Shear and Moment Reactions - Linear Static Analysis with RBE3

Similar documents
Load Analysis of a Beam (using a point force and moment)

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Normal Modes - Rigid Element Analysis with RBE2 and CONM2

Alternate Bar Orientations

Rigid Element Analysis with RBAR

Rigid Element Analysis with RBE2 and CONM2

APPENDIX B. PBEAML Exercise. MSC.Nastran 105 Exercise Workbook B-1

Modal Analysis of a Beam (SI Units)

Modal Analysis of Interpolation Constraint Elements and Concentrated Mass

Elastic Stability of a Plate

Elasto-Plastic Deformation of a Thin Plate

Linear Buckling Load Analysis (without spring)

Modal Analysis of a Flat Plate

Nonlinear Creep Analysis

Linear Static Analysis of a Spring Element (CELAS)

WORKSHOP 33 A1 A2 A1. Subcase 1 4 Subcase 2 X: -16,000 lbs. X: 16,000 lbs Y: -12,000 lbs. Y: -12,000 lbs. Objectives:

Modal Analysis of A Flat Plate using Static Reduction

Elasto-Plastic Deformation of a Truss Structure

Spring Element with Nonlinear Analysis Parameters (Multi-Step Analysis)

Normal Modes with Differential Stiffness

Spring Element with Nonlinear Analysis Parameters (filter using restart)

Linear Static Analysis of a Simply-Supported Truss

Linear Static Analysis of a Simply-Supported Truss

The Essence of Result Post- Processing

Direct Transient Response Analysis

Modal Transient Response Analysis

Direct Transient Response Analysis

Restarting a Linear Static Analysis of a Simply- Supported Stiffened Plate

Modal Transient Response Analysis

Modal Transient Response Analysis

Large-Scale Deformation of a Hyperelastic Material

Normal Modes Analysis of a Simply-Supported Stiffened Plate

Stiffened Plate With Pressure Loading

Linear Bifurcation Buckling Analysis of Thin Plate

Helical Spring. Supplementary Exercise - 6. Objective: Develop model of a helical spring

Shell-to-Solid Element Connector(RSSCON)

Post-Buckling Analysis of a Thin Plate

Engine Gasket Model Instructions

Sliding Block LESSON 26. Objectives: Demonstrate the use of Contact LBCs in a simple exercise.

Transient Response of a Rocket

Rigid Element Analysis with RBE2 and CONM2

Sliding Split Tube Telescope

Multi-Step Analysis of a Cantilever Beam

Linear Buckling Analysis of a Plate

Introduction to MSC.Patran

Geometric Linear Analysis of a Cantilever Beam

Modeling a Shell to a Solid Element Transition

Direct Transient Response with Base Excitation

Materials, Load Cases and LBC Assignment

Post Processing of Displacement Results

Cylinder with T-Beam Stiffeners

Linear Static Analysis for a 3-D Slideline Contact

Static and Normal Mode Analysis of a Space Satellite

Finite Element Analysis Using NEi Nastran

Load Lug Model EXERCISE 6. Objective: Write a function to apply the loads and element properties to the finite element mesh of the lug.

MULTI-SPRING REPRESENTATION OF FASTENERS FOR MSC/NASTRAN MODELING

Spatial Variation of Physical Properties

Analysis of a Tension Coupon

Nonlinear Creep Analysis

Post-Processing Modal Results of a Space Satellite

Modal Analysis of A Flat Plate using Static Reduction

Linear Buckling Load Analysis (without spring)

Linear Static Analysis of a Simply-Supported Stiffened Plate

Static and Normal Mode Analysis of a Space Satellite

Varying Thickness-Tapered

Post-Processing Static Results of a Space Satellite

Verification and Property Assignment

Spatial Variation of Physical Properties

Heat Transfer Analysis of a Pipe

Building the Finite Element Model of a Space Satellite

Linear and Nonlinear Analysis of a Cantilever Beam

Spring Element with Nonlinear Analysis Parameters (large displacements off)

Merging Databases LESSON 2. Objectives: Construct two databases which have distinct similarities and differences.

