Polarization. Components of Polarization: Malus Law. VS203B Lecture Notes Spring, Topic: Polarization

Similar documents
Polarization. Bởi: OpenStaxCollege

Basic Optics : Microlithography Optics Part 4: Polarization

OpenStax-CNX module: m Polarization * Bobby Bailey. Based on Polarization by OpenStax

Diffraction. Single-slit diffraction. Diffraction by a circular aperture. Chapter 38. In the forward direction, the intensity is maximal.

Chapter 33 cont. The Nature of Light and Propagation of Light (lecture 2) Dr. Armen Kocharian

10.5 Polarization of Light

1.! Questions about reflected intensity. [Use the formulas on p. 8 of Light.] , no matter

Chapter 24. Wave Optics

Polarization of Light

SPH4U UNIVERSITY PHYSICS

Lecture 17 (Polarization and Scattering) Physics Spring 2018 Douglas Fields

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

specular diffuse reflection.

Polarization of waves on ropes

Basic Polarization Techniques and Devices 1998, 2003 Meadowlark Optics, Inc

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Be careful not to leave your fingerprints on the optical surfaces of lenses or Polaroid sheets.

B.Sc.( Srmester-3) Subject: Physics Course: US03CPHY01 Title: Optics

Reflection, Refraction and Polarization of Light

Chapter 38. Diffraction Patterns and Polarization

Internal Reflection. Total Internal Reflection. Internal Reflection in Prisms. Fiber Optics. Pool Checkpoint 3/20/2013. Physics 1161: Lecture 18

Polarization of light

5: Electromagnetic Waves (Chapters 33 & 34) Snapshot of a light wave. Wave vs Particle. A Brief History of Light

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

Chapter 24. Wave Optics

normal angle of incidence increases special angle no light is reflected

9. Polarization. 1) General observations [Room 310]

Dispersion Polarization

Polarization. Lecture outline

Assignment 8 Due November 29, Problems

Experiment 8 Wave Optics

Polarization of Light

Chapter 33 The Nature and Propagation of Light by C.-R. Hu

Polarization of Light

Polarization. OpenStax

Lecture 24: TUE 20 APR 2010 Ch : E&M Waves

PHYSICS 116 POLARIZATION AND LIGHT MEASUREMENTS

All forms of EM waves travel at the speed of light in a vacuum = 3.00 x 10 8 m/s This speed is constant in air as well

Engineering Physics 1 Dr. M. K. Srivastava Department of Physics Indian Institute of Technology- Roorkee. Module-01 Lecture 03 Double Refraction

1. Particle Scattering. Cogito ergo sum, i.e. Je pense, donc je suis. - René Descartes

Lecture 24 EM waves Geometrical optics

13. Brewster angle measurement

At the interface between two materials, where light can be reflected or refracted. Within a material, where the light can be scattered or absorbed.

4.4 Polarisation [26 marks]

Reprint (R36) Polarization: the invisible property of light. Presented by Dr. Richard Young at the 2008 Aerospace Lighting Institute Advanced Seminar

Polarization of Light: from Basics to Instruments (in less than 100 slides) Originally by N. Manset, CFHT, Modified and expanded by K.

PHYS:1200 LECTURE 32 LIGHT AND OPTICS (4)

Lecture 26, March 16, Chapter 35, Polarization

Refraction and Polarization of Light

OPTICS MIRRORS AND LENSES

IB-2 Polarization Practice

Electromagnetic waves

Refraction and Polarization of Light

LECTURE 37: Ray model of light and Snell's law

Reflection, Refraction and Polarization of Light Physics 246

Understanding the Propagation of Light

Light and the Properties of Reflection & Refraction

Properties of Light I

Chapter 24 - The Wave Nature of Light

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

Office Hours. Scattering and Polarization

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

The sources must be coherent. This means they emit waves with a constant phase with respect to each other.

