CSCI 4717 Computer Architecture. Memory Management. What is Swapping? Swapping. Partitioning. Fixed-Sized Partitions (continued)

Similar documents
Objectives and Functions Convenience. William Stallings Computer Organization and Architecture 7 th Edition. Efficiency

Operating System Support

Chapter 8. Operating System Support. Yonsei University

Computer Organization and Architecture. OS Objectives and Functions Convenience Making the computer easier to use

Virtual Memory. control structures and hardware support

Operating Systems: Internals and Design Principles. Chapter 7 Memory Management Seventh Edition William Stallings

Chapter 8 Virtual Memory

Operating System Support

MEMORY MANAGEMENT/1 CS 409, FALL 2013

Memory Management. Memory Management

With regard to operating systems the kernel consists of the most frequently used functions in the operating system and it kept in main memory.

Chapter 8 Virtual Memory

Memory Management. Reading: Silberschatz chapter 9 Reading: Stallings. chapter 7 EEL 358

Memory and multiprogramming

Memory Management Virtual Memory

Operating Systems CSE 410, Spring Virtual Memory. Stephen Wagner Michigan State University

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Chapter 8 Virtual Memory

Chapter 9 Memory Management Main Memory Operating system concepts. Sixth Edition. Silberschatz, Galvin, and Gagne 8.1

Performance of Various Levels of Storage. Movement between levels of storage hierarchy can be explicit or implicit

ECE519 Advanced Operating Systems

Virtual Memory. Chapter 8

a process may be swapped in and out of main memory such that it occupies different regions

CHAPTER 8 - MEMORY MANAGEMENT STRATEGIES

CS399 New Beginnings. Jonathan Walpole

Chapter 8: Main Memory

Memory Management. Dr. Yingwu Zhu

Process size is independent of the main memory present in the system.

Chapter 8: Memory-Management Strategies

20-EECE-4029 Operating Systems Spring, 2013 John Franco

Memory Management. Memory Management Requirements

Memory management. Last modified: Adaptation of Silberschatz, Galvin, Gagne slides for the textbook Applied Operating Systems Concepts

CS370: Operating Systems [Spring 2017] Dept. Of Computer Science, Colorado State University

15 Sharing Main Memory Segmentation and Paging

Operating Systems. 09. Memory Management Part 1. Paul Krzyzanowski. Rutgers University. Spring 2015

Chapter 8: Main Memory. Operating System Concepts 9 th Edition

Chapter 3 - Memory Management

Chapter 9 Memory Management

16 Sharing Main Memory Segmentation and Paging

Chapter 8: Main Memory

Outlook. Background Swapping Contiguous Memory Allocation Paging Structure of the Page Table Segmentation Example: The Intel Pentium

12: Memory Management

Memory management OS

Memory Management. Memory Management

Memory Management william stallings, maurizio pizzonia - sistemi operativi

Chapter 8. Virtual Memory

File Systems. OS Overview I/O. Swap. Management. Operations CPU. Hard Drive. Management. Memory. Hard Drive. CSI3131 Topics. Structure.

Chapter 7 Memory Management

Virtual to physical address translation

In multiprogramming systems, processes share a common store. Processes need space for:

Chapter 8 & Chapter 9 Main Memory & Virtual Memory

CHAPTER 8: MEMORY MANAGEMENT. By I-Chen Lin Textbook: Operating System Concepts 9th Ed.

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8 Main Memory

Memory management. Requirements. Relocation: program loading. Terms. Relocation. Protection. Sharing. Logical organization. Physical organization

Requirements, Partitioning, paging, and segmentation

Topics: Memory Management (SGG, Chapter 08) 8.1, 8.2, 8.3, 8.5, 8.6 CS 3733 Operating Systems

Processes and Tasks What comprises the state of a running program (a process or task)?

CS307: Operating Systems

Memory Management. Chapter 4 Memory Management. Multiprogramming with Fixed Partitions. Ideally programmers want memory that is.

