02_CRADLE 03_CSSRC 04_HSVA

Similar documents
Potsdam Propeller Test Case (PPTC)

Cavitation Simulations of the Potsdam Propeller Test Case

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard

Axisymmetric Viscous Flow Modeling for Meridional Flow Calculation in Aerodynamic Design of Half-Ducted Blade Rows

Development of an Integrated Computational Simulation Method for Fluid Driven Structure Movement and Acoustics

Application of Homogeneous and Inhomogeneous Two-Phase Models to a Cavitating Tip Leakage Vortex on a NACA0009 Hydrofoil

CFD VALIDATION FOR SURFACE COMBATANT 5415 STRAIGHT AHEAD AND STATIC DRIFT 20 DEGREE CONDITIONS USING STAR CCM+

Investigation of cross flow over a circular cylinder at low Re using the Immersed Boundary Method (IBM)

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

The Development of a Navier-Stokes Flow Solver with Preconditioning Method on Unstructured Grids

Calculate a solution using the pressure-based coupled solver.

Simulations of the vortex in the Dellenback abrupt expansion, resembling a hydro turbine draft tube operating at part-load

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

Computational Fluid Dynamics (CFD) for Built Environment

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality

Tutorial 17. Using the Mixture and Eulerian Multiphase Models

Use of STAR-CCM+ in Marine and Off-Shore Engineering - Key Features and Future Developments - M. Perić, F. Schäfer, E. Schreck & J.

CFD Simulation of Cavitation in an Internal Gear Pump

Numerical Simulation of 3-D Cavitation behind a Disk Cavitator Using OpenFOAM

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

A Comparison of Panel Method and RANS Calculations for a Ducted Propeller System in Open-Water

S-ducts and Nozzles: STAR-CCM+ at the Propulsion Aerodynamics Workshop. Peter Burns, CD-adapco

Study on Unsteady Cavitating Flow Simulation around Marine Propeller using a RANS CFD code

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

Introduction to ANSYS CFX

Reproducibility of Complex Turbulent Flow Using Commercially-Available CFD Software

CIBSE Application Manual AM11 Building Performance Modelling Chapter 6: Ventilation Modelling

Introduction To FLUENT. David H. Porter Minnesota Supercomputer Institute University of Minnesota

Numerische Untersuchungen von Windkraftanlagen: Leistung, Wake und Steuerungsstrategien

RANS COMPUTATION OF RIBBED DUCT FLOW USING FLUENT AND COMPARING TO LES

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV)

Aero-Vibro Acoustics For Wind Noise Application. David Roche and Ashok Khondge ANSYS, Inc.

cuibm A GPU Accelerated Immersed Boundary Method

A fully implicit Navier-Stokes algorithm for unstructured grids incorporating a two-equation turbulence model

Hydro-elastic analysis of a propeller using CFD and FEM co-simulation

Possibility of Implicit LES for Two-Dimensional Incompressible Lid-Driven Cavity Flow Based on COMSOL Multiphysics

SHAPE pilot Monotricat SRL: Hull resistance simulations for an innovative hull using OpenFOAM

NIA CFD Seminar, October 4, 2011 Hyperbolic Seminar, NASA Langley, October 17, 2011

Validation of a Multi-physics Simulation Approach for Insertion Electromagnetic Flowmeter Design Application

STAR-CCM+: Wind loading on buildings SPRING 2018

NUMERICAL SIMULATION OF FLOW FIELD IN AN ANNULAR TURBINE STATOR WITH FILM COOLING

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD)

Ansys Fluent R Michele Andreoli

EVALUATION OF A GENERAL CFD-SOLVER FOR A MICRO-SCALE URBAN FLOW

CFD in COMSOL Multiphysics

Offshore Platform Fluid Structure Interaction (FSI) Simulation

Taming OpenFOAM for Ship Hydrodynamics Applications

Numerical Study of Turbulent Flow over Backward-Facing Step with Different Turbulence Models

CDA Workshop Physical & Numerical Hydraulic Modelling. STAR-CCM+ Presentation

DNV GL s 16th Technology Week

Computational Study of Laminar Flowfield around a Square Cylinder using Ansys Fluent

SIMULATION OF PROPELLER-SHIP HULL INTERACTION USING AN INTEGRATED VLM/RANSE SOLVER MODELING.

