Element Sizes in Crash Calculation

Similar documents
Element Sizes in implicit and explicit calculation

General considerations for the influence of mesh density in LS Dyna

2 nd EUROPEAN HTC 2008 Platinum Sponsor. TECOSIM Technische Simulation GmbH

Abstract for a paper to be presented at the 3. LS-Dyna Forum Bamberg/ Germany

Handling of large LS-Dyna Full Vehicle Crash Models with TECOSIM-advanced inhouse process Tools

ATOS Compact Scan. Precise Industrial 3D Metrology. Portable 3D Scanner

A New Method for CrachFEM Damage Parameter Calculation & Transfer from Autoform to LS-Dyna

A study of mesh sensitivity for crash simulations: comparison of manually and batch meshed models

Precision Tec Diagnostics PO Box 2431 Cartersville, GA

Slotted Hole. Nominal Actual Dev. Check X Y Z Circular Hole 01

ATOS Core. Precise Industrial 3D Metrology. Optical 3D Scanner

VIRTUAL VEHICLE DIGITAL MOBILITY. Crack Propagation in Crash A new approach without local remeshing.

Improved mapping workflow with HM 11

Optimization process for correlation of experimental and numerical modal analysis

LAUNCH. X-431 GX3 sold as X-431 Master!!!

Virtual Prototyping. 5th ANSA & Meta International Conference Thessaloniki 5th - 7th June 2013

THUMS USER COMMUNITY STANDARDISING THE APPLICATION OF HUMAN BODY MODELS

Dummy Model Validation and its Assessment

The Evaluation of Crashworthiness of Vehicles with Forming Effect

Simulation of Fuel Sloshing Comparative Study

--Niju Nair, Account manager

Spotweld Failure Prediction using Solid Element Assemblies. Authors and Correspondence: Abstract:

EVALUATION OF THE EFFECTS OF TEST PARAMETERS ON THE RESULTS OF THE LOWER LEGFORM IMPACTOR

Turn around time reduction

Conference Dynamic Simulation in Vehicle Engineering Realtime Simulation of Vehicles Containing Detailed Components

Applications of ICFD /SPH Solvers by LS-DYNA to Solve Water Splashing Impact to Automobile Body. Abstract

Sunoco Global Full Synthetic ATF

Applications of ICFD solver by LS-DYNA in Automotive Fields to Solve Fluid-Solid-Interaction (FSI) Problems

NON-PARAMETRIC SHAPE OPTIMIZATION IN INDUSTRIAL CONTEXT

Precise Industrial 3D Metrology. ARAMIS 3D Motion and Deformation Sensor. Materials testing Deformation analysis of parts Crash and 6DoF evaluation

Code Reader 2 User manual

TB11 test for short w-beam road barrier

Experimental Investigations with Crush Box Simulations for Different Segment Cars using LS-DYNA

CAE Data Management and Quality Assessment of LS-DYNA Crash Models using V-CESS

Automating and organizing the optimization process using ANSA - LSOPT- META. A bumper optimization case study

Topology Optimization of an Engine Bracket Under Harmonic Loads

Crash Analysis trends in the Automotive Industry Dilip Bhalsod rd China LS-DYNA User s conference

ATOS Capsule Optical Precision Measuring Machine. Precise Industrial 3D Metrology

KissSoft User Conference. Industrial 3D Measurement Techniques with ATOS

1. INTRODUCTION DTD-CODE USER GUIDE

Technology Solutions Toward Improved Driver Focus

CDR Inventory Checklist & Quotation Request

SEALING VIBRATION CONTROL CABIN AIR FILTER. When durability matters. Corteco Valve Stem Seals

Vehicle List: 1 - Europe: This section includes diagnostic programs for European vehicles. ALFA ROMEO, AUDI, BMW, CITROEN, DACIA, FIAT, FORD, LANDROVE

OBSERVATIONS DURING VALIDATION OF SIDE IMPACT DUMY MODELS - CONSEQUENCES FOR THE DEVELOPMENT OF THE FAT ES-2 MODEL

Schweissen und Wärmebehandlung mit LS-DYNA

Outline of talk-part 1

Evaluation of a Rate-Dependent, Elasto-Plastic Cohesive Zone Mixed-Mode Constitutive Model for Spot Weld Modeling