Chapter 8: Memory- Management Strategies. Operating System Concepts 9 th Edition

Chapter 8: Memory- Management Strategies

Chapter 8 Main Memory

Chapter 4 Memory Management. Memory Management

CS370 Operating Systems

PROCESS VIRTUAL MEMORY. CS124 Operating Systems Winter , Lecture 18

Administrivia. Deadlock Prevention Techniques. Handling Deadlock. Deadlock Avoidance

Chapter 7: Main Memory. Operating System Concepts Essentials 8 th Edition

Lecture 7. Memory Management

Addresses in the source program are generally symbolic. A compiler will typically bind these symbolic addresses to re-locatable addresses.

Operating Systems, Fall

Operating Systems, Fall

UNIT III MEMORY MANAGEMENT

The memory of a program. Paging and Virtual Memory. Swapping. Paging. Physical to logical address mapping. Memory management: Review

Memory management: outline

Memory management: outline

Chapter 4: Memory Management. Part 1: Mechanisms for Managing Memory

Virtual or Logical. Logical Addr. MMU (Memory Mgt. Unit) Physical. Addr. 1. (50 ns access)

8.1 Background. Part Four - Memory Management. Chapter 8: Memory-Management Management Strategies. Chapter 8: Memory Management

CS 3733 Operating Systems:

Last Class: Deadlocks. Where we are in the course

Multi-Process Systems: Memory (2) Memory & paging structures: free frames. Memory & paging structures. Physical memory

Memory Management. To improve CPU utilization in a multiprogramming environment we need multiple programs in main memory at the same time.

CS6401- Operating System UNIT-III STORAGE MANAGEMENT

Memory Management. Goals of Memory Management. Mechanism. Policies

CS 134: Operating Systems

Requirements, Partitioning, paging, and segmentation

Virtual Memory. Reading: Silberschatz chapter 10 Reading: Stallings. chapter 8 EEL 358

Chapter 8: Main Memory

3. Memory Management

Preview. Memory Management

Operating Systems. Designed and Presented by Dr. Ayman Elshenawy Elsefy

Chapter 8: Main Memory

Background. Contiguous Memory Allocation

Memory Management. CSCI 315 Operating Systems Design Department of Computer Science

CS450/550 Operating Systems

Main Memory. Electrical and Computer Engineering Stephen Kim ECE/IUPUI RTOS & APPS 1

Process. One or more threads of execution Resources required for execution

Modeling Page Replacement: Stack Algorithms. Design Issues for Paging Systems

Main Memory (Part I)

Transcription:

CSCI 4717/5717 Computer Architecture Topic: Memory Management Reading: Stallings, Sections 8.3 and 8.4 Memory Management Uni-program memory split into two parts One for Operating System (monitor) One for currently executing program Multi-program Non-O/S part is sub-divided and shared among active processes Remember segment registers in the 8086 architecture Hardware designed to meet needs of O/S Base Address = segment address Memory Management Page 1 of 44 Memory Management Page 2 of 44 Swapping Problem: I/O (Printing, Network, Keyboard, etc.) is so slow compared with CPU that even in multi-programming system, CPU can be idle most of the time Solutions: crease main memory Expensive Programmers will eventually all of this memory for a single process Swapping What is Swapping? Long term queue of processes stored on disk Processes swapped in as space becomes available As a process completes it is moved out of main memory If none of the processes in memory are ready (i.e. all I/O blocked) Swap out a blocked process to intermediate queue Swap in a ready process or a new process But swapping is an I/O process! It could make the situation worse Disk I/O is typically fastest of all, so it still is an improvement Memory Management Page 3 of 44 Memory Management Page 4 of 44 Partitioning Splitting memory into sections to allocate to processes (including Operating System) Two types Fixed-sized partitions Variable-sized partitions Fixed-Sized Partitions (continued) Equal size or Unequal size partitions Process is fitted into smallest hole that will take it (best fit) Some wasted memory due to each block having a hole of und memory at the end of its partition Leads to variable sized partitions Memory Management Page 5 of 44 Memory Management Page 6 of 44 1