Thermal Analysis Using MSC.Nastran

Using Groups and Lists

Interface with FE programs

Post Processing of Displacement Results

Mass Properties Calculations

Building the Finite Element Model of a Space Satellite

COMPUTER AIDED ENGINEERING. Part-1

Elasto-Plastic Deformation of a Truss Structure

Analysis of a Tension Coupon

Importing Results using a Results Template

MSC.Nastran Implicit Nonlinear (SOL600) Nonlinear Structural Analysis. Technical Workshop

2-D Slideline Contact

MSC.Patran s Freebody Tool. Isaac Newton s First and Favorite

2: Static analysis of a plate

Importing Geometry from an IGES file

Importing a PATRAN 2.5 Model into P3

FINITE ELEMENT ANALYSIS OF A PROPPED CANTILEVER BEAM

Analysis Steps 1. Start Abaqus and choose to create a new model database

An Integrated Approach to Random Analysis Using MSC/PATRAN with MSC/NASTRAN

EXERCISE 4. Create Lug Geometry. Objective: Write a function to create the geometry of the lug. PATRAN 304 Exercise Workbook 4-1

MSC/PATRAN LAMINATE MODELER COURSE PAT 325 Workbook

Modal Transient Response Analysis

Two Dimensional Truss

Lateral Loading of Suction Pile in 3D

A simple Topology Optimization Example. with MD R2 Patran

Figure E3-1 A plane struss structure under applied loading. Start MARC Designer. From the main menu, select STATIC STRESS ANALYSIS.

Transcription:

WORKSHOP 10a Shear and Moment Reactions - Linear Static Analysis with RBE3 250 10 15 M16x2 bolts F = 16 kn C B O 60 60 200 D A Objectives: 75 75 50 300 Create a geometric representation of the bolts. Use the geometry model to define an analysis model comprised of bar elements. Idealize a rigid end using RBE3 elements. Run an MSC.Nastran linear static analysis. Visualize analysis results. MSC.Nastran 105 Exercise Workbook 10a-1

10a-2 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Model Description: The goal of the example is to analyze the shear and moment reactions at the four bolts by using RBE3 elements, instead of drawing Figure 10a10a.1. Force F and moments that exist on Figure 10a.1 will be applied at point O. Below in Figure 10a.1 is a diagram of a rectangular steel bar cantilevered to a steel channel using four bolts. There is an external 16 kn load appled, what is the resultant load on each bolt. Figure 10a.1 - Diagram and Dimension of Bolts and Fixture 250 10 15 M16 x2 bolts F = 16 kn C B O 60 60 200 D A 75 75 50 300 Table 10a.1 - Vaules for Bolt Model Outer Radius Inner Radius 2 mm 1.9 mm Elastic Modulus 7.1E10 N/mm 2 Poisson s Ratio 0.3 MSC.Nastran 105 Exercise Workbook 10a-3

Figure 10a.2 - Diagram of Force Componets F C Y F C C B F C r C r B F B F B F B F D M X r A F D D r D V A F D F A F A F A Solution Point O, the centroid of the bolt group in Figure 10a.2, is found by symmetry. If a free-body diagram of the beam were constructed, the shear reaction V would pass through O and the moment reaction M would be about O. These reactions are: V = 16kN M = 16( 425) = 6800Nm In Figure 10a.2, the bolt group has been drawn to a larger scale and the reactions are shown. The distance from the centroid to the center of each bolt is: r = ( 60) 2 + ( 75) 2 = 96.0mm 10a-4 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 The primary shear load per bolt is: V 16 F = -- = ----- = 4kN n 4 Since the secondary shear froces are equal, the calculatons comes to: F = Mr ------- 4r 2 M 6800 = ---- = ----------------- = 17.7 kn 4r 4( 96.0) MSC.Nastran 105 Exercise Workbook 10a-5

