Detection and recognition of end-of-speed-limit and supplementary signs for improved european speed limit support

Similar documents
Teaching Encapsulation and Modularity in Object-Oriented Languages with Access Graphs

COM2REACT: V2V COMMUNICATION FOR COOPERATIVE LOCAL TRAFFIC MANAGEMENT

Structuring the First Steps of Requirements Elicitation

How to simulate a volume-controlled flooding with mathematical morphology operators?

A Voronoi-Based Hybrid Meshing Method

Service Reconfiguration in the DANAH Assistive System

BoxPlot++ Zeina Azmeh, Fady Hamoui, Marianne Huchard. To cite this version: HAL Id: lirmm

Fault-Tolerant Storage Servers for the Databases of Redundant Web Servers in a Computing Grid

Paris-Lille-3D: A Point Cloud Dataset for Urban Scene Segmentation and Classification

Reverse-engineering of UML 2.0 Sequence Diagrams from Execution Traces

Change Detection System for the Maintenance of Automated Testing

Multimedia CTI Services for Telecommunication Systems

HySCaS: Hybrid Stereoscopic Calibration Software

An FCA Framework for Knowledge Discovery in SPARQL Query Answers

Assisted Policy Management for SPARQL Endpoints Access Control

Tacked Link List - An Improved Linked List for Advance Resource Reservation

DSM GENERATION FROM STEREOSCOPIC IMAGERY FOR DAMAGE MAPPING, APPLICATION ON THE TOHOKU TSUNAMI

KeyGlasses : Semi-transparent keys to optimize text input on virtual keyboard

NP versus PSPACE. Frank Vega. To cite this version: HAL Id: hal

FIT IoT-LAB: The Largest IoT Open Experimental Testbed

Person re-identification in multi-camera system by signature based on interest point descriptors collected on short video sequences

Representation of Finite Games as Network Congestion Games

DANCer: Dynamic Attributed Network with Community Structure Generator

QAKiS: an Open Domain QA System based on Relational Patterns

Comparator: A Tool for Quantifying Behavioural Compatibility

Motion-based obstacle detection and tracking for car driving assistance

Mapping classifications and linking related classes through SciGator, a DDC-based browsing library interface

Moveability and Collision Analysis for Fully-Parallel Manipulators

A Practical Evaluation Method of Network Traffic Load for Capacity Planning

Malware models for network and service management

Setup of epiphytic assistance systems with SEPIA

Linked data from your pocket: The Android RDFContentProvider

Fuzzy sensor for the perception of colour

Spectral Active Clustering of Remote Sensing Images

Real-time FEM based control of soft surgical robots

ASAP.V2 and ASAP.V3: Sequential optimization of an Algorithm Selector and a Scheduler

An Experimental Assessment of the 2D Visibility Complex

Combining adaboost with a Hill-Climbing evolutionary feature search for efficient training of performant visual object detector

A N-dimensional Stochastic Control Algorithm for Electricity Asset Management on PC cluster and Blue Gene Supercomputer

Mokka, main guidelines and future

Road Signs Detection and Reconstruction using Gielis Curves

THE COVERING OF ANCHORED RECTANGLES UP TO FIVE POINTS

Application of RMAN Backup Technology in the Agricultural Products Wholesale Market System

The Proportional Colouring Problem: Optimizing Buffers in Radio Mesh Networks

Real-Time and Resilient Intrusion Detection: A Flow-Based Approach

Approximate RBF Kernel SVM and Its Applications in Pedestrian Classification

LaHC at CLEF 2015 SBS Lab

Quality of Service Enhancement by Using an Integer Bloom Filter Based Data Deduplication Mechanism in the Cloud Storage Environment

A Methodology for Improving Software Design Lifecycle in Embedded Control Systems

