IMAGING CONCENTRATION PROFILE USING LASER BASED TOMOGRAPHY ADIE BIN MOHD. KHAFE

Similar documents
IMAGE RECONSTRUCTION USING ITERATIVE TRANSPOSE ALGORITHM FOR OPTICAL TOMOGRAPHY

ISOGEOMETRIC ANALYSIS OF PLANE STRESS STRUCTURE CHUM ZHI XIAN

AN IMPROVED PACKET FORWARDING APPROACH FOR SOURCE LOCATION PRIVACY IN WIRELESS SENSORS NETWORK MOHAMMAD ALI NASSIRI ABRISHAMCHI

THE COMPARISON OF IMAGE MANIFOLD METHOD AND VOLUME ESTIMATION METHOD IN CONSTRUCTING 3D BRAIN TUMOR IMAGE

HARDWARE/SOFTWARE SYSTEM-ON-CHIP CO-VERIFICATION PLATFORM BASED ON LOGIC-BASED ENVIRONMENT FOR APPLICATION PROGRAMMING INTERFACING TEO HONG YAP

IMPLEMENTATION OF UNMANNED AERIAL VEHICLE MOVING OBJECT DETECTION ALGORITHM ON INTEL ATOM EMBEDDED SYSTEM

This item is protected by original copyright

AUTOMATIC APPLICATION PROGRAMMING INTERFACE FOR MULTI HOP WIRELESS FIDELITY WIRELESS SENSOR NETWORK

BLOCK-BASED NEURAL NETWORK MAPPING ON GRAPHICS PROCESSOR UNIT ONG CHIN TONG UNIVERSITI TEKNOLOGI MALAYSIA

EMBEDDED SYSTEM BASED SOLID-GAS MASS FLOW RATE METER USING OPTICAL TOMOGRAPHY CHIAM KOK THIAM

Signature :.~... Name of supervisor :.. ~NA.lf... l.?.~mk.. :... 4./qD F. Universiti Teknikal Malaysia Melaka

STUDY OF FLOATING BODIES IN WAVE BY USING SMOOTHED PARTICLE HYDRODYNAMICS (SPH) HA CHEUN YUEN UNIVERSITI TEKNOLOGI MALAYSIA

sensors ISSN

A LEVY FLIGHT PARTICLE SWARM OPTIMIZER FOR MACHINING PERFORMANCES OPTIMIZATION ANIS FARHAN BINTI KAMARUZAMAN UNIVERSITI TEKNOLOGI MALAYSIA

SEMANTICS ORIENTED APPROACH FOR IMAGE RETRIEVAL IN LOW COMPLEX SCENES WANG HUI HUI

RECOGNITION OF PARTIALLY OCCLUDED OBJECTS IN 2D IMAGES ALMUASHI MOHAMMED ALI UNIVERSITI TEKNOLOGI MALAYSIA

SUPERVISED MACHINE LEARNING APPROACH FOR DETECTION OF MALICIOUS EXECUTABLES YAHYE ABUKAR AHMED

DETECTION OF WORMHOLE ATTACK IN MOBILE AD-HOC NETWORKS MOJTABA GHANAATPISHEH SANAEI

HARDWARE-ACCELERATED LOCALIZATION FOR AUTOMATED LICENSE PLATE RECOGNITION SYSTEM CHIN TECK LOONG UNIVERSITI TEKNOLOGI MALAYSIA

ULTRASONIC TOMOGRAPHY IMAGE RECONSTRUCTION ALGORITHMS

THREE BIT SUBTRACTION CIRCUIT VIA FIELD PROGRAMMABLE GATE ARRAY (FPGA) NOORAISYAH BINTI ARASID B

ARM PROCESSOR EMULATOR MOHAMAD HASRUZAIRIN B MOHD HASHIM

MICRO-SEQUENCER BASED CONTROL UNIT DESIGN FOR A CENTRAL PROCESSING UNIT TAN CHANG HAI

FINGERPRINT DATABASE NUR AMIRA BINTI ARIFFIN THESIS SUBMITTED IN FULFILMENT OF THE DEGREE OF COMPUTER SCIENCE (COMPUTER SYSTEM AND NETWORKING)