GEOMETRY-BASED VIRTUAL MODEL VARIANTS FOR SHAPE OPTIMIZATION AND CAD REFEED

C-ITS Deployment in Austria & European Harmonisation Activities

Vehicle Load Area Division Wall Integrity during Frontal Crash

Automotive Testing: Optical 3D Metrology Improves Safety and Comfort

ATOS ScanBox Optical 3D Coordinate Measuring Machine. Precise Industrial 3D Metrology

FE-MODELING OF SPOTWELDS AND ADHESIVE JOINING FOR CRASHWORTHINESS ANALYSIS AUTHORS: ABSTRACT:

Leveraging Integrated Concurrent Engineering for vehicle dynamics simulation. Manuel CHENE MSC.Software France

2 nd Optimization & Stochastic Days India 2012

Dr.-Ing. Johannes Will CAD-FEM GmbH/DYNARDO GmbH dynamic software & engineering GmbH

Practical Examples of Efficient Design Optimisation by Coupling VR&D GENESIS and LS-DYNA

A review of the state-of-the-art in vehicle modeling for crashworthiness analysis using LSDYNA

Stochastic analyses as a method to evaluate the robustness of a light truck wheel pack design

Simplified FE Simulation of Frontal Occupant Restraint Systems

NT510 Schwaben Update Guide

Linux Compute Cluster in the German Automotive Industry

USAGE OF ANSA S AUTOMATED VOLUME MESHING-METHODS IN THE RAPID PRODUCT DEVELOPMENT PROCESS OF DIESEL ENGINES

Script for Automated One Step Forming Analysis using LS-DYNA and LS-Prepost

FutureSteelVehicle 3B Forming Optimization (Expanding the Forming Window of AHSS)

Using MSC.Nastran for Explicit FEM Simulations

Shape and parameter optimization with ANSA and LS-OPT using a new flexible interface

TRANSPRONICS OPERATING MANUAL CONTENTS 1- GENERAL INFORMATION 2- FEATURES 3- GENERAL OPERATION 4- PC PROGRAM OPERATION 5- SPECIAL FEATURE

3 rd ANSA & μeta International Conference September 9-11, 2009 Olympic Convention Centre, Porto Carras Grand Resort Hotel, Halkidiki Greece

BETA. CAE data and process management. ANSA Data Management ANSA Task Manager. CAE Systems SA

Development of Advanced Finite Element Models of Q Child Crash Test Dummies

Crash Analysis By Cad/Cam Tools

Platform Choices for LS-DYNA

Finite Element Simulation using SPH Particles as Loading on Typical Light Armoured Vehicles

Sheet metal forming simulation- Closing the design loop

Validity of Applying the Current Headform to the Pedestrian Head Protection Performance Evaluation Test of a Car at Low Impact Speed

Faurecia Seating FEA Strategy

AVS: A Test Suite for Automatically Generated Code

Hourglass (HG) Modes. Hourglass (HG) Modes

Efficiency Improvement of Seat Belt Pull CAE Analysis by Technology and Process Changes

Future Networked Car Geneva Auto Show 2018

Development of Detailed AM50%ile Hybrid III Dummy FE Model

MODELLING OF AN AUTOMOBILE TYRE USING LS-DYNA3D

Multi-scale Material Modeling Applied from Specimen to Full Car Level using LS-DYNA

CM Pack Dual CAN HS Transceiver

On the Optimization of the Punch-Die Shape: An Application of New Concepts of Tools Geometry Alteration for Springback Compensation

Simulation of Curtain Airbag with Arbitrary. Eulerian- Lagrangian Method

suite nventium From Concept to Product

VALIDATE SIMULATION TECHNIQUES OF A MOBILE EXPLOSIVE CONTAINMENT VESSEL

LS-DYNA Conference 2017

PARALLEL ENGINEERING SIMULATIONS BASED ON FORMING SIMULATION OF A HEAT EXCHANGER PLATE

Optimized Composite Design Methodologies that Enable Rapid Change

CAE Workflow Coupling Stamping and Impact Simulations

Erkenntnisse aus aktuellen Performance- Messungen mit LS-DYNA

Investigation of seat modelling for sled analysis and seat comfort analysis with J-SEATdesigner

THE EFFECT OF FORMING ON AUTOMOTIVE CRASH RESULTS

Investigating the influence of local fiber architecture in textile composites by the help of a mapping tool

Multi-Objective Optimization of a Grease Mechanical Filter using modefrontier & STAR-CCM+ Marco Carriglio, Alberto Clarich ESTECO SpA Trieste (Italy)