Suggested Exercise Steps: Generate a geometry model of the four bolts and create finite element for each bolt. Create node 999 to represent point O. Define material (MAT1) and element (PORP1) properties. the fixed boundary constraints on each bolt. Create shear, and moment reactions at node 999. Idealize a rigid end connecting node 999 and one end of each bolt with rigid elements (RBE2). Prepare the model for linear static analysis (SOL 101). Generate an input file and submit it to the MSC.Nastran solver for normal modes analysis. Review the results. 10a-6 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Exercise Procedure: 1. Users who are not utilizing MSC.Patran for generating an input file should go to Step 16 otherwise, proceed to Step 2. 2. Create a new database called bolt_load.db File/New Database New Database Name bolt_load In the New Model Preference form set the following. : Tolerance Analysis code: Default MSC/NASTRAN 3. Activate the entity labels by selecting the Show Labels icon on the toolbar. Show Labels 4. Create curves to represent the bolts. Geometry Action: Create Object: Curve Method: XYZ Vector Coordinate List: <0 0 10> Auto Execute Origin Coordinates List: [75-60 0] Repeat Step 3, changing Origin Coordinates List to [75 60 0], [-75 60 0], and [-75-60 0]. Origin Coordinates List: [75 60 0] MSC.Nastran 105 Exercise Workbook 10a-7

Origin Coordinates List: [-75 60 0] Origin Coordinates List: [-75-60 0] To see the curves that was just created, change the view to Iso 1 View by selecting on this icon: Iso 1 View Figure 10a.3 - Geometry Model Of the Bolts 6 5 3 4 3 2 8 7 4 Y Z X 2 1 1 10a-8 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 5. Create the finite element model and mesh the curves. Finite Elements Action: Create Object: Mesh Type: Curve Glogal Edge Length: 10 Curve List: Curve 1:4 6. Node create node 999 and add to model. Finite Elements Action: Create Object: Node Type: Edit Node ID List: 999 Associate with Geometry Auto Execute Node Loocation List: [0 0 0] To see the node, node 999, use Node Size by clicking on this icon: Node Size MSC.Nastran 105 Exercise Workbook 10a-9

Figure 10a.4 - Geometry, Finite Elements, and Node 999 6 5 3 4 2 3 999 8 7 4 Y Z X 2 1 1 7. Now you will create the material properties for the plate. Materials Action: Create Object: Isotropic Method: Manual Input Material Name mat_1 Input Properties... Elastic Modulus 7.1E10 Poisson Ratio 0.3 Cancel 10a-10 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 8. Give the curves a 3D shape by using Properties. Properties Action: Dimension: 1D Create Type: Beam Property Set Name Input Properties... Material Name (Select from Material Property Sets box) Prop_1 m:mat_1 Bar Orientation: note: both lines are for Bar Orientation Asscoiate Beam Selection Node 999 Node Id Click the beam library icon: New Section Name: Prop_1 Choose Tube Section: Tube Section R1 2.0 R2 1.9 Select Members Curve 1:4 Add MSC.Nastran 105 Exercise Workbook 10a-11

9. Next, apply the boundary conditions to the model. Loads/BCs Action: Create Object: Displacement Type: Nodal New Set Name Input Data... 10. Now create the force on node 999. Fixed_ends Translations <T1 T2 T3> <0, 0, 0> Rotations <R1 R2 R3> <0, 0, 0> Select Application Region... Geometry Filter Curve List (See Figure D.3) Add Loads/BCs Geometry Point 1:7:2 Action: Create Object: Froce Type: Nodal New Set Name Input Data... Shear_Reaction Forces <F1 F2 F3> <0, -16, 0> 10a-12 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Select Application Region... Geometry Filter Curve List (See Figure D.4) Add FEM Node 999 11. the moment to the model. Loads/BCs Action: Create Object: Froce Type: Nodal New Set Name Input Data... Forces <F1 F2 F3> <0, 0, 0> Moment_Reaction Moment <M1 M2 M3> <0, 0, 6800> Select Application Region... Geometry Filter Curve List (See Figure D.4) Add FEM Node 999 MSC.Nastran 105 Exercise Workbook 10a-13