ENHANCING SRAM PERFORMANCE OF COMMON GATE FINFET BY USING CONTROLLABLE INDEPENDENT DOUBLE GATES CHONG CHUNG KEONG UNIVERSITI TEKNOLOGI MALAYSIA

IMPROVED IMAGE COMPRESSION SCHEME USING HYBRID OF DISCRETE FOURIER, WAVELETS AND COSINE TRANSFORMATION MOH DALI MOUSTAFA ALSAYYH

HARDWARE AND SOFTWARE CO-SIMULATION PLATFORM FOR CONVOLUTION OR CORRELATION BASED IMAGE PROCESSING ALGORITHMS SAYED OMID AYAT

Solid/Gas Concentration Measurements Using Multiple Fan Beam Optical Tomography

VIRTUAL PRIVATE NETWORK: ARCHITECTURE AND IMPLEMENTATIONS

HIGH SPEED SIX OPERANDS 16-BITS CARRY SAVE ADDER AWATIF BINTI HASHIM

UNSTEADY AERODYNAMIC WAKE OF HELICOPTER MAIN-ROTOR-HUB ASSEMBLY ISKANDAR SHAH BIN ISHAK UNIVERSITI TEKNOLOGI MALAYSIA

===========^=`ljm^ofplk=_bqtbbk=ifkb^o=_^`hmolgb`qflk=eqo^kpmlpbf============op

DYNAMIC TIMESLOT ALLOCATION TECHNIQUE FOR WIRELESS SENSOR NETWORK OON ERIXNO

INTEGRATION OF CUBIC MOTION AND VEHICLE DYNAMIC FOR YAW TRAJECTORY MOHD FIRDAUS BIN MAT GHANI

SYSTEMATIC SECURE DESIGN GUIDELINE TO IMPROVE INTEGRITY AND AVAILABILITY OF SYSTEM SECURITY ASHVINI DEVI A/P KRISHNAN

AUTOMATIC DETECTION TEMPERATURE TRANSMITTER FOR CALIBRATION PROCESS USING THERMOCOUPLE MUHAMAD FARID BIN A.WAHAB

Signature : IHSAN BIN AHMAD ZUBIR. Date : 30 November 2007

A SEED GENERATION TECHNIQUE BASED ON ELLIPTIC CURVE FOR PROVIDING SYNCHRONIZATION IN SECUERED IMMERSIVE TELECONFERENCING VAHIDREZA KHOUBIARI

REAL-TIME MASS FLOW RATE MEASUREMENT FOR BULK SOLID FLOW USING ELECTRODYNAMIC TOMOGRAPHY SYSTEM YAW WEE LEE

OPTIMIZED BURST ASSEMBLY ALGORITHM FOR MULTI-RANKED TRAFFIC OVER OPTICAL BURST SWITCHING NETWORK OLA MAALI MOUSTAFA AHMED SAIFELDEEN

A TRUST MODEL FOR BUSINESS TO CUSTOMER CLOUD E-COMMERCE HOSSEIN POURTAHERI

AMBA AXI BUS TO NETWORK-ON-CHIP BRIDGE NG KENG YOKE UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF SCADA FOR SERVO CONTROLLED PICK AND PLACE SYSTEM JUHAIDAH BINTI JOHARI

AUTOMATIC PET FEEDER WITH CLIENT/SERVER APPLICATION KHAIRUL ANWAR B MOHD YAKOP UNIVERSITI MALAYSIA PAHANG

LOCALIZING NON-IDEAL IRISES VIA CHAN-VESE MODEL AND VARIATIONAL LEVEL SET OF ACTIVE CONTOURS WITHTOUT RE- INITIALIZATION QADIR KAMAL MOHAMMED ALI

COLOUR IMAGE WATERMARKING USING DISCRETE COSINE TRANSFORM AND TWO-LEVEL SINGULAR VALUE DECOMPOSITION BOKAN OMAR ALI

SECURE-SPIN WITH HASHING TO SUPPORT MOBILITY AND SECURITY IN WIRELESS SENSOR NETWORK MOHAMMAD HOSSEIN AMRI UNIVERSITI TEKNOLOGI MALAYSIA