Hierarchical Multi-Level-Optimization of crashworthy structures using automatic generated submodels

Transcription:

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung Element Sizes in Crash Calculation Dipl.-Ing Ing. Udo Jankowski, Dr.-Ing Martin Müller M Bechtel,, Dipl.-Ing. Manfred Sans,, Tecosim GmbH 4. LS-DYNA Forum, 20.-21. 21. Oktober 2005, Bamberg Investigation on mesh density in LS Dyna Agenda Tecosim-best partner for simulation Introduction Analysis of Results/ Conclusion Outlook I - I - 33

900 800 700 600 500 400 300 200 100 0 1 2 3 4 5 6 7 8 CPU # standard scale_c scale_c2 scale_x scale_y Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 Locations & References Leonberg Rüsselsheim Köln Basildon (UK) Audi AG Adam OPEL AG Claas Daimler Chrysler Daihatsu Fiat FORD General Motors HONDA ISUZU KIA John Deere Jaguar Landrover Nissan PORSCHE AG Toyota Coventry (UK) AMG Autoliv Bayer AG Bentler Bertone Bosch/ Blaupunkt Degussa-Hüls AG Dynamit Nobel EADS Faurecia Getrag Hella KG Johnson Controls Karmann Lear Magna Thyssenkrupp TRW Automotive Mahle MAN Mannesmann/Sachs Siemens VDO Igenie Office Wagon Automotive Tokio (Japan) CAE Portfolio NVH / Durability CRASH Safety Powertrain CAE Portfolio Seats Multi Body Systems (MBS) CPU time CPU time [s] CFD Optimization Software dev I - I - 34

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung Introduction Any sufficiently advanced technology is indistinguishable from magic. Profiles of the future (1961) by Arthur C. Clarke (2003) Introduction Why do we simulate? Cost effective Fast Proven method We cannot test! I - I - 35

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 Introduction Number of Elements for a FE Crashmodel BIW 2500000 2000000 1500000 1000000 # of Elements 500000 0 1999 2000 2001 2002 2003 2004 Introduction How should a mesh look like? TEC ODM Mesh Element size 12 mm TEC ODM Mesh Element size 4 mm TEC ODM Mesh Element size 6 mm I - I - 36

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung Simple box crash experiment: Box section 50 mm x 80 x 500mm, t= 1.0mm, mild steel Varied parameters: average edge length 15/10/5/2,5mm mesh orientation 0deg/ 25deg different mesh/ integration method: Belytschko-Tsay/ Fully Integration Varied number of spotwelds With and without mapping or stamping data Renumbering and move in space Objective: Is the result depending on the element length? Is the result depending on the element orientation? How does mapping influence/stabalise the results? How do small changes in the input influence the results? v10_1: 10mm mesh, 0deg max internal energy 6766Nmm max displacement 278mm I - I - 37

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 V10_1n: 10mm mesh, 0 deg, full integration max internal energy 6499Nmm max displacement 241mm v10_2: 10mm mesh, 25deg max internal energy 6439Nmm max displacement 295mm I - I - 38

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung V10_2n: 10mm mesh, 25 deg, full integration max internal energy 6272Nmm max displacement 286mm v10_3: 10mm triangle mesh max internal energy 6428Nmm max displacement 215mm I - I - 39

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 v10_4: 10mm mesh, 25deg, more spotweld max internal energy 6560Nmm max displacement 265mm V10_4n: 10mm mesh, 25 deg, more spotweld, full integration max internal energy 6741Nmm max displacement 295mm I - I - 40

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung v10_5: 10mm mesh, 0 deg, more spotweld max internal energy 6565Nmm max displacement 262mm v10_6: 10mm mesh, 0deg mapped stamping data MpCCI max internal energy 6658Nmm max displacement 235mm I - I - 41

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 v10_7: 10mm mesh, 25deg mapped stamping data MpCCI max internal energy 6350Nmm max displacement 243mm v10_6n: 10mm mesh, 0deg mapped stamping data DYNAIN max internal energy 6468Nmm max displacement 250mm I - I - 42