Fixedsized partitions Variable-Sized Partitions Allocate exactly the required memory to a process This leads to a hole at the end of memory, too small to Only one small hole - less waste When all processes are blocked, swap out a process and bring in another New process may be smaller than swapped out process Reloaded process not likely to return to same place in memory it started in Another hole Eventually have lots of holes (fragmentation) Memory Management Page 7 of 44 Memory Management Page 8 of 44 Variable-Sized Partitions Solutions to Holes in Variable- Sized Partitions Coalesce - Join adjacent holes into one large hole Compaction - From time to time go through memory and move all hole into one free block (c.f. disk de-fragmentation) Memory Management Page 9 of 44 Memory Management Page 10 of 44 Relocation No guarantee that process will load into the same place in memory structions contain addresses Locations of data Addresses for instructions (branching) Logical address relative to beginning of program Physical address actual location in memory (this time) Base Address start of program or block of data Automatic conversion using base address Paging (continued) Split memory into equal sized, small chunks -page frames Split programs (processes) into equal sized small chunks pages Allocate the required number page frames to a process Operating System maintains list of free frames A process does not require contiguous page frames Memory Management Page 11 of 44 Memory Management Page 12 of 44 2

Paging (continued) Paging (continued) Use page table to keep track of how the process is distributed through the pages in memory Now addressing becomes page number:relative address within page which is mapped to frame number:relative address within frame. Memory Management Page 13 of 44 Memory Management Page 14 of 44 Paging Example Before Paging Example After Free frame list 13 14 15 18 20 Process A Page 0 Page 1 Page 2 Page 3 13 14 15 16 17 18 19 20 21 Free frame list 20 Process A Page 0 Page 1 Page 2 Page 3 Process A page table 13 14 15 18 13 14 15 16 17 18 19 20 21 Page 0 of A Page 1 of A Page 2 of A Page 3 of A Memory Management Page 15 of 44 Memory Management Page 16 of 44 Virtual Memory Remember the Principle of Locality which states that active code tends to cluster together, and if a memory item is d once, it will most likely be d again. Demand paging Do not require all pages of a process in memory Bring in pages as required Page Fault in Virtual Memory Required page is not in memory Operating System must swap in required page May need to swap out a page to make space Select page to throw out based on recent history Memory Management Page 17 of 44 Memory Management Page 18 of 44 3

Virtual Memory Bonus We do not need all of a process in memory for it to run We can swap in pages as required So - we can now run processes that are bigger than total memory available! Main memory is called real memory User/programmer sees much bigger memory - virtual memory Thrashing Too many processes in too little memory Operating System spends all its time swapping Little or no real work is done Disk light is on all the time Solutions Better page replacement algorithms Reduce number of processes running Get more memory Memory Management Page 19 of 44 Memory Management Page 20 of 44 Page Table Structure VAX architecture each process may be allocated up to 2 31 = 2 GBytes of virtual memory broken in to 2 9 =512 byte pages. Therefore, each process may have a page table with 2 (31-9) =2 22 =4 Meg entries. This s a bunch of memory! Pages of Page Table Some processors solve this with a page directory that points to page tables, each table of which is limited to a page and treated as such Another approach is the inverted page table structure Memory Management Page 21 of 44 Memory Management Page 22 of 44 verted Page Table Page of Page Table (continued) Page tables based on logical (program's) address space can be huge Alternatively, restrict page table entries to real memory, not virtual memory Problem: Simple page table says each line of table maps to logical page verted Page Table need to have mapping algorithm beca there isn't a one-to-one mapping of logical to virtual pages Memory Management Page 23 of 44 Memory Management Page 24 of 44 4

Translation Lookaside Buffer Every virtual memory reference cas two physical memory access Fetch page table entry Fetch data Use special cache for page table TLB Translation Lookaside Buffer (continued) Memory Management Page 25 of 44 Memory Management Page 26 of 44 Translation Lookaside Buffer (continued) Complexity! Virtual address translated to a physical address Reference to page table might be in TLB, main memory, or disk Referenced word may be in cache, main memory, or disk If referenced word is on disk, it must be copied to main memory If in main memory or on disk, block must be loaded to cache and cache table must be updated TLB and Cache Operation Memory Management Page 27 of 44 Memory Management Page 28 of 44 Segmentation Paging is not (usually) visible to the programmer Segmentation is visible to the programmer Usually different segments allocated to program and data May be a number of program and data segments Advantages of Segmentation Simplifies handling of growing data structures O/S will expand or contract the segment as needed Allows programs to be altered and recompiled independently, without re-linking and re-loading Lends itself to sharing among processes Lends itself to protection since O/S can specify certain privileges on a segment-by-segment basis Some systems combine segmentation with paging Memory Management Page 29 of 44 Memory Management Page 30 of 44 5