Tutorial: Hydrodynamics of Bubble Column Reactors

CFD WORKSHOP TOKYO 2005

Turbulence Modeling. Gilles Eggenspieler, Ph.D. Senior Product Manager

Recent & Upcoming Features in STAR-CCM+ for Aerospace Applications Deryl Snyder, Ph.D.

OPEN-WATER COMPUTATIONS OF A MARINE PROPELLER USING OPENFOAM

Solver Settings. Introductory FLUENT Training ANSYS, Inc. All rights reserved. ANSYS, Inc. Proprietary

THE APPLICATION OF AN ATMOSPHERIC BOUNDARY LAYER TO EVALUATE TRUCK AERODYNAMICS IN CFD

Simulation of Turbulent Flow in an Asymmetric Diffuser

FIDAP Fidap 8.5 Page 1 of 6

Recent Advances in Modelling Wind Parks in STAR CCM+ Steve Evans

Effect of Internal Grids Structure on the Numerical Prediction of the Free Surface Flow around Wigley Hull Form

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

Profile Catalogue for Airfoil Sections Based on 3D Computations

Flow and Heat Transfer in a Mixing Elbow

A STUDY ON THE UNSTEADY AERODYNAMICS OF PROJECTILES IN OVERTAKING BLAST FLOWFIELDS

RANSE Simulations of Surface Piercing Propellers

Computational Fluid Dynamics for Engineers

Numerical Simulation of the Self-Propulsion Model Tests

Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics At Low Reynolds Number

Numerical and theoretical analysis of shock waves interaction and reflection

Effects of bell mouth geometries on the flow rate of centrifugal blowers

SIMULATION OF FLOW AROUND KCS-HULL

Preliminary Spray Cooling Simulations Using a Full-Cone Water Spray

The High Speed Planing Characteristics of A Rectangular Flat Plate of Fixed Trim and Draft

ON THE NUMERICAL MODELING OF IMPINGING JET HEAT TRANSFER

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim

Direct Numerical Simulation of a Low Pressure Turbine Cascade. Christoph Müller

Comparison of CFD Simulation of a Hyundai I20 Model with Four Different Turbulence Models

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

Simulation of a Free Surface Flow over a Container Vessel Using CFD

Numerical Simulation of Fuel Filling with Volume of Fluid

Keywords: CFD, aerofoil, URANS modeling, flapping, reciprocating movement

ITTC Recommended Procedures and Guidelines

Current status in CFD Resistance & Propulsion

Solved with COMSOL Multiphysics 4.2

Coastal impact of a tsunami Review of numerical models

A COUPLED FINITE VOLUME SOLVER FOR THE SOLUTION OF LAMINAR TURBULENT INCOMPRESSIBLE AND COMPRESSIBLE FLOWS

Coupled Analysis of FSI

Express Introductory Training in ANSYS Fluent Workshop 07 Tank Flushing

Numerical Simulation Study on Aerodynamic Characteristics of the High Speed Train under Crosswind

Application of CFD to Industrial Safety Studies (with Prediction Accuracy and Error estimations)

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Transcription:

A Computational Domain Domain Topology A1 1 steady domain 1 rotating domain Multiple domains Grid coupling technique A2 Sliding Overset Multiple ref. Frames B Propeller Representation Resolution B1 Geometrically resolved Unresolved + Body forces Number of considered blades B2 Complete propeller Single blade + periodicity (matching grids) Single blade + periodicity (non matching grids) C Computational Grid (if both C parts are used: Fied Domain/Part) Type C1 Structured Unstructured Local grid refinement C2 Possible used here Possible not used here Not possible

Primary volume elements C3 Tetraheder Heahedral Polyhedral Primary surface elements C4 Quads Triangles Mied Wall boundary layer type C5 Prism layer He layer Poly layer C6 Blade meshing Homogeneous for all blades One blade refined C7 Number of cells across boundary layer 5 20 5 5 0 4 34 9 20 6 28 Y + value at C8 r/r = 0,4 118 <1 30 30 120 100 0,2 20 1 30 3 0,28 30 ~1 r/r = 0,7 140 <1 30 30 120 150 0,3 30 1 30 3,5 0,42 40 ~1 r/r = 0,9 160 <1 30 30 120 120 0,4 40 1 50 4,2 0,62 50 ~1