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung v10_7n: 10mm mesh, 25deg mapped stamping data DYNAIN max internal energy 6376Nmm max displacement 233mm Analysis: comparison of Displacement 10mm meshing 3,50E+02 3,00E+02 2,50E+02 2,00E+02 1,50E+02 1,00E+02 5,00E+01 0,00E+00 0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00 55,00 60,00 65,00 70,00 75,00 80,00 85,00 90,00 95,00 100,00 Displacement [mm] 10_1 max 279,79 10_2 max 294,56 10_3 max 215,16 10_4 max 265,30 10_5 max 262,47 10_6 max 227,10 10_6n max 250,63 10_7 max 302,08 10_7n max 232,63 Time [ms] I - I - 43

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 v5_1: 5mm mesh, 0deg max internal energy 6398Nmm max displacement 296mm V5_1n: 5mm mesh, 0 deg, full integration max internal energy 6481Nmm max displacement 277mm I - I - 44

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung v5_5: 5 mm mesh, 0 deg, more spotweld max internal energy 6466Nmm max displacement 295mm v5_2: 5mm mesh, 25deg max internal energy 6363Nmm max displacement 278mm I - I - 45

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 v5_3: 5mm triangle mesh max internal energy 6425Nmm max displacement 265mm V5_4: 5mm mesh, 25deg, more spotweld max internal energy 6327Nmm max displacement 277mm I - I - 46

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung v5_6: 5mm mesh, 0deg mapped stamping data MpCCI max internal energy 6401Nmm max displacement 268mm v5_7: 5mm mesh, 25deg mapped stamping data MpCCI max internal energy 6593Nmm max displacement 278mm I - I - 47

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 v5_6n: 5mm mesh, 0deg mapped stamping data DYNAIN max internal energy 6346Nmm max displacement 268mm v5_7n: 5mm mesh, 25deg mapped stamping data DYNAIN max internal energy 6323Nmm max displacement 278mm I - I - 48

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung Analysis: comparison of Displacement 5mm meshing 3,50E+02 3,00E+02 Displacement [mm] 2,50E+02 2,00E+02 1,50E+02 1,00E+02 5,00E+01 0,00E+00 0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00 55,00 Time [ms] 60,00 65,00 70,00 75,00 80,00 85,00 90,00 95,00 5_1 max 295,75 5_1n max 276,58 5_2 max 278,37 5_3 max 264,94 5_4 max 276,87 5_5 max 295,21 5_6 max 269,77 5_6n max 267,51 5_7 max 276,48 5_7n max 277,82 100,00 v2.5_1: 2.5mm mesh, 0deg max internal energy 6398Nmm max displacement 296mm I - I - 49

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 V2-5_1n: 2.5 mm mesh, 0 deg, full integration max internal energy 6439Nmm max displacement 291mm V2-5_5: 2.5 mm mesh, 0deg, more spotweld max internal energy 6423Nmm max displacement 289mm I - I - 50

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung V2-5_2n: 2.5 mm mesh, 25 deg max internal energy 6471Nmm max displacement 287mm v2.5_3: 2.5mm triangle mesh max internal energy 6448Nmm max displacement 279mm I - I - 51

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 Analysis: comparison of Displacement 2.5mm meshing 3,50E+02 3,00E+02 2,50E+02 Displacement [mm] 2,00E+02 1,50E+02 1,00E+02 5,00E+01 0,00E+00 0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00 55,00 Time [ms] 2.5_1 max 297,53 2.5_1n max 290,50 2.5_2n max 287,30 2.5_3 max 278,79 2.5_5 max 288,75 2.5_6 max 293,74 2.5_6n max 297,34 2.5_7 max 282,87 2.5_7n max 311,40 60,00 65,00 70,00 75,00 80,00 85,00 90,00 95,00 100,00 V2-5_4n: 2.5 mm mesh, 25 deg, more spotweld max internal energy 6477Nmm max displacement 280mm I - I - 52

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung v2.5_6: 2.5mm mesh, 0deg mapped stamping data MpCCI max internal energy 63412Nmm max displacement 293mm v2.5_7: 2.5mm mesh, 25deg mapped stamping data MpCCI max internal energy 6416Nmm max displacement 285mm I - I - 53

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 v2.5_6n: 2.5mm mesh, 0deg DYNAIN max internal energy 6360Nmm max displacement 297mm v2.5_7n: 2.5mm mesh, 25deg DYNAIN max internal energy 6392Nmm max displacement 311mm I - I - 54