Every 3-connected, essentially 11-connected line graph is hamiltonian

Comparison of spatial indexes

Taking Benefit from the User Density in Large Cities for Delivering SMS

Real time trajectory prediction for collision risk estimation between vehicles

Prototype Selection Methods for On-line HWR

Continuous Control of Lagrangian Data

Deformetrica: a software for statistical analysis of anatomical shapes

QuickRanking: Fast Algorithm For Sorting And Ranking Data

Zigbee Wireless Sensor Network Nodes Deployment Strategy for Digital Agricultural Data Acquisition

Syrtis: New Perspectives for Semantic Web Adoption

Traffic Grooming in Bidirectional WDM Ring Networks

X-Kaapi C programming interface

Simulations of VANET Scenarios with OPNET and SUMO

Scale Invariant Detection and Tracking of Elongated Structures

Blind Browsing on Hand-Held Devices: Touching the Web... to Understand it Better

Extended interface ID for virtual link selection in GeoNetworking to IPv6 Adaptation Sub-layer (GN6ASL)

Branch-and-price algorithms for the Bi-Objective Vehicle Routing Problem with Time Windows

YAM++ : A multi-strategy based approach for Ontology matching task

From medical imaging to numerical simulations

Relabeling nodes according to the structure of the graph

Application of Artificial Neural Network to Predict Static Loads on an Aircraft Rib

YANG-Based Configuration Modeling - The SecSIP IPS Case Study

XBenchMatch: a Benchmark for XML Schema Matching Tools

The Connectivity Order of Links

MUTE: A Peer-to-Peer Web-based Real-time Collaborative Editor

Natural Language Based User Interface for On-Demand Service Composition

A 64-Kbytes ITTAGE indirect branch predictor

Study on Feebly Open Set with Respect to an Ideal Topological Spaces

Real-Time Collision Detection for Dynamic Virtual Environments

The SANTE Tool: Value Analysis, Program Slicing and Test Generation for C Program Debugging

Efficient implementation of interval matrix multiplication

Selection of Scale-Invariant Parts for Object Class Recognition

Sliding HyperLogLog: Estimating cardinality in a data stream

Technical Overview of F-Interop

A Resource Discovery Algorithm in Mobile Grid Computing based on IP-paging Scheme

Contact less Hand Recognition using shape and texture features

Stream Ciphers: A Practical Solution for Efficient Homomorphic-Ciphertext Compression

A case-based reasoning approach for unknown class invoice processing

The New Territory of Lightweight Security in a Cloud Computing Environment

Multi-atlas labeling with population-specific template and non-local patch-based label fusion

Linux: Understanding Process-Level Power Consumption

Computing and maximizing the exact reliability of wireless backhaul networks

Visualization of Virtual Plants Growth Based on Open L-System

A Practical Approach for 3D Model Indexing by combining Local and Global Invariants

Open Digital Forms. Hiep Le, Thomas Rebele, Fabian Suchanek. HAL Id: hal

An Efficient Numerical Inverse Scattering Algorithm for Generalized Zakharov-Shabat Equations with Two Potential Functions

Learning Object Representations for Visual Object Class Recognition

A case-based reasoning approach for invoice structure extraction

Modelling and simulation of a SFN based PLC network

Integration of an on-line handwriting recognition system in a smart phone device

Hardware Acceleration for Measurements in 100 Gb/s Networks

Transcription:

Detection and recognition of end-of-speed-limit and supplementary signs for improved european speed limit support Omar Hamdoun, Alexandre Bargeton, Fabien Moutarde, Benazouz Bradai, Lowik Lowik Chanussot To cite this version: Omar Hamdoun, Alexandre Bargeton, Fabien Moutarde, Benazouz Bradai, Lowik Lowik Chanussot. Detection and recognition of end-of-speed-limit and supplementary signs for improved european speed limit support. 15th World Congress on Intelligen Transport Systems (ITS), Nov 2008, New York, United States. 2008. <inria-00332037> HAL Id: inria-00332037 https://hal.inria.fr/inria-00332037 Submitted on 20 Oct 2008 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