Figure 10a.5 - Froces and Boundry Conditions 6 3 123456 5 4 2 123456 3 16.00 6800. 999 8 4 123456 7 Y Z X 2 1 123456 1 12. Create the rigid element. Finite Elements Action: Create Object: MPC Type: RBE3 Define Terms... Create Dependent Auto Execute Node List Node 999 10a-14 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Select DOFs by holding the Shift key down while clicking with the left mouse button.. DOFs Create Independent Node List (See Figure D.4) DOFs Cancel UX UY UZ RX RY RZ Node 2:8:2 UX UY UZ MSC.Nastran 105 Exercise Workbook 10a-15

Figure 10a.6 - RBE3 Elements, Loads, and Boundary Conditions 6 3 123456 5 4 2 123456 3 16.00 6800. 999 8 4 123456 7 Y Z X 2 1 123456 1 13. Choose the desired analysis for Case1. Load Cases Action: Create Load Case Name: Asign/Prioritize Loads/BCs Select Loads/BCs to Add to Spreadsheet: Case_1 Displ_Fixed_ends Force_Shear_Reaction 14. Choose the desired analysis for Case2.. Load Cases Action: Create 10a-16 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Load Case Name: Asign/Prioritize Loads/BCs Select Loads/BCs to Add to Spreadsheet: Load/BC Name: Remove Selected Row Case_2 Force_Moment_Reaction Shear_Reaction 15. Now you are ready to run the analysis. Analysis Action: Analyze Object: Entire Model Method: Analysis Deck Jobname Solution Type... Solution Type Subcase Create... Available Subcases: Output Requests... Select Result Type Available Subcases: Output Requests... bolt_load Linear Static Case_1 Multi-Point Constraint Forces Element Forces Applied Load Grid Point Froce Balance (Click on each item onece to select.) Case_2 MSC.Nastran 105 Exercise Workbook 10a-17

Select Result Type Cancel Subcase Select... Subcases For Solution Sequence: 101 Subcases Selected: Multi-Point Constraint Forces Element Forces Applied Load Grid Point Froce Balance Case_1 Case_2 (Click on these to select.) Default (Click on this to deselect.) An MSC.Nastran input file called bolt_load.bdf will be generated. This process of translating your model into an input file is called the Forward Translation. The Forward Translation is complete when the Heartbeat turns green. MSC.Patran Users should proceed to Step 16. 10a-18 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Generating an input file for MSC.Nastran Users: MSC.Nastran users can generate an input file using the data from table 10a.1 and figure 10a.1. The result should be similar to the output below. 16. MSC.Nastran input file: bolt_load.bdf ID SEMINAR, APPENDIX D SOL 101 TIME 600 CEND TITLE = Shear and Moment Reactions - Linear Static Analysis with RBE3 SUBCASE 1 SPC = 2 LOAD = 2 DISPLACEMENT(SORT1,REAL)=ALL SPCFORCES(SORT1,REAL)=ALL OLOAD(SORT1,REAL)=ALL MPCFORCES(SORT1,REAL)=ALL GPFORCE=ALL STRESS(SORT1,REAL,VONMISES,BILIN)=ALL FORCE(SORT1,REAL,BILIN)=ALL SUBCASE 2 SPC = 2 LOAD = 4 DISPLACEMENT(SORT1,REAL)=ALL SPCFORCES(SORT1,REAL)=ALL OLOAD(SORT1,REAL)=ALL MPCFORCES(SORT1,REAL)=ALL GPFORCE=ALL STRESS(SORT1,REAL,VONMISES,BILIN)=ALL FORCE(SORT1,REAL,BILIN)=ALL BEGIN BULK PARAM POST -1 PARAM PATVER 3. PARAM AUTOSPC YES PARAM INREL 0 PARAM ALTRED NO PARAM COUPMASS -1 PARAM K6ROT 0. PARAM WTMASS 1. PARAM,NOCOMPS,-1 PARAM PRTMAXIM YES PBARL 1 1 TUBE + A + A 2. 1.9 CBAR 1 1 1 2 999 CBAR 2 1 3 4 999 CBAR 3 1 5 6 999 CBAR 4 1 7 8 999 MAT1* 1 7.1+10.3 * B * B RBE3 5 999 123456 1. 123 2 4 + C + C 6 8 GRID 1 75. -60. 0. GRID 2 75. -60. 10. GRID 3 75. 60. 0. GRID 4 75. 60. 10. MSC.Nastran 105 Exercise Workbook 10a-19