OPTIMIZE PERCEPTUALITY OF DIGITAL IMAGE FROM ENCRYPTION BASED ON QUADTREE HUSSEIN A. HUSSEIN

BORANG PENGESAHAN STATUS TESIS

SMART AQUARJUM (A UTOMATIC FEEDING MACHINE) SY AFINAZ ZURJATI BINTI BAHARUDDIN

MODELLING AND REASONING OF LARGE SCALE FUZZY PETRI NET USING INFERENCE PATH AND BIDIRECTIONAL METHODS ZHOU KAIQING

HERMAN. A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Computer Science)

LOGICAL OPERATORS AND ITS APPLICATION IN DETERMINING VULNERABLE WEBSITES CAUSED BY SQL INJECTION AMONG UTM FACULTY WEBSITES NURUL FARIHA BINTI MOKHTER

Pengguna akan diberikan Username dan Password oleh Administrator untuk login sebagai admin/conference Manager bagi conference yang akan diadakan.

LINE FOLLOWER FOR SURVEILLANCE CAMERA MONITORING SYSTEM YEW YUAN SOON

PERFOMANCE ANALYSIS OF SEAMLESS VERTICAL HANDOVER IN 4G NETWOKS MOHAMED ABDINUR SAHAL

B,8 PERKHIDMATAN KREDIT DAN PERBANKAN. Pemindahan Data PROSEDUR UNIT KOMPUTER. BPKP/KlOK-117 Bilangan Semakan : 0 Tarikh : PERUBAHAN.

SOLUTION AND INTERPOLATION OF ONE-DIMENSIONAL HEAT EQUATION BY USING CRANK-NICOLSON, CUBIC SPLINE AND CUBIC B-SPLINE WAN KHADIJAH BINTI WAN SULAIMAN

Design and Implementation of I2C BUS Protocol on Xilinx FPGA. Meenal Pradeep Kumar

Real Time Wireless Robotic Arm System by Using Leap Motion Controller ONG TING YONG

ENHANCEMENT OF UML-BASED WEB ENGINEERING FOR METAMODELS: HOMEPAGE DEVELOPMENT CASESTUDY KARZAN WAKIL SAID

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

PORTABLE ELECTRONICS QUEUE CONTROL SYSTEM WONG CHUN YUAN UNIVERSITY MALAYSIA PAHANG

MINIATURIZED PLANAR CAPACITANCE TOMOGRAPHY SYSTEM USING FAN BEAM PROJECTION TECHNIQUE FOR STAGNANT SAMPLES VISUALIZATION

ADAPTIVE ONLINE FAULT DETECTION ON NETWORK-ON-CHIP BASED ON PACKET LOGGING MECHANISM LOO LING KIM UNIVERSITI TEKNOLOGI MALAYSIA

MULTICHANNEL ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING -ROF FOR WIRELESS ACCESS NETWORK MOHD JIMMY BIN ISMAIL

DYNAMIC TIMETABLE GENERATOR USING PARTICLE SWARM OPTIMIZATION (PSO) METHOD TEH YUNG CHUEN UNIVERSITY MALAYSIA PAHANG

MAC PROTOCOL FOR WIRELESS COGNITIVE NETWORK FARAH NAJWA BINTI MOKHTAR

AUTOMATIC RAILWAY GATE CONTROLLERUSING ZIGBEE NURLIYANA HAZIRAH BINTI MOHD SAFEE (B )

LINK QUALITY AWARE ROUTING ALGORITHM IN MOBILE WIRELESS SENSOR NETWORKS RIBWAR BAKHTYAR IBRAHIM UNIVERSITI TEKNOLOGI MALAYSIA

SLANTING EDGE METHOD FOR MODULATION TRANSFER FUNCTION COMPUTATION OF X-RAY SYSTEM FARHANK SABER BRAIM UNIVERSITI TEKNOLOGI MALAYSIA

DYNAMIC MOBILE SERVER FOR LIVE CASTING APPLICATIONS MUHAMMAD SAZALI BIN HISHAM UNIVERSITI TEKNOLOGI MALAYSIA

DEVELOPMENT OF VENDING MACHINE WITH PREPAID PAYMENT METHOD AMAR SAFUAN BIN ALYUSI

REAL-TIME WIRELESS FACE RECOGNITION SYSTEM (RT-WiFARES) UMMI NAZIRAH BINTI JAMIL KHAIR

MAGNETIC FLUX LEAKAGE SYSTEM FOR WIRE ROPE INSPECTION USING BLUETOOTH COMMUNICATION MUHAMMAD MAHFUZ BIN SALEHHON UNIVERSITI TEKNOLOGI MALAYSIA

PRIVACY FRIENDLY DETECTION TECHNIQUE OF SYBIL ATTACK IN VEHICULAR AD HOC NETWORK (VANET) SEYED MOHAMMAD CHERAGHI

INSTRUCTION: This section consists of FOUR (4) structured questions. Answer ALL questions.