DETECTION AND RECOGNITION OF END-OF-SPEED-LIMIT AND SUPPLEMENTARY SIGNS FOR IMPROVED EUROPEAN SPEED LIMIT SUPPORT Omar Hamdoun, Alexandre Bargeton, and Fabien Moutarde Robotics Laboratory (CAOR) Mines ParisTech 60 Bd Saint-Michel, F-75006 PARIS, FRANCE Tel.: (33) 1-40.51.92.92, Fax: (33) 1.43.26.10.51 {Alexandre.Bargeton,Fabien.Moutarde}@ensmp.fr Benazouz Bradai and Lowik Chanussot Valeo Driving Assistance Domain 34 rue St-André, ZI des Vignes F-93012 BOBIGNY, FRANCE Tel.: (33) 1-49.42.63.58 Benazouz.Bradai@valeo.com Abstract. We present two new features for our prototype of European Speed Limit Support system: detection and recognition of end-of-speed-limit signs, as well as a framework for detection and recognition of supplementary signs located below main signs and modifying their scope (particular lane, class of vehicle, etc ). The end-of-speed-limit signs are globallyrecognized by a Multi-Layer Perceptron (MLP) neural network. The supplementary signs are detected by applying a rectangle-detection in a region below recognized speed-limit signs, followed by a MLP neural network recognition. A common French+German end-of-speed-limit signs recognition has been designed and successfully tested, yielding 82% detection+recognition. Results for detection and recognition of a first kind of supplementary sign (French exit-lane) are already satisfactory (78% correct detection rate), and our framework can easily be extended to handle other types of supplementary signs. To our knowledge, we are the first team presenting results on detection and recognition of supplementary signs below speed signs, which is a crucial feature for a reliable Speed Limit Support. Keywords: Advanced Driving Assistance System (ADAS), Traffic Sign Recognition, Speed Limit INTRODUCTION AND RELATED WORKS An assistant constantly informing the driver of the current speed limit, or a smart Adaptive Cruise Control (ACC) ensuring the respect of this speed limit, are some of the currently emerging important driving assistance functions. Most current GPS navigators now include a function to inform the driver of the supposed current speed-limit. However speed-limit information extracted from GPS cartographic data is neither always complete nor systematically up-to-date. Moreover, temporary speed limits for road works, and variable speed limits, are by definition not included in pre-defined digital cartographic data. And when a roadwork temporary speed-limit is visually detected, it is then essential to also correctly detect the end-of-speed-limit sign generally posted at the roadwork end. Also some traffic signs along roads provide specific speed limits that are applicable, for instance, only to a particular lane or only to certain vehicle categories, those specificities being mentioned on supplementary signs (sometimes also called complementary or supplemental signs) located below the main sign. For all these reasons, a visual real-time speed-limit sign detection and recognition system is a mandatory complement to GPS systems for designing high-level advanced driving assistance systems such as Speed Limit Support (SLS) and smart ACC. And this visual sign recognition should take into account end-of-speed-limit signs and supplementary signs as well. Traffic Signs detection and Recognition (TSR) usually involves two main steps: 1/ detection of potential traffic signs in the image, based on the common shape/color design of sought traffic signs; 2/ classification of the selected regions of interest (ROI) for identifying the exact type of sign, or rejecting the ROI. Many TSR systems (e.g. [1], [2]) use color information to make detection step easier. But as noted and advocated in [3] and [4], using only shape information in grayscale improves robustness for operation in dark or night condition. This is what we do in our Speed Limit Support (SLS) prototype, already presented in [5] and [7], which relies on digit extraction and identification for recognition step (contrary to most TSR 1