C9 Averaged amount of cells per resolved blade 01_BERG 2.762.945 165.000 235.000 235.000 658.000 42.000 12.700 22.000 254.440 90.000 2.500.000 328.380 261.066 26.400 200.000 4.269.568 Averaged amount of nodes per resolved blade C10 65.439 275.680 C Computational Grid (if both C parts are used: Rotating Domain/Part) Type C1 Structured Unstructured Local grid refinement C2 Possible used here Possible not used here Not possible Primary volume elements C3 Tetraheder Heahedral Polyhedral Primary surface elements C4 Quads Traingles Mied

Wall boundary layer type C5 Prism layer He layer Poly layer C6 Blade meshing Homogeneous for all blades One blade refined C7 Number of cells across boundary layer Y + value at C8 r/r = 0,4 22 51 r/r = 0,7 29 32 r/r = 0,9 37 30 Averaged amount of cells per resolved blade C9 1.894.314 2.316.306 C10 Averaged amount of nodes per resolved blade 586.057 2.360.214

D Normalized Dimensions of the Physical Domain (if both D parts are used: Fied domain) D1 for all domains X_min / D 5,58 12 2,28 2,28 3 2 2 2,28 2 0,5 2 2,3 2,3 4 12 5 X_ma / D 13,42 4 8 8 4 3 6 6 4 1 6 5,3 5,3 10 6 10 for non cyl. Domains D2a Y_min / D 4 1,2 1,2 6 Y_ma / D 4 1,2 1,2 6 for non cyl. Domains D3a Z_min / D 4 1,2 1,2 6 Z_ma / D 1,5 1,2 1,2 6 for cyl. Domains 3 3 1,35 3 1,2 0,34 1,34 5 5 5 D2b open water 3 4 cavitation tunnel 1,36 1,35 D Normalized Dimensions of the Physical Domain (if both D parts are used: Rotating domain) for all domains D1 X_min / D 0,7 0,41 X_ma / D 0,6 0,31 for non cyl. Domains D2a Y_min / D Y_ma / D for non cyl. Domains D3a Z_min / D Z_ma / D for cyl. Domains 0,6 0,6 D2b owt. cav

E Numerical Approimation Finite Approimation Scheme (Fluid) Finite volume Navier Stokes E1 Finite element Navier Stokes Mied FV / FE Navier Stokes None Finite Approimation Scheme (Propeller) E2 Navier Stokes BEM VLM Coordinates E3 Cartesian Cylindrical fied Cylindrical rotating Convection scheme (momentum eq.) high order upwind E4 2nd order centered high order centered blended UDS / CDS E5 limited / blended downwind ( compressive) Transient approimation implicit E6 eplicit Special Vorte Treatment Technique: none refinement

E7 E8 E9 E10 01_BERG Spatial order of accuracy (neglecting BC) 2nd order 30 % 1st order; 70 % 2nd order Temporal order of accuracy 1st order 2nd order Time step steady quasi steady 0,5deg / Cycle 3,02E 05 1,00E 04 5,00E 05 Equivalent angle of rot. for a time step 0,25 1 1,00E+00 7,85E10 03 [rad/timestep]

F Turbulence treatment Model name k omega k epsilon one equation model Reynolds stress transport model F1 algebraic stress model hybrid RANS / LES LES SST other (see reference) Inviscid or Laminar Transition F2 Fully turbulent Modelled transition Fied transition Convection scheme (Turbulence Eqn.) 1st order upwind F3 high order upwind 2nd order centered high ordered centered blended UDS / CDS

G Boundary conditions Blade Slip flow (or Euler) G1 Laminar (no slip) Logarithmic Hybrid laminar / logarithmic Hub Slip flow (or Euler) G2 Laminar (no slip) Logarithmic Hybrid laminar / logarithmic G3 Inlet Fied Velocity G4 Fied Pressure Outlet Fied Velocity Fied Pressure Characteristic / Far Field BC Etrapolate / Far Field BC Outer domain Slip flow (or Euler) G5 Laminar (no slip) Logarithmic Hybrid laminar / logarithmic