DEVELOPMENT OF SPAKE S MAINTENANCE MODULE FOR MINISTRY OF DEFENCE MALAYSIA SYED ARDI BIN SYED YAHYA KAMAL UNIVERSITI TEKNOLOGI MALAYSIA

Application of MCNP Code in Shielding Design for Radioactive Sources

Four Projections CMOS Linear Image Sensor Tomographic Image Reconstruction

Event-Driven Applications for Hard-Field Tomography Software Modelling of Forward and Inverse Solutions

CLOUD COMPUTING ADOPTION IN BANKING SYSTEM (UTM) IN TERMS OF CUSTOMERS PERSPECTIVES SHAHLA ASADI

DESIGN AND IMPLEMENTATION OF A MUSIC BOX USING FPGA TAN KIAN YIAK

IMPLEMENTATION AND PERFORMANCE ANALYSIS OF IDENTITY- BASED AUTHENTICATION IN WIRELESS SENSOR NETWORKS MIR ALI REZAZADEH BAEE

PEMINDAHAN DATA MENGGUNAKAN KOMUNIKASI CAHAYA BOLEH DILIHAT DAN APLIKASI MUDAH ALIH. Annisa Zakiah Binti Kamarudin Khairul Azmi Bin Abu Bakar

ANOMALY DETECTION IN WIRELESS SENSOR NETWORK (WSN) LAU WAI FAN

ENHANCING TIME-STAMPING TECHNIQUE BY IMPLEMENTING MEDIA ACCESS CONTROL ADDRESS PACU PUTRA SUARLI

VISUALIZATION ROBOT SORTER MOHD JOHANEIS BIN ABU BAKAR


IRIS RECOGNITION SYSTEM USING HISTOGRAM ANALYSIS NORHUDA BINTI OTHMAN

COMPUTER BASED INSTRUMENTATION SYSTEM FOR PRESSURE MEASUREMENT IN MATLAB APPLICATION

PROBLEMS ASSOCIATED WITH EVALUATION OF EXTENSION OF TIME (EOT) CLAIM IN GOVERNMENT PROJECTS

BORANG PENGESAHAN STATUS TESIS

REPAIR AND REFURBISHMENT OF ELECTRON CURRENT DENSITY METER(ECD) BAIKPULIH DAN PENAMBAHBAIKAN ALAT ELECTRON CURRENT DENSITY METER

USB MUG WARMER AMINURRASYID BIN ABAS

1. Threats bermaksud ancaman, atau lebih dikenali sebagai malware (malicious

FUZZY NEURAL NETWORKS WITH GENETIC ALGORITHM-BASED LEARNING METHOD M. REZA MASHINCHI UNIVERSITI TEKNOLOGI MALAYSIA

FINITE ELEMENT INVESTIGATION ON THE STRENGTH OF SEMI-RIGID EXTENDED END PLATE STEEL CONNECTION USING LUSAS SOFTWARE MOHD MAIZIZ BIN FISHOL HAMDI

TUITION CENTRE MANAGEMENT SYSTEM (TCMS) ZARIFAH BINTI MOHD PAHMI UNIVERSITI TEKNIKAL MALAYSIA MELAKA

CAMERA CALIBRATION FOR UNMANNED AERIAL VEHICLE MAPPING AHMAD RAZALI BIN YUSOFF

Transcription:

IMAGING CONCENTRATION PROFILE USING LASER BASED TOMOGRAPHY ADIE BIN MOHD. KHAFE A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Electrical Engineering (Mechatronics & Automatic Control) Faculty of Electrical Engineering Universiti Teknologi Malaysia APRIL 2007

ii

iii ACKNOWLEDGEMENT First of all, I would like to thanks my supervisor, Dr. Sallehuddin Bin Ibrahim for his effort, guidance and support throughout this project. Without his advice, suggestions and guidance, the project would have not been successful. I also want to express my appreciation to En. Mohd Amri Bin Md. Yunus and En. Mohd. Sazli Bin Saad for their advice and help until this project completed. Special thanks to my employer, Universiti Teknikal Malaysia Melaka for funding me throughout my study here. Lastly, thanks to my family and my fellow postgraduate colleagues who have helped me a lot and give me support to assure this project run smoothly and successfully.