Phys 102 Lecture 17 Introduction to ray optics

Discussion Question 13A P212, Week 13 Electromagnetic Waves

Polarization Exploration #10600

Physics 4C Chapter 33: Electromagnetic Waves

Course Updates. Reminders: 1) Assignment #12 due today. 2) Polarization, dispersion. 3) Last HW (#13 posted) due Monday, May 3rd

ECEG105/ECEU646 Optics for Engineers Course Notes Part 5: Polarization

Total Internal Reflection

Wavefronts and Rays. When light or other electromagnetic waves interact with systems much larger than the wavelength, it s a good approximation to

(Refer Slide Time: 00:10)

Properties of Light. 1. The Speed of Light 2. The Propagation of Light 3. Reflection and Refraction 4. Polarization

Hot Sync. Materials Needed Today

Lecture 16: Geometrical Optics. Reflection Refraction Critical angle Total internal reflection. Polarisation of light waves

How can light reflections on the surface of water be blocked to see what is on the bottom of the sea?

Protocol for Lab. Fundamentals

Small particles scatter light

Optics Polarization Birefringence

Light and Electromagnetic Waves. Honors Physics

Final Exam. Today s Review of Optics Polarization Reflection and transmission Linear and circular polarization Stokes parameters/jones calculus

Light: Geometric Optics

Waves & Oscillations

Illumination for the microscope

6-1 LECTURE #6: OPTICAL PROPERTIES OF SOLIDS. Basic question: How do solids interact with light? The answers are linked to:

LIGHT SCATTERING THEORY

Image Formation by Refraction

Introduction to Light and Polarized Light

θ =θ i r n sinθ = n sinθ

LECTURE 13 REFRACTION. Instructor: Kazumi Tolich

Light. Form of Electromagnetic Energy Only part of Electromagnetic Spectrum that we can really see

Light and Sound. Wave Behavior and Interactions

! "To accept Huygens's principle requires abandoning the idea that a ray has much intrinsic physical significance..." (pg. 5.)

Light. Electromagnetic wave with wave-like nature Refraction Interference Diffraction

9. Polarizers. Index of. Coefficient of Material Wavelength ( ) Brewster angle refraction (n)

37 (15 pts) Apply Snell s law twice (external, then internal) to find it emerges at the same angle.

The diffraction pattern from a hexagonally-shaped hole. Note the six-fold symmetry of the pattern. Observation of such complex patterns can reveal

Chapter 82 Example and Supplementary Problems

Lesson 1 Scattering, Diffraction, and Radiation

DETERMINATION OF BREWSTER S ANGLE FOR GLASS AND PLASTIC USING A POLARIZED MONOCHROMATIC LIGHT SOURCE. Utsav Hanspal. Physics Honors Research Paper

Transcription:

VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarization Recall that I stated that we had to model light as a transverse wave so that we could use the model to explain polarization. The electric energy of a polarized beam acts in a specific direction that is perpendicular to the direction of propagation of the light. vertical horizontal diagonal Polarization arises whenever radiated energy, or light, comes from an excited molecule oscillating in one direction. In the natural environment these oscillations are oriented randomly and tend to shift over time so normal light is unpolarized (i.e. it is made up of components of every possible polarization.) But when light is created in a controlled environment, such as in a laser, all the oscillations are correlated and you can selectively amplify one orientation of the polarization. Alternately, you can select one component of the polarization by... passing unpolarized light through a specially designed filter. reflecting unpolarized light off an appropriately tilted surface. scattering unpolarized light in a specific direction from small particles. Components of Polarization: Malus Law Like any vector, the vector representing the polarization of light can always be split into a horizontal and vertical component. I = A Asin A Acos Since the intensity is the square of the amplitude, it follows that the intensity of the horizontal and vertical components are: I = A cos, I = A sin x y Malus Law where is the angle between the orientation of the light and the horizontal component. 50

VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarizating Filter, Polaroid, Polarizers For polarized light, the electric vector oscillates in a specific direction. When light strikes a conducting material, the free electrons within the material absorb the oscillating energy and begin to oscillate themselves. The ease with which the electrons can oscillate in a specific direction dictates how much light of that polarization gets absorbed. In many metals, the molecules are amorphous, or randomly arranged, so light of all polarizations are equally absorbed. That is why metal is reflective, but not transmissive (opaque). To create a polarizer, you need to design a material that only allows oscillation of molecules in a single direction. One example is an array of thin vertical wires. If the wires are thin enough (on the order of wavelength) then electrons only oscillate in one direction and only that orientation of polarization is absorbed. The component of polarization in the orthogonal direction will transmit. This had been difficult to do for visible light until Edwin Land invented the polaroid, which is is created by stretching hydrocarbon molecules on a sheet into long strands, then impregnating them with conducting iodine. In effect this acts like a set of thin wires. Light polarized in the direction of the molecules is absorbed by free flowing electrons. Light of opposite orientation is not absorbed and so is transmitted. If a polarizer was perfect, then if one passed unpolarized light through the filter, only 50% of the light would be transmitted. For linearly polarized light, the intensity of light that is transmitted is the projection of the polarization vector onto the transmitting axis of the polarizer. This is where Malus law becomes very useful. First, we will establish the convention of units of light, or intensity. You can think of them as photons. Second we define a polarizer s transmission axis as the axis that is parallel to the polarization that is transmitted. Rules for unpolarized light: of light passing through a linear polarizer, leaves 50 units of light, which will be polarized along the transmission axis of the polarizer. 50 units (polarization axis is vertical or 90 ) Do a demonstration to show that three filters transmits more light than two filters 51

VS03B Lecture Notes Spring, 013 011 Topic: Polarization Rules for polarized light: The number of units of intensity that gets through is proportional to the square of the cosine of the angle between the orientation of the incident polarization and the transmission axis of the polarizer. In other words, the transmitted intensity is the component of intensity of the original polarization that lies along the transmission axis of the polarizer. vertical polarization (polarization axis is vertical or 90 ) angle between polarized light and polaroid axis is 0 = cos = = I Io Io If you turn the polaroid 10 degrees (to 100 degrees), then the angle between the light polarization and the axis of the polaroid is 10, so: I = I cos 10 = 0.97 I = 97 units o If you turn the polaroid another 80 degrees (to 180 degrees), then the angle between the light polarization and the axis of the polaroid is 90. At 0 and 180 degrees the polarization is the same horizontally polarized. I = I o cos 90 = 0 units o The orientation of the emergent light is always the same as the transmission axis of the polarizing filter preceding it. So when polarizers are put in series, you can easily determine the polarization and the final emergent number of units provided that you go step by step through each polarizing filter. I = I o = cos 45 5 I = I o = cos 45 50 135 axis vertical polarization 5

VS03B Lecture Notes Spring, 013 011 Topic: Polarization Example: Unpolarized light is incident on a polarizing filter whose orientation is vertical (90 degrees) It is followed by a filter whose orientation is 180 degrees. If of light intensity are incident on the pair of filters, how many units emerge? If you add a third filter oriented at 45 degrees from horizontal, in between the two original filters, how much light emerges? 180 axis no light emerges 50 units 180 axis 45 axis I = 5cos 45 = 1.5 units 50 units I = 50 cos 45 = 5 units So adding another actually increases the amount of transmitted light! Does the same improvement occur when you reorder the filters: Likely not! 53

VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarization by Reflection: When light reflects normally, or perpendicularly from a surface, the amount of reflectance is governed by the law: n n R = n + n As the angle of incidence changes, the amount of reflected light depends on the polarization. If one orientation of polarization reflects more than the other, then the reflected light would be partially polarized. The reflection for the two polarization components follows this graph: E p E s is the component of the polarization that is parallel to the reflecting surface. E p is the component of polarization that is perpendicular to E s. R s is the reflectance of the Es component. R p is the reflectance of the Ep component. At 90º, Rs and Rp are 100 % E s 0 n=1.5 R s R p B E s reflectance (%) 15 10 5 14.8 % 56.3 E s E p In this figure, the angle of incidence is equal to Brewster s angle, B ; the angle for which only the s-component of the polarization is reflected. When the angle of incidence is not equal to Brewster s angle, there is still a tendency for one polarization to reflect more than the other (see graph on the right). The angle at which light of only one polarization reflects is called Brewster s Angle ( Β ). The actual angle depends on the index of refraction of the reflecting surface. The formula for Brewster s angle is: n B = arctan n An oblique reflection can create polarized light. Unpolarized light that is diffusely reflected is generally not polarized. It comes in and gets reflected at all angles. But unpolarized light that is specularly reflected does have some polarization. Specular reflections follow the regular incidence-reflection rule. Specular reflections are mirror reflections and also appear as highlights when reflected off objects. DEMO: A good demonstration is to look at a reflection from a table (a black book is also an excellent choice) Place a polarizer over your eye and rotate it and you ll see the reflections appear and disappear. So what about polarized sunglasses? They minimize specular reflections from horizontal objects. 50-60 degrees is not an uncommon angle to see these specular reflections. (driving, boating, skiing etc.) So, if the transmission axis is vertical, one minimizes the amount of horizontally polarized light that reaches the eye. Blocking the horizontally polarized light increases contrast by reducing glare. If you are selling glasses with polarizers to your patients, it is very simple to demonstrate their advantage by looking at the reflection off a table. With some LCD displays, the reflected light is linearly polarized. So, if you are looking at it through polarizing sunglasses, it will appear black. This also happens when you are looking at an LCD gas pump. Good LCD displays employ circular polarization to avoid this problem. 54 0 30 60 90 angle (deg) This shows a typical plot for the reflectance of the s- and p-components of the polarization as a function of angle for a reflecting medium with an index of refraction of 1.5. At Brewster s angle (56.3º in this case), only the s- component, or the polarization component that is parallel to the reflecting surface, is reflected. The formula used to calculate Brewster s angle for any surface is: n B = arctan n

VS03B Lecture Notes Spring, 013 011 Topic: Polarization Polarization by Scattering: Linearly polarized light is emitted at angle of 90º from the scattering particle. DEMO: Use polarized laser pointer and pass it through a scattering liquid (milk powder in water) rotate it until the light scattered to the side disappears. Then use a linear polarizer to show that when the scattered light is at a maximum, it is also polarized. Birefringence: In a crystal, the structure is often anisotropic as opposed to glass or plastic, which is isotropic. That means that the atomic lattice that makes up the molecules looks different when viewed from different orientations. The electrons within the lattice will also vibrate differently depending on the direction and so light of one polarization will encounter a transparent material with a different refractive index than the other component of polarization. This dependency of index on the direction of polarization is called Birefringence. Birefringence gives rise to double refraction Calcite crystal is a classic example. Birefringence is often found in crystals but it is also found in ordered arrangements of molecules. In the latter case, it is called form birefringence. The cornea is an example of a tissue that has form birefringence. Within the stroma, the lamellae are comprised of long colinear strands of collagen which are laid down in sheets. The strands are anisotropic so the component of light along the strands sees a slight different refractive index than the perpendicular component. If the layers of sheets were oriented randomly, then the form birefringence of one sheet would cancel the other. But the lamellae have a preferred orientation there is an overall birefringence. The actual index of refraction difference between the two polarization components is 0.001 so it is small. By comparison, calcite has a difference of about 0. so the double refraction is very strong. Dichroism If a crystal absorbs one of the polarization directions more than another, it is called dichroic. The polarizing filters in your glasses and the ones that you used for the demo are dichroic. The eye has dichroic crystals near the fovea (macular pigment granules) which gives rise to a selective absorption of some orientations of polarizations. It is subtle, and is likely just a byproduct of another system (i.e. there is no mechanistic reason for it) but when you rotate a polarizer in front of the eye you see a corresponding rotating pattern, called Haidinger s Brushes. They will sometimes appear colored because the preferential absorption also depends on the color of the light. 55