GRID 5-75. 60. 0. GRID 6-75. 60. 10. GRID 7-75. -60. 0. GRID 8-75. -60. 10. GRID 999 0. 0. 10. SPCADD 2 3 LOAD 2 1. 1. 1 LOAD 4 1. 1. 3 1. 5 SPC1 3 123456 1 3 5 7 FORCE 1 999 0 16. 0. -1. 0. FORCE 3 999 0 0..57735.57735.57735 MOMENT 5 999 0 6800. 0. 0. 1. ENDDATA 10a-20 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Submit the input file for analysis: 17. Submit the input file to MSC.Nastran for analysis. 17a. To submit the MSC.Patran.bdf file for analysis, find an available UNIX shell window. At the command prompt enter: nastran bolt_load.bdf scr=yes. Monitor the run using the UNIX ps command. 17b. To submit the MSC.Nastran.dat file for analysis, find an available UNIX shell window. At the command prompt enter: nastran bolt_load scr=yes. Monitor the run using the UNIX ps command. 18. When the run is completed, edit the bolt_load.f06 file and search for the word FATAL. If no matches exist, search for the word WARNING. Determine whether existing WARNING messages indicate modeling errors. 19. While still editing bolt_load.f06, search for the word: M U L T (spaces are necessary) Comparison of Results: 20. Compare the results obtained in the.f06 file with the results onthe following page: MSC.Nastran 105 Exercise Workbook 10a-21

10a-22 MSC.Nastran 105 Exercise Workbook F O R C E S O F M U L T I P O I N T C O N S T R A I N T POINT ID. TYPE T1 T2 T3 R1 R2 R3 2 G 0.0-4.000000E+00 0.0 0.0 0.0 0.0 4 G 0.0-4.000000E+00 0.0 0.0 0.0 0.0 6 G 0.0-4.000000E+00 0.0 0.0 0.0 0.0 8 G 0.0-4.000000E+00 0.0 0.0 0.0 0.0 999 G 0.0 1.600000E+01 0.0 0.0 0.0 0.0 SUBCASE 1 CASE_2 0 SUBCAS F O R C E S O F M U L T I P O I N T C O N S T R A I N T POINT ID. TYPE T1 T2 T3 R1 R2 R3 2 G 1.105691E+01 1.382114E+01 0.0 0.0 0.0 0.0 4 G -1.105691E+01 1.382114E+01 0.0 0.0 0.0 0.0 6 G -1.105691E+01-1.382114E+01 0.0 0.0 0.0 0.0 8 G 1.105691E+01-1.382114E+01 0.0 0.0 0.0 0.0 999 G 0.0 0.0 0.0 0.0 0.0-6.800000E+03

WORKSHOP 10a Linear Static Analyis with RBE3 21. Result Verification Subcase 1 (Point 2) T 2 = -4kN (F = 4 kn, Pg.5) Subcase 2 (Point 2) T 1 = 11.057kN T 2 = 13.82kN F = ( T 1 ) 2 + ( T 2 ) 2 = ( 11.057) 2 + ( 13.82) 2 F = 17.70kN (F = 17.7kN, Pg. 5) MSC.Nastran 105 Exercise Workbook 10a-23