iv ABSTRACT This project describes an investigation of the use of laser based tomography in the measurement of concentration profile of flowing particles. The main purpose is to investigate the use of an optical tomography method for on-line monitoring of particles. The novelty of this method is that it can be used to provide cross-sectional image of material distribution i.e. the concentration profile. This image is formed by reconstruction of data obtained from the array of sensors. Images of the flow captured using optical sensors are digitized into a form suitable for computer processing of the flow pictures. The advantages of this method is that it is cheaper and safer than most of the current methods which mostly made use of radioactive methods. Various process industries such as petroleum and food processing can benefit from such invention to improve their products and reduce the amount of wastage. Laser diode was used as the light source and photodiode are used as the receiving sensor in this project. The laser beam will be passed through the cross sectional area of the conveyer pipe and the emitted light will strike the photodiode located across the pipe. Besides the hardware, this project will include the use of user friendly, Visual Basic program to visualize the concentration profile of the flowing particles.

v ABSTRAK Projek ini bertujuan mengkaji penggunaan laser untuk proses tomografi bagi mengenalpasti profil penumpuan untuk objek yang bergerak. Tujuan utamanya adalah untuk mengkaji penggunaan kaedah tomografi optik bagi kegunaan pengawasan partikel secara on-line. Keunikan kaedah ini adalah ia dapat memberi imej keratan rentas taburan bahan yang melalui satu paip penghantaran. Imej ini diperolehi melalui pemprosesan semula data yang diperolehi daripada jujukan sensor yang diletakkan di bahagian luar paip penghantar. Imej-imej bagi pergerakan partikel yang dikesan oleh sensor diubah kepada bentuk digital yang sesuai untuk diproses oleh komputer. Kebaikan kaedah ini adalah ianya lebih murah dan lebih selamat daripada kebanyakan kaedah yang digunakan kini yang mana kebanyakannya adalah menggunakan kaedah radioaktif. Beberapa industri pemprosesan seperti petroleum dan makanan boleh memanfaatkan hasil kajian ini bagi menambahbaik produk mereka dan juga pengurangan bahan terbuang. Bagi projek ini, potodiod digunakan sebagai penerima (sensor) dan sumber laser iaitu laser diod digunakan sebagai pemancar. Cahaya laser akan dipancarkan melalui keratan rentas paip penghantar dan cahaya yang dipancarkan ini akan mengenai potodiod yang diletak pada satu lagi bahagian yang merentasi paip tersebut. Sistem ini menggunakan dua ortogonal projeksi bersama 16 sumber laser diod. Selain dari perkakasan dan litar yang digunakan di atas, projek ini juga akan menggunakan program Visual Basic bagi tujuan penghasilan imej visual profil penumpuan bagi partikel yang bergerak tersebut.

vi TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES ii iii iv v vi ix x xii xiv I INTRODUCTION 1 1.1 Tomography Overview 2 1.2 Aims and Objectives of the Project 4 1.3 Thesis Outline 5 II BRIEF REVIEW OF TOMOGRAPHIC TECHNOLOGY 7 2.1 Basic Tomographic System 7 2.2 Sensor Type and Selection 13 2.2.1 Electrical Capacitance Tomography 14 2.2.2 Ultrasonic Tomography 15 2.2.3 Gamma Ray Tomography 17 2.2.4 Optical Tomography 18

vii 2.3 The Proposed Optical Tomography System 20 III EMITTER AND RECEIVER 21 3.1 Basic Principle of Laser 22 3.2 Convergence and Divergence of Laser Beam 23 3.3 Collimation of Laser Beam 26 3.4 Difficulties of Laser Beam Delivery 27 3.5 Laser Diode : A Brief History 28 3.5.1 Semiconductor Laser Diode 29 3.5.2 Type of Semiconductor Laser Diode Double Heterostructure Laser 32 3.5.3 Type of Semiconductor Laser Diode Quantum Well Laser 34 3.5.4 Type of Semiconductor Laser Diode Separate Confinement Heterostructure Laser 35 3.6 The Photodiode 36 3.7 Photodiode Sensitivity 38 3.8 PIN Photodiode 38 IV RESEARCH METHODOLOGY 40 4.1 Introduction of the Process 40 4.2 Basic Structure of the Process 41 4.3 Sensor Array Arrangement 44 4.4 Principle of Measurement for Optical Tomography 44 4.5 Functional Block Diagram of The Measurement System 46 4.6 Data Acquisition System 48 4.7 Image Reconstruction 49