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung Analysis of Results/ Conclusion Analysis: Comparison max. displacement 400 Compression is nearly independent from the element length in a range from 10mm to 2.5 mm for the same element orientation max displacement [mm] 375 350 325 300 275 250 225 200 175 150 125 c 100 75 50 25 0 0 1 2 3 4 5 6 7 8 9 10 11 12 average element length [mm] Analysis of Results/ Conclusion Analysis: Comparison max. displacement The max displacement difference for 0 mesh and 25 mesh is small for finer meshes and big for coarser meshes 20 18 16 14 12 10 8 c 6 4 2 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 average element length [mm] I - I - 55

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 Analysis of Results/ Conclusion Analysis: Influence on mesh translation and 350,00 reumbering 300,00 For 10 mm the variation is about 8mm where as the deviation for smaller elements sizes is about 3mm for the same element orientation 250,00 200,00 350,00 300,00 250,00 200,00 150 00 300,00 2_1 max 290,09 2_1_ren max 290,09 2_1_dis max 293,09 3.5_1 max 289,05 3.5_1_ren max 289,05 3.5_1_dis max 286,29 3.5_1_ren max 288,70 250,00 200,00 150,00 10_1 max 279,79 10_1_ren max 271,64 10_1_dis max 278,53 Analysis of Results/ Conclusion Analysis: Influence on results of very small elements. C o m p ariso n o f F u ll In teg ratio n 3,50E+02 3,00E+02 For 1,25 mm the BT (typ2) element seems to be to weak. For smaller elements sizes, full integration seems to have better results. Displacement [mm] 2,50E+02 2,00E+02 1,50E+02 1,00E+02 5,00E+01 0,00E+00 0,00 3,50E+02 6,00 12,00 18,00 24,00 30,00 36,00 42,00 48,00 54,00 60,00 Time [ms] C om parison of BT 66,00 72,00 2.5_1n m ax 290,50 2_1n m ax 282,73 1.25_1n m ax 296,78 78,00 84,00 90,00 96,00 3,00E+02 Displacement [mm] 2,50E+02 2,00E+02 1,50E+02 1,00E+02 5,00E+01 0,00E+00 0,00 5,00 10,00 15,00 20,00 25,00 30,00 35,00 40,00 45,00 50,00 55,00 60,00 65,00 70,00 75,00 80,00 85,00 90,00 95,00 100,00 2.5_1 max 297,53 2_1 max 290,09 1.25_1 max 303,92 Time [ms] I - I - 56

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung Analysis of Results/ Conclusion Analysis: comparison max displacement variation variation for different mesh sizes displ. (mm) 310 290 270 250 230 210 190 170 150 1 2 3 4 5 6 7 8 9 run 10mm 5 mm 2.5 mm Analysis of Results/ Conclusion Analysis: Comparison of integration method Calculation Time CPU Time [s] 1,80E+04 1,60E+04 Belytschko-Tsay Fully Integration 1,40E+04 1,20E+04 1,00E+04 8,00E+03 6,00E+03 4,00E+03 2,00E+03 0,00E+00 10_1/10_1n 10_2/10_2n 10_4/10_4n 5_1/5_1n 5_2/5_2n 5_4/5_4n 2.5_1/2.5_1n 2.5_2/2.5_2n 2.5_4/2.5_4n I - I - 57

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 Analysis of Results/ Conclusion Results Results for the displacement and the internal energy seem to be smooth and stable in a range from 15mm to 2,5 mm for orthogonal element orientation Different element orientation give different results for coarser meshes Finer mesh is not so sensitive for different element orientation, integration method, number of spotwelds, mapping, small changes in the input (renumbering, moving the model in space) Mapping tools are easy to use for Crash coupling. The influence of the mapping was getting smaller for smaller element sizes for the influenced zone was getting smaller and the crash mode was very stable in our example. Analysis of Results/ Conclusion Conclusion If you know the collapse mode of a part you can use a coarse mesh which should be orthogonal in the collapse direction (so you can achieve superconvergence ) If you doesn't know the collapse mode of a part; Please use finer meshes No one knows the exact collapse mode of all the parts in a vehicle! Meshing rules for orthogonal /Mapping/Integration schemes meshes are important for coarser meshes but not important for finer meshes. Creation of finer meshes can be automated by TEC ODM! I - I - 58

4. LS-DYNA Anwenderforum, Bamberg 2005 Modellierung Analysis of Results/ Outlook Outlook The crashbox sample will be applied to a complete vehicle to find out about the time saving potential and the influence on the results. Thank you for your attention! Please ask some questions I - I - 59

Modellierung 4. LS-DYNA Anwenderforum, Bamberg 2005 I - I - 60