Recursion Many complex algorithmic functions can be broken into a repetitive application of a simple algorithm. The typical recursion function begins with an initial value of n which is decremented with each recursive call until the last call reaches a terminal value of n. A recursive function contains a call to itself. "Definition of recursion: See recursion" Recursion Factorial Non-Recursive Function: int factorial(int n) int return_val = 1; for (int i = 1; i <= n; i++) return_val = return_val * i; return return_val; Recursive Function: int rfactorial(int n) if ((n == 1) (n == 0)) return (1); else return (n*rfactorial(n - 1)); Memory Management Page 31 of 44 Memory Management Page 32 of 44 Recursion Fibonacci Numbers "f(i) = f(i 1) + f(i 2)" Non-Recursive Function: int fibonacci(int n) int fibval_i = 1; int fibval_i_minus_1 = 0; int fibval_i_minus_2 = 0; if ((n == 0) (n == 1)) return n; else for (int i = 2; i <= n; i++) fibval_i_minus_2 = fibval_i_minus_1; fibval_i_minus_1 = fibval_i; fibval_i = fibval_i_minus_1 + fibval_i_minus_2; return fibval_i; Recursion Fibonacci Numbers (continued) Recursive Function: int rfibonacci(int n) if ((n == 0) (n == 1)) return n; else return rfibonacci(n - 1) + rfibonacci(n - 2); Memory Management Page 33 of 44 Memory Management Page 34 of 44 Comparing Recursive and Non- Recursive Functions Non-recursive function has more variables. Where does recursive function store values. Non-recursive function has more code recursive requires less code and therefore less memory. -Class Exercise groups, discuss how recursion might affect an operating system Compare & contrast iterative vs. recursion algorithms in terms of growth/memory usage Memory Management Page 35 of 44 Memory Management Page 36 of 44 6

Pentium II Hardware for segmentation and paging Unsegmented unpaged virtual address = physical address Low complexity High performance Unsegmented paged Memory viewed as paged linear address space Protection and management via paging Berkeley UNIX Pentium II (continued) Segmented unpaged Collection of local address spaces Protection to single byte level Translation table needed is on chip when segment is in memory Segmented paged Segmentation d to define logical memory partitions subject to access control Paging manages allocation of memory within partitions Unix System V Memory Management Page 37 of 44 Memory Management Page 38 of 44 Pentium II Segmentation Each virtual address is 16-bit segment and 32- bit offset 2 bits of segment are protection mechanism 14 bits specify segment Unsegmented virtual memory 2 32 = 4Gbytes Segmented 2 46 =64 terabytes Can be larger depends on which process is active Half (8K segments of 4Gbytes) is global Half is local and distinct for each process Pentium II Protection Protection bits give 4 levels of privilege 0 most protected, 3 least Use of levels software dependent Usually level 3 is for applications, level 1 for O/S and level 0 for kernel (level 2 not d) Level 2 may be d for apps that have internal security, e.g., database Some instructions only work in level 0 Memory Management Page 39 of 44 Memory Management Page 40 of 44 Pentium II Paging Segmentation may be disabled in which case linear address space is d Two level page table lookup First, page directory 1024 entries max Splits 4G linear memory into 1024 page groups of 4Mbyte Each page table has 1024 entries corresponding to 4Kbyte pages Can one page directory for all processes, one per process or mixture Page directory for current process always in memory Use TLB holding 32 page table entries Two page sizes available 4k or 4M Pentium Segment/Paging Operation Memory Management Page 41 of 44 Memory Management Page 42 of 44 7

PowerPC Memory Management Hardware 32 bit paging with simple segmentation 64 bit paging with more powerful segmentation Or, both do block address translation Map 4 large blocks of instructions & 4 of memory to bypass paging e.g. OS tables or graphics frame buffers 32 bit effective address 12 bit byte selector 4kbyte pages 16 bit page id 64k pages per segment 4 bits indicate one of 16 segment registers Segment registers under OS control PowerPC 32-bit Memory Management Formats Memory Management Page 43 of 44 Memory Management Page 44 of 44 PowerPC 32-bit Address Translation Memory Management Page 45 of 44 8