viii 4.7.1 Linear Back Projection (LBP) 50 4.8 Software Development 54 V HARDWARE DEVELOPMENT & MEASUREMENT 55 5.1 Sensor s Jig & Fixture 55 5.1.1 Projection Modeling 57 5.1.2 Sensor Output for Non Flow Condition 61 5.1.3 Sensor Output for Single Flowing Object 62 5.2 Improvement of Non Uniform Measurement 64 5.3 Emitter & Receiver Circuit 65 5.4 Concentration Profile Measurement of Flowing Object 68 VI RESULT, CONCLUSION AND FUTURE WORK SUGGESTION 69 6.1 Concentration Profile and the Color Scale 70 6.2 Result of Image Reconstruction 71 6.3 Summary 75 6.4 Conclusion 765 6.6 Suggestion for Future Work 77 REFERENCES 78 Appendices A D 80-131

ix LIST OF TABLES TABLE TITLE PAGE 2.1 Sensor Grouping 13

x LIST OF FIGURES FIGURE NO. TITLE PAGE 1.1 Basic schematic diagram of tomographic system 3 2.1 Two orthogonal projections 9 2.2 Two rectilinear projections 9 2.3 Three rectilinear projections 10 2.4 A combination of orthogonal and rectilinear projections 10 2.5 Three fan beam projections 11 2.6 Four fan beam projections 11 3.1 Laser beam convergence 24 3.2 Laser beam divergence 24 3.3 Collimation of laser beam 26 3.4 Basic Structure of semiconductor laser 30 3.5 Heterostructure semiconductor laser 33 3.6 Quantum well semiconductor laser 35 3.7 Separate confinement of heterostructure laser 36 3.8 Spectral wave sensitivity for BPX 65 PIN photodiode 37 4.1 Basic structure of the tomography process 41 4.2 Position of transmitter (laser) and receiver 43 4.3 Functional block diagram of laser based tomography system 46 4.4 Receiver circuit for optical tomography system 48 4.5 The sensitivity map for 16 channel of projection 52-53

xi 4.6 Flowchart for concentration profile image reconstruction 54 5.1 Diagram of jig for laser based tomography 56 5.2 Photo of jig used for laser based tomography 56 5.3 The two dimensional function f(x,y) is arranged into two orthogonal projections P (x ) is shown for angle, 0 and 90 58 5.4 Four possible conditions of a single flowing object 64 5.5 Schematic diagram of receiver circuit design by using Protel DXP 2004 66 5.6 Photo of receiver circuit for laser based tomography 67 5.7 Photo of receiver circuit integrated with the measurement jig 67 6.1 The color scale used to convert the concentration matrix to image 70 6.2 Concentration profile during no flow condition 71 6.3 Concentration profile during flow of plastic cap with measurement of 3.0 cm and 1.5 cm thickness 72 6.4 Concentration profile during flow of ping pong ball with measurement of 4.5 cm 73 6.5 Concentration profile during flow of ping pong ball with measurement of 7.5 cm 74

xii LIST OF SYMBOLS I - Transmitted intensity (Wm -2 ) I o - Initial incident intensity (Wm -2 ) N - Thickness of the absorbing material (m) μ - Linear absorption coefficient (m -1 ) V LBP (x, y) - Voltage distribution obtained using LBP algorithm concentration profile in unit volt) an n m matrix where n equals to dimension of sensitivity matrix S Rx, Tx - Signal loss amplitude of receiver Rx-th for projection Tx-th in unit of volt M Tx, Rx ( x, y) - The normalized sensitivity matrices for the view of Tx Rx P - Projection angle x` - Detector position in x plane f(x,y) - Coordinate (position) of real object N - Total number of receiver M - Total number of projections D Rx,Tx - Width of the light beam of Tx-th emitter to Rxth receiver α Rx,Tx P - angle between the Tx-th emitter to Rx-th receiver m Rx,Tx P - Slope of line from node Tx-th node to Rx-th node d P - Gap between the emitter and receiver which equals to 10 cm