22. MSC.Nastran Users have finished this exercise. MSC.Patran Users should proceed to the next step. 23. Proceed with the Reverse Translation process, that is importing the bolt_load.op2 results file into MSC.Patran. To do this, return to the Analysis form and proceed as follows: Analysis Action: Read Output2 Object: Result Entities Method Translate Select Results File... Select Results File bolt_load.op2 24. When the translation is complete bring up the Results form. Select Fringe to view different results with color spectrum analysis. Results Action: Create Object: Fringe To select results, click on the Select Results icon. Select Result Select Result Case(s): Select Fringe Result: Case_1, Static Subcase Grid Point Forces, Total To change the display attributes of the plot, click on the Display Attributes icon. Display Attributes 10a-24 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 Style: Continus Element Shrink Factor 0.05 Display: Element Edges Style: Label Style... Label Format Exponential Significant figures 5 Select Deformation to view physical changes of the model. Results Action: Create Object: Deformation To select results, click on the Select Results icon. Select Result Select Result Case(s): Select Deformation Result: Case_1, Static Subcase Grid Point Forces, Total To change the display attributes of the plot, click on the Display Attributes icon. Display Attributes Show Undeformed Show Max/Min Label MSC.Nastran 105 Exercise Workbook 10a-25

25. If you wish to reset your display graphics to the state it was in before you began post-processing your model, remember to select the Reset Graphics icon. Reset Graphics To view different results, after Reset Graphics repeat step 23 and change Result Case(s), Fringe Result, and Deformation Result. Quit MSC.Patran when you are finished with this exercise. 10a-26 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 A r A B l r B C Bolt Centroid y x l D M = F A r A + F B r B + F C r C + F D r D Since F A ------- r A F B F -------- C = = -------- = r B r C F D -------- r D F n = Mr ---------------------------------------- n 2 2 2 2 r A + r B + r C + r D Reference: Shigley & Mischke, Mechanical Engineering Design, Fifth Edition McGraw-Hill Book Company MSC.Nastran 105 Exercise Workbook 10a-27

Sample Calculation: F A = ( 1000 0.5) ( 0.5 2 + 0.1667 2 + 0.1667 2 + 0.5 2 ) = = ( 1000 0.5) ( 0.555) 900 F B = --------------------------------------------------------------------------------- ( 1000 0.1667) ( 0.5 2 + 0.1667 2 + 0.1667 2 + 0.5 2 ) = 300 10a-28 MSC.Nastran 105 Exercise Workbook

WORKSHOP 10a Linear Static Analyis with RBE3 SOL 101 CEND ECHO = NONE SUBCASE 1 SPC 1 LOAD 1 MPCFORCE=all SUBCASE 2 SPC = 1 LOAD = 2 MPCFORCE=all SUBCASE 3 SPC = 1 LOAD = 3 MPCFORCE=all SUBCASE 4 SPC = 1 LOAD = 4 MPCFORCE=all SUBCASE 5 SPC 1 LOAD 5 MPCFORCE=all SUBCASE 6 SPC 1 LOAD 6 MPCFORCE=all BEGIN BULK PARAMPOST - PSHELL 1 1.1 1 1 CQUAD4 1 1 1 2 6 5 CQUAD4 2 1 2 3 7 6 CQUAD4 3 1 3 4 8 7 CQUAD4 4 1 5 6 10 9 CQUAD4 5 1 6 7 11 10 CQUAD4 6 1 7 8 12 11 CQUAD4 7 1 9 10 14 13 CQUAD4 8 1 10 11 15 14 CQUAD4 9 1 11 12 16 15 MAT1 1 1.+7.3 RBE3 10 999 123456 1. 12354 8 + A + A 12 16 GRID 1 0. 0. 0. GRID 2.333333 0. 0. GRID 3.666667 0. 0. GRID 4 1. 0. 0. GRID 5 0..333333 0. GRID 6.333333.333333 0. GRID 7.666667.333333 0. GRID 8 1..333333 0. GRID 9 0..666667 0. GRID 10.333333.666667 0. MSC.Nastran 105 Exercise Workbook 10a-29

GRID 11.666667.666667 0. GRID 12 1..666667 0. GRID 3 0. 1. 0. GRID 4.333333 1. 0. GRID 5.666667 1. 0. GRID 16 1. 1. 0. GRID 999 1..5 0. spci 1 123456 1 5 9 13 FORCE 1 999 0 1000. 1. 0. 0. FORCE 2 999 0 1000. 0. 1. 0. FORCE 3 999 0 1000. 0. 0. 1. MOMENT 4 999 0 1000. 1. 0. 0. MOMENT 5 999 0 1000. 0. 1. 0. MOMENT 6 999 0 1000. 0. 0. 1. ENDDATA Question: What happen if RBE3 is modified to reflect the following independent DOFs? 10a-30 MSC.Nastran 105 Exercise Workbook