systems which use global recognition as in [1] [2] [3] [4] [6]). Our current SLS system is quite robust and fast for detecting and recognizing signs for beginning of speed-limit [5][7]. It should be noted that, thanks to our digit-recognition-based approach as well as to our efficient (patented) rectangle detection, we were probably, to our knowledge, the first research team reporting satisfying results on U.S. speed sign recognition (see [5], a year before more recent work by [9] which still have unacceptably high false alarm rate). We also have recently significantly improved our European speed sign recognition by using a global number segmentation before applying digit recognition [8]. However, in order to design a complete Speed Limit Support system, we need to include proper recognition of end of speed limits as well, and also detection and recognition of potential complementary signs under speed-limit signs, as presented in this paper. END OF SPEED LIMIT SIGNS DETECTION AND RECOGNITION The potential end-of-speed-limit signs are detected by the same Hough-based circle detection as the one we use for speed-limit signs. The main challenge is the recognition step, because there are many subtypes of end-of-speed-limit signs in each country, and their designs can be quite different in various E.U. countries. Another potential difficulty arises from the need to avoid confusion with similar signs such as end-of-no-passing. Finally it is difficult (and nearly impossible) to collect a large number of examples properly covering, for each sign class, the potential variability in size, orientation, etc We therefore created a database of synthetic examples. Positive examples were generated from each end-of-speed-limit sign prototype by randomized controlled transformations covering as much as possible the various expected appearances, and negative examples were either synthetically generated (for potentially confusing signs) or extracted from videos. The example were all histogram-equalized and normalized to a standard 16x16 size, as illustrated in figure 1. Signs detected and validated with correct type Validated False alarms Fig. 1. Some synthetic examples (top line), and their normalized to 16x16 version (bottom line) 18/22 = 82 % 1 Table 1. First evaluation of European end-of-speedlimit sign detection and recognition on French+German roads. Fig. 2 Illustration of correct recognition of end-of-speed-limit signs in Germany (left) and in France (right) A first systematic evaluation was done on a small set of recorded French and German videos (see figure 2) containing 22 end-of-speed-limit signs. The quantitative results obtained, given in table 1, are not perfect (82% global recognition rate) but already quite satisfactory. 2

SUPPLEMENTARY SIGNS DETECTION AND RECOGNITION One of the main difficulties is that the supplementary signs may have various positions, width/height ratios, and even relative size. We therefore decided to define a relatively wide search region below each recognized speed-limit sign. These searched regions are histogram-equalized before we apply inside them our original (and Valeo-patented) rectangledetection developed for American speed-limit rectangular signs detection (see [5] or [7]). Rectangle detection results are illustrated on figure 3. There are indeed some spurious detected rectangles, but they shall be efficiently filtered by the posterior classification step. As a first test, we focused on French exit-lane supplementary signs, which exist in various flavours, some of them square, and others with rectangular shape. We decided that the most convenient way to deal with that was to systematically resize the potential supplementary sign to a common (experimentally chosen) 12x12 square size. The classifier itself is a MLP neural network with 12x12=144 inputs, and only 1 output neurons designed to output +1 for all positive examples of exit-lane supplementary signs and -1 for any other image. The hidden layer size was set to 10 neurons, by comparing, on validation set, correct classification rates for several hidden layer sizes. A first evaluation was done on a set of recorded French videos containing 50 speed-limit signs, among which 18 with an exit-lane supplementary sign below. The results obtained are illustrated on figure 4, and quantified in table 2. The correct detection rate of 78% is already quite satisfactory for a first implementation, and further improvement to increase precision by collecting more negative examples is underway. Fig. 3. Illustration of research zone below recognized speed-limit signs, and of rectangle-detection inside: on the left, a supplementary sign is detected, on the right spurious rectangles are detected but shall be eliminated by recognition step Speed-limit sign with exit-lane supplementary sign below correctly detected and recognized False alarms on other speedlimit signs 14/18 = 78 % 3/32 = 9 % Table 2. First evaluation of French exit-lane supplementary sign detection and recognition Fig. 4. Illustration of correct detection and recognition of square and big (left) as well as rectangular and small (right) French exit-lane supplementary signs 3