xiii P (Tx8+1) P - Coordinate for upper node of Tx-th node which consist of the x and y position P (Tx8-1) P - Coordinate for lower node of Tx-th node which consist of the x and y position V reftx,rx P - Expected sensor voltage for projection Tx-th to receiver Rx-th during no particle flow condition in unit volt V cal P - The calibration voltage (standardized voltage) to convert all modeling output to unit volt (V). The model assumes that it equals to 10 Volt. C MTx,Rx P - the maximum number of line in the beam for light projection from Tx-th emitter to Rx-th receiver D max P - Maximum width of the laser beam D urx,tx - width of the light beam of Tx-th emitter to Rx-th receiver being intersect by a single flowing object F U, F L - Coordinate of the flowing object which have the longest perpendicular distance with light beam from T x to R x Vs Tx,Rx (x, ) - Amplitude of signal loss of receiver Rx-th for projection Tx-th V reftx,rx (x, ) - Reference signal of receiver Rx-th for projection Tx-th V Tx,Rx (x, ) - Received signal from receiver Rx-th for projection Tx-th

xvii LIST OF APPENDICES APPENDIX TITLE PAGE A BPX65 Photodiode Data Sheet 80-84 B TL084 IC Data Sheet 85-104 C Layout of PCB Circuit 105 D Source Code Program 106-131 A Open loop response 105 B M-file program 113 C Response of the system with controller 115 D Presentation slides 131

CHAPTER I INTRODUCTION As defined in one encyclopedia (Helicon 1991), the word tomography is derived from the Greek language, which tomo means slice and graph means picture. In another word, tomography is a method of viewing the plane section image of an object. Process tomography provides several real time methods of viewing the cross-section of a process to provide information relating to the material distribution. This involves by taking numerous measurement from sensors which placed around the section of the process being investigated and processing the data to reconstruct an image. The process involves the use of noninvasive sensors to acquire vital information in order to produce two or three-dimensional images of the dynamic internal characteristic of process system. Information on the flow regime, vector velocity, and concentration distribution may be determined from the images. Such information can assist in the design of process equipment, verification of existing computational modeling and simulation techniques, or to assist in process control and monitoring.

2 Process tomography refers to any tomographic method used to measure the internal state of a chemical process (e.g. material distribution in a reactor, multiphase flow fields in piping or concentration uniformity in mixers). By tomographic techniques, it can measure quantities such as the flow rate or solid concentration of material flowing through a pipeline and the distribution of material inside a chemical reactors or a mixer. This type of information is not usually obtainable with the sensor traditionally used by engineer, therefore these techniques gives a better understanding of the flow of material through the plant and the data can be used to design better process equipment and to control certain processes to maximize yield and quality. Basically, in a tomography system several sensors are installed around the pipe or vessel to be imaged. The sensor output signals depend on the position of the component boundaries within their sensing zones. A computer is used to reconstruct a tomographic image of the cross-section being interrogated by the sensors. Real time images can be obtained which measure the dynamic evolution of the parameters being detect at the sensors [1]. 1.1 Tomography Overview Process tomography involves the use of non-invasive sensors to acquire vital information in order to produce two or three dimensional images of the dynamic internal characteristics of process systems. Information can assist in the design of process equipment, verification of existing computational modeling and simulation techniques, or to assist in process control and monitoring. At present, the usual objectives of using tomographic systems is to obtain concentration profiles of moving components of interest within the measurement

3 section in the form of a visual image, which is updated at a refreshment rate dependent upon the process being investigated. Basically, in a tomographic system several sensors are installed around the pipe or vessel to be imaged. A computer is used to reconstruct a tomographic image of the cross section being interrogated by the sensors [2]. The specific subsystem for flow imaging are shown in Figure 1.1 and described as follows : 1. The sensor and sensor electronics. The field sensing pattern of the sensors is also important, as it is related to the choice of image reconstruction algorithm. 2. The flow fields, which is assumed to be composed of two or more separate components. Since the flow pattern can change rapidly, fast data processing of the measured information at an acceptable cost is required. 3. Image reconstruction, which includes extraction of image characteristics and reconstruction of the image. 4. Image interpretation, to give the desired information on the flow, such as the instantaneous concentration of components from which volume flow rates can be calculated. Figure 1.1 : Basic schematic diagram of tomographic system.