H Computational Model Fluid H1 compressible incompressible Pressure H2 Equation of state pressure correction / projection scheme Two Phase flow treatment Euler / Euler VOF H3 Euler / Euler VOF (single Phase) Euler / Lagrange Euler / Euler I Cavitation Model Type Mass Transfer VOF Euler / Euler I1 Lagrangian bubble dynamics Thermodynamic equilibrium linear BEM Mass Transfer VOF in addition to Lagrange Author reference I2 Okuda and Ikohagi Merkle Zwart (2004) Initial (minimam) bubble diameter [mm] I3 1,00E 03 1,00E 06 5,00E 03

I4 Maimum bubble diameter [mm] 1,00E+00 Number of bubbles/m³ (nuclei number) I5 1,00E+08 1,00E+12 1,00E+13 Mass transfer / VOF interaction (for VOF) I6 RHS pressure / pc equation RHS and matri of pressure / pc equation I7 Vapor density [kg/m³] 0,02 0,02 0,02 0,03 0,6 0 0,02 Model acronym Kunz k Sauer I8 Zwart z Singhal s Merkle Senocak Condensation source term based on I9 Pressure difference Square root of pressure difference s, z other k Vaporisation source term based on I10 Pressure difference k Square root of pressure difference s, z others

I11 I12 I13 I14 I15 I16 I17 I18 01_BERG Condensation coefficient value 0,01 0,01 25 370 UniTriest Kunz 455 UniTriest Singhal 2,3E 04 s UniTriest Zwart 0,3 Vaporisation coefficient value 0,02 0,02 0,01 370 UniTriest Kunz 4100 UniTriest Singhal 0,4 UniTriest Zwart 300 Limitations to the source term Yes No Limitations to the vapor fraction Yes No Convection scheme 1st order upwind high order upwind 2nd order centered high order centered blended UDS / CDS limited / blended downwind ( compressive) Modification for turbulent flows Yes No Diffusion term employed Yes No Surface tension employed Yes s, z No k

[1] Walters, D.K., Leylek, J.H. (2004). A New Model for Boundary Layer Transition Using a Single Point RANS Approach, ASME Journal of Turbomachinery, 126, pp.193 202 Walters, D.K., Cokljat, D.(2008). A Three Equation Eddy Viscosity Model for Reynolds Averaged Navier Stokes Simulations of Transitional Flow, ASME J. of Fluids Eng., 130, 121401 [2] Okuda, K., Ikohagi, T. (1996). Numerical Simulation of Collapsing Behavior of Bubble Clouds, Trans. JSME (B) Vol. 62 No.603, pp.38 43 (in Japanese) Singhal, A. K., Athavale, M. M., Li, H., Jiang, Y. (2002). Mathematical basis and validation of the full cavitation model, Journal of Fluids Engineering 124, pp.617 624 [3] [4] [5] [6] [7] FreSCo+ FreSCo M. Abdel Maksoud, D. Haenel, and U. Lantermann. Modeling and computation of cavitation in vortical flowj. of Heat and Fluid Flow, 31(6):1065 1074, 2010 T. Rung, K. Woeckner, M. Manzke, J. Brunswig, C. Ulrich, and A. Stueck. Challenges and Perspectives for Maritime CFD Applications. Jahrbuch der Schiffbautechnischen Gesellschaft, 103. Band, 2009. CD Adapco StarCCM+ v 5.06 Menter, F. R. (1998). Two Equation Eddy Viscosity Turbulence Models for Engineering Applications,AIAA Journal, 32(8), p.p. 1598 1605. Menter, F. R. (1998). Two Equation Eddy Viscosity Turbulence Models for Engineering Applications,AIAA Journal, 32(8), p.p. 1598 1605. Kunz, R. F..,Boger, D. A., Stinebring, D. R., Chyczewski, T. S., Lindau, J. W., Gibeling, H. J., Venkateswaran, S., & Govindan, T.R. (2000). A preconditioned Navier Stokes method for twophase flows with application to cavitation prediction. Computers and Fluids 29(8), p.p. 849 875.

[8] [9] STARCCM+ Comet [10] Siikonen, T., 1995. An application of Roe's flu difference splitting for k turbulence model. International journal for numerical methods in fluids (21), pp. 1017 1039. Sipilä, T., Siikonen, T., Saisto, I., Martio, J., Reksoprodjo H., 2009. Cavitating Propeller Flows Predicted by RANS Solver with Structured Grid and Small Reynolds Number Turbulence Model Approach. Proceedings of the 7th international Symposium on Cavitation CAV2009. Paper No. 45. 11 pp. Ann Arbor, USA.