MSC.Nastran 105 Exercise Workbook 10a-31 0 SUBCASE 1 F 0 R C E S 0 F M U L T I P O I N T C 0 N S T R A I N T POINT ID. TYPE Tl T2 T3 Rl R2 R3 4 G 2.500000E+02 0.0 0.0 0.0 0.0 0.0 8 G 2.500000E+02 0.0 0.0 0.0 0.0 0.0 12 G 2.500000E+02 0.0 0.0 0.0 0.0 0.0 16 G 2.500000E+02 0.0 0.0 0.0 0.0 0.0 999 G -1.00000E+03 0.0 0.0 0.0 0.0 0.0 0 SUBCASE 2 F 0 R C E S 0 F M U L T I P O I N T C 0 N S T R A I N T POINT ID. TYPE Tl T2 T3 Rl R2 R3 4 G 0.0 2.500000E+02 0.0 0.0 0.0 0.0 8 G 0.0 2.500000E+02 0.0 0.0 0.0 0.0 12 G 0.0 2.500000E+02 0.0 0.0 0.0 0.0 16 G 0.0 2.500000E+02 0.0 0.0 0.0 0.0 999 G 0.0-1.00000E+03 0.0 0.0 0.0 0.0 0 SUBCASE 3 F 0 R C E S 0 F M U L T I P O I N T C 0 N S T R A I N T POINT ID. TYPE Tl T2 T3 Rl R2 R3 4 G 0.0 0.0 2.500000E+02 0.0 0.0 0.0 8 G 0.0 0.0 2.500000E+02 0.0 0.0 0.0 12 G 0.0 0.0 2.500000E+02 0.0 0.0 0.0 16 G 0.0 0.0 2.500000E+02 0.0 0.0 0.0 999 G 0.0 0.0-1.00000E+03 0.0 0.0 0.0 WORKSHOP 10a Linear Static Analyis with RBE3

10a-32 MSC.Nastran 105 Exercise Workbook 0 SUBCASE 4 F 0 R C E S 0 F M U L T I P O I N TC 0 N S T R A I N T POINT ID. TYPE Tl T2 T3 Rl R2 R3 4 G 0.0 0.0-8.999996E+02 0.0 0.0 0.0 8 G 0.0 0.0-3.000005E+02 0.0 0.0 0.0 12 G 0.0 0.0 3.000005E+02 0.0 0.0 0.0 16 G 0.0 0.0 8.999996E+02 0.0 0.0 0.0 999 G 0.0 0.0 0.0-1.000000E+03 0.0 0.0 0 SUBCASE 5 F 0 R C E S 0 F M U L T I P O I N TC 0 N S T R A I N T POINT ID. TYPE Tl T2 T3 Rl R2 R3 4 G 0.0 0.0 0.0 0.0 2.500000E+02 0.0 8 G 0.0 0.0 0.0 0.0 2.500000E+02 0.0 12 G 0.0 0.0 0.0 0.0 2.500000E+02 0.0 16 G 0.0 0.0 0.0 0.0 2.500000E+02 0.0 999 G 0.0 0.0 0.0 0.0-1.000000E+03 0.0 0 SUBCASE 6 F 0 R C E S 0 F M U L T I P O I N TC 0 N S T R A I N T POINT ID. TYPE TI T2 T3 Rl R2 R3 4 G 8.999996E+02 0.0 0.0 0.0 0.0 0.0 8 G 3.000005E+02 0.0 0.0 0.0 0.0 0.0 12 G -3.000005E+02 0.0 0.0 0.0 0.0 0.0 16 G -8.999996E+02 0.0 0.0 0.0 0.0 0.0 999 G 0.0 0.0 0.0 0.0 0.0-1.00000000E+03