4 Basically, in a tomography system, several sensors are installed around the pipe or vessel to be imaged. The sensor output signals depend on the position of the component boundaries within their sensing zone. A computer is used to reconstruct a tomographic image of the cross section being interrogated by the sensors. Real time images can be obtained which measure the dynamic evolution of the parameters being detect at the sensor. And all that is required for a practical system is an image updated frequently enough for the smallest relevant feature of the flow to be observed [3]. 1.2 Aims and Objectives of the Project This project aims to investigate the use of tomographic measurement for online monitoring of two-component mixtures especially providing cross-sectional image of material distribution i.e. the concentration profile. The specific objectives of this project are : 1. To investigate the use of laser based tomography in measurement of concentration profile of flowing particles. 2. To search information regarding hardware fabrication techniques and the suitable optical sensor for measurement application. 3. To implement the using of laser diode laser as the transmitter or source. 4. To utilize photodiode as a detector. 5. To develop cross-sectional image using suitable software. 6. To measure the concentration profile and visualize an online image reconstruction using suitable software.

5 7. To interface the hardware & software system by using a suitable interfacing card. 8. Propose improvement & solution for the problem for future investigation. 1.3 Thesis Outline This thesis consists of six chapters. Chapter 1 gives the introduction of the system, overview of process tomography, aims and objectives of the project and the thesis outline. Chapter 2 provides literature review of this project. It includes the introduction about tomography, type of tomography system and type of projection can be used in tomography process. It also gives brief explanation about this project. Chapter 3 illustrates some ideas about the emitter and receiver being used in this project. Chapter 4 is the explanation about methodology of this project, start from the theory of the laser based tomography, overview hardware feature, signal conditioning circuit and the software development on image reconstruction.

6 Chapter 5 presents the process of hardware modeling and fabrication steps. It also discussed about emitter and receiver circuit and also brief explanation about the measurement steps. Chapter 6 draws the conclusion of the whole project. This chapter also contains the suggestions for future improvement.

78 REFERENCES 1. Elmy Johana Mohamad, Ruzairi Abdul Rahim, Sallehudin Ibrahim, Shaharum Sulaiman, Mohamad Shukri Manaf (2005). Flame Imaging Using Laser-Based Transmision Tomography. Sensors and Actuators A 127 (2006) : 332-339.. 2. S Ibrahim, R G Green, K Dutton, K Evans R Abdul Rahim and A Goude (1999). Optical Sensor Configurations for Process Tomography. Meas. Sci. Technol. 10 (1999) : 1079-1086. 3. W.P. Dugdale (1994). An Optical Instrumentation System for the Imaging of Two Component Flow. Sheffield Hallam University : Ph.D Thesis. 4. Elmy Johana Mohamad (2005). Flame Imaging Using Laser-Based Transmission Tomography. Universiti Teknologi Malaysia : Master Thesis. 5. Chan Kok San, R Abdul Rahim (2002). Optical Tomography Sensor Configuration. 2 nd World Eng. Cong. Sarawak, Malaysia. 6. Chan Kok San (2001), Image Reconstruction For Optical Tomography, Universiti Teknologi Malaysia : Bachelor Degree Thesis. 7. Yong Yang (1996). Mass Flow Measurement of Bulk Solids in Pneumatic Pipelines. Meas. Sci. Technol. : page 1687-1706. 8. Yong Yang (1996). Mass Flow Measurement of Bulk Solids in Pneumatic Pipelines. Meas. Sci. Technol. : page 1687-1706. 9. S Ibrahim (2000). Measurement of Gas Bubbles in a Vertical Water Column Using Optical Tomography. Sheffield Hallam University : Ph.D Thesis.

79 10. Hans P Zappe (2004). Laser Diode Microsystems. Springer Publication. 11. John P Bentley (2005). Principles of Measurement System. Fourth Edition. Pearson Prentice Hall Publication. 12. http://en.wikipedia.org/wiki/laser_diode 13. David F.Stout(1976).Handbook of operational amplifier circuit design. United States. McGraw-Hill.