace driver on the reference shell by typing: unix>./sdriver.pl -t trace01.txt -s./hskref -a "-p" or unix> make rtest01 For your reference, hskref.out gives the output of the reference solution on all traces. This might be more convenient for you than manually running the shell driver on all trace files. The neat thing about the trace files is that they generate the same output you would have gotten had you run your shell interactively (except for an initial comment that identifies the trace). For example: bass> make test15./sdriver.pl -t trace15.txt -s./hsk -a "-p" # # trace15.txt - Putting it all together # hsk>./bogus./bogus: Command not found. hsk>./myspin 10 Job (9721) terminated by signal 2 hsk>./myspin 3 & [1] (9723)./myspin 3 & hsk>./myspin 4 & [2] (9725)./myspin 4 & hsk> jobs [1] (9723) Running./myspin 3 & [2] (9725) Running./myspin 4 & 5

hsk> fg %1 Job [1] (9723) stopped by signal 20 hsk> jobs [1] (9723) Stopped./myspin 3 & [2] (9725) Running./myspin 4 & hsk> bg %3 %3: No such job hsk> bg %1 [1] (9723)./myspin 3 & hsk> jobs [1] (9723) Running./myspin 3 & [2] (9725) Running./myspin 4 & hsk> fg %1 hsk> quit bass> Hints Read up on process management and shell basics in Chapter 3 of the textbook. Reread the lecture notes for more information about signaling. Use the trace files to guide the development of your shell. Starting with trace01.txt, make sure that your shell produces the identical output as the reference shell. Make the case identical as well. Then move on to trace file trace02.txt, and so on. The waitpid, kill, fork, execve, setpgid, and sigprocmask functions will come in very handy. The WUNTRACED, WNOHANG, and WCONTINUED options to waitpid will also be useful. When you implement your signal handlers, be sure to send SIGINT and SIGTSTP signals to the entire foreground process group, using -pid instead of pid in the argument to the kill function. The sdriver.pl program tests for this error. One of the tricky parts of the assignment is deciding on the allocation of work between the waitonfg and sigchld handler functions. We recommend the following approach: In waitonfg, use a busy loop around the sleep function. In sigchld handler, use exactly one call to waitpid. Note: this means to only write waitpid once. It will be called multiple times. While other solutions are possible, such as calling waitpid in both waitonfg and sigchld handler, these can be very confusing. It is simpler to do all reaping in the handler. You might find that a string-to-number cast should be done somewhere. Use strtol, since it can handle errors more gracefully than atoi. atoi(s) has the same behavior as strtol(s, NULL, 10). 6

In eval, the parent must use sigprocmask to block SIGCHLD signals before it forks the child, and then unblock these signals, again using sigprocmask after it adds the child to the job list by calling addjob. Since children inherit the blocked vectors of their parents, the child must be sure to then unblock SIGCHLD signals before it execs the new program. The parent needs to block the SIGCHLD signals in this way in order to avoid the race condition where the child is reaped by sigchld handler (and thus removed from the job list) before the parent calls addjob. Programs such as more, less, vi, and emacs do strange things with the terminal settings. Don t run these programs from your shell. Stick with simple text-based programs such as /bin/ls, /bin/ps, and /bin/echo. When you run your shell from the standard Unix shell, your shell is running in the foreground process group. If your shell then creates a child process, by default that child will also be a member of the foreground process group. Since typing ctrl-c sends a SIGINT to every process in the foreground group, typing ctrl-c will send a SIGINT to your shell, as well as to every process that your shell created, which obviously isn t correct. Here is the workaround: After the fork, but before the execve, the child process should call setpgid(0, 0), which puts the child in a new process group whose group ID is identical to the child s PID. This ensures that there will be only one process, your shell, in the foreground process group. When you type ctrl-c, the shell should catch the resulting SIGINT and then forward it to the appropriate foreground job (or more precisely, the process group that contains the foreground job). man pages are incredibly useful for this project. Make sure you are reading through them and understanding how relevant functions work! They could be tricky, so here are some tips: man pages are different between Linux and OS X. Make sure you are reading the Linux one! The number following a man (eg. man 7 signal) corresponds to the section of a man page. For example, 7 points to misc and 2 points to system calls. You can find more about section numbers online. Often times, there are useful code examples on the bottom of a man page. They might be helpful to see applications of a function. Ignore little side-notes if they confuse you and aren t relevant to what you need. They can sometimes throw you off - don t get stuck on them! To start you off, man 7 signal and man 0 signal.h are good pages to read. Evaluation Your score will be computed out of a maximum of 85 points based on the following distribution: 80 Correctness: 16 trace files at 5 points each. 7

5 Style points. We expect you to have good comments (5 pts). Your solution shell will be tested for correctness on a Linux machine, using the same shell driver and trace files that were included in your lab directory. Your shell should produce identical output on these traces as the reference shell, with only two exceptions: The PIDs can (and will) be different. The output of the /bin/ps commands in trace11.txt, trace12.txt, and trace13.txt will be different from run to run. However, the running states of any mysplit processes in the output of the /bin/ps command should be identical. Hand In Instructions You will be submitting your final hsk.c file on CMS, which allows you to submit multiple times as long as you do so before the deadline. We will not be grading your code off of Github (but, as good practice, you should push your code as many times as you want, such as when you have made a significant change or improvement). Good luck! 8