CONCLUSIONS AND PERPECTIVES We have presented the successful introduction in our prototype Speed Limit Support system of 2 new important features: recognition of end-of-speed-limit signs, and detection and recognition of a first type of supplementary sign modifying the scope of its above speed-limit sign. The performance of our first version of detection and recognition of end-of-speed-limit signs is already good (82%), but can certainly be improved, which we are currently working on. Also, the current version of this feature has been developed and tested only on French and German signs. Evaluation of pan-european generalization of this feature is currently under way, with promising results in Italy. Regarding supplementary sign, our prototype currently handles (with 78% correct detection rate) only the French exit-lane sub-sign. However, our framework and methodology presented here for detection and recognition of supplementary sign could easily be extended to handle more kinds of supplementary signs. To our knowledge, we are the first team presenting results on detection and recognition of supplementary signs below speed signs, which is a crucial feature for a reliable Speed Limit Support. The final correct handling of detected speed signs taking supplementary signs into account will most probably require to know if the vehicle does or not drive on the outgoing exit-lane, which should be easy to do by fusion of vision information with GPS information, a technique for which we have already promising results [10]. Acknowledgements: This work is part of a research project that has received the Jeune Chercheur ITS Bretagne prize, attributed in 2008 to PhD student Alexandre Bargeton. REFERENCES [1] Bahlmann C., Zhu Y., Ramesh V., Pellkofer M. and Koehler T., A System for Traffic Sign Detection, Tracking, and Recognition Using Color, Shape, and Motion Information, IEEE Intelligent Vehicles symposium (IV 2005), Las Vegas, June 2005. [2] Broggi A., Cerri P., Medici P., Porta P. and Ghisio G., Real Time Road Signs Recognition, IEEE Intelligent Vehicles symposium (IV 2007), Istanbul, Turkey, 13-15 June, 2007 [3] Gavrila D.M., Traffic sign recognition revisited, Proc of 21 st DAGM symposium fur Musterekennung, pp. 86-93, Springer-Verlag, 1999. [4] Barnes N. and Zelinsky A., Real-time radial symmetry for speed sign detection, Proc. IEEE Intelligent Vehicle Symposium, pages 566-571, Parma, Italy, 2004. [5] Moutarde F., Bargeton A., Herbin A. and Chanussot C., "Robust on-vehicle real-time visual detection of American and European speed limit signs, with a modular Traffic Signs Recognition system", proc. of IEEE Intelligent Vehicles Symposium, Istanbul, 13-15 june 2007. [6] Zhang C., Yang Q., Zhang W and Wang M., "Traffic sign recognition using Discriminant analysis based Algorithms", proc. of 14th World congress on Intelligent Transportation Systems (ITS), Beijing, China, 9-13 October, 2007 [7] Moutarde F., Bargeton A., Herbin A. and Chanussot C., "Modular Traffic Sign Recognition applied to on-vehicle real-time visual detection of American and European speed limit signs", proc. of 14th World congress on Intelligent Transportation Systems (ITS), Beijing, 9-13 october 2007. [8] Bargeton A., Moutarde F., Nashashibi F., and Bradai B., "Improving pan-european speed-limit signs recognition with a new "global number segmentation" before digit recognition", proceedings of IEEE Intelligent Vehicles Symposium, Eindhoven, 4-6 juin 2008. [9] Keller C.G., Sprunk C., Bahlmann C., Giebel J. and Baratoff G., Real-time Recognition of U.S. Speed Signs, proceedings of IEEE Intelligent Vehicles Symposium, Eindhoven, 4-6 juin 2008. [10] Lauffenburger J. Ph., Bradai B., Basset M. and Nashashibi F., Navigation and Speed Signs Recognition Fusion for Enhanced Vehicle Location, proceedings of IFAC 2008 conference, Seoul, Korea, 6-11 July 2008. 4