GISFI 5G Workshop. Sri Chandra Standards Senior Manager, IEEE-SA

Similar documents
4G Technology in contrast with other G Technologies Raja Solanki,Vineeet Godara, Prashant Solanki, Dhronacharya Engineering College,Gurgaon,India

Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks

Joint ITU-T/IEEE Workshop on Next Generation Optical Access Systems. IEEE 802 Standards Overview

Naveen Kumar. 1 Wi-Fi Technology

Overview of Wi-Fi. Dr. Srikanth Subramanian CKO, Nanocell Networks Wi-Fi A Wireless Success Story

Brainstorming Workshop on 5G Standardization: WISDOM. by A.K.MITTAL Sr. Deputy Director General Telecom Engineering Centre, K.L.

Wi-Fi Technology, Standards,and Evolution. Dr. Srikanth Subramanian CKO, Nanocell Networks

Beyond 4G Introduction and LTE evolution

4G Americas The Voice of 5G for the Americas

Alternate PHYs

IEEE-SA Standardization Activities for Smart Grid in Communications & Networking. Max Riegel Nokia Siemens Networks Chair IEEE 802 OmniRAN EC SG

Wireless Communication

The Networked Society

CHALLENGES TO LTE PROGRESS. The Evolution of Mobile Broadband and Regulatory Policy

Bluetooth. 3.3 Latest Technology in Wireless Network. What is BLUETOOTH: Bluetooth 2/17/2016

Regulatory Perspectives on 5G

Comparison Between Wi-Fi and WiMAX

LTE : The Future of Mobile Broadband Technology

WIMAX. WIMAX (Worldwide Interoperability for Microwave Access ): Field of application:

Roadmap for 5G Enhancements to Communication Technology

Opportunities and Challenges in India s Growing Computing and Wireless Broadband Market

Wireless (NFC, RFID, Bluetooth LE, ZigBee IP, RF) protocols for the Physical- Data Link layer communication technologies

What is wimax How is it different from GSM or others WiMAX setup Wimax Parameters-ranges BW etc Applns Where is it Deployed Who is the operator

The Living Network: Leading the Path to 5G. Robert Olesen Director, InterDigital Inc InterDigital, Inc. All rights reserved.

5G the next major wireless standard

4G Mobile Communications

This tutorial has been designed to help beginners understand the basic concepts of WiMAX.

A Glimpse at the Wireless Data Communications Standards. Fanny Mlinarsky 8 August 2007

Support up to 1000 times more capacity

Our Wireless Advantage

Introduction to Wireless Networks

STREET READY SMALL CELL & Wi-Fi BACKHAUL

Telecom Learning. Technology

Current Trends in Wireless Networking. G Santhosh Kumar Cochin University of Science and Technology

CHAPTER 1 INTRODUCTION

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Wireless Networks

Naresh Soni CTO, InterDigital

Smart Energy for Smart Cities Webinar 28 March Andy Wood, Director, Business Development, Smart Energy & Home Security and Automation, Qualcomm

Architectures of Next Generation Wireless Networks. Pascal LORENZ.

Mobile and Sensor Systems

Introduction of SKT s WiBro Business

THE WIRELESS ACCESSIBILITY WORKSHOP

Mobile WiMAX in the Evolving Wireless Broadband Landscape

UNIK4230: Mobile Communications Spring Per Hjalmar Lehne Tel:

CWC Centre for Wireless Communications. Ari Pouttu, Director - CWC

IMT-2000 vs. Fixed Wireless Access (FWA) systems. The 3G/UMTS Proposition

Wireless Communication

Frugal 5G : Next Generation Wireless Systems!

Wireless Connectivity technologies evolution for Internet of Things and Machine to Machine communication

Bikash Sadhukhan. M.Tech(CSE) Lecturer. Dept of CSE/IT Techno India College of Technology

Advanced Mobile Computing and Networking - CS 560. Wireless Technologies. Bluetooth. Bluetooth. Bluetooth. Bluetooth 7/3/2014.

WIRELESS BROADBAND Supplemental Broadband Solution

Riding the Mobile Traffic Tsunami Opportunities and Threats in the Making of 5G Mobile Broadband

Dr. Evaldas Stankevičius, Regulatory and Security Expert.

Fiber-Wireless (FiWi) Access Networks

Unit title: Mobile Technology: Device Connectivity (SCQF level 5) Outcome 1

Session 6: Satellite Integration into 5G. Bashir Patel Global Spectrum and Regulatory Policy, ESOA

Chapter 10: Wireless LAN & VLANs

5G and Licensed/Unlicensed Convergence

1.1 Beyond 3G systems

Frugal 5G :Connecting the Unconnected World!

White Paper. Defining the Future of Multi-Gigabit Wireless Communications. July 2010

Datasheet ac Wave 2 Enterprise Wi-Fi Access Point. Model: UAP-AC-HD. Simultaneous Dual-Band 4x4 Multi-User MIMO

3G Technical Evolution as an evolving broadband solution

The Trend: Mobile Rules. Introduction cont. List of Various Sensors. Smartphone as a pool of sensors 2/7/12. Heather Zheng

802 Wireless Access Techniques Overview

UMTS Forum Operators Group. Operators HSPA experience and path towards LTE. Peter Zidar, M.Sc.

5G radio access. ericsson White paper Uen June research and vision

802.11ac FREQUENTLY ASKED QUESTIONS. May 2012

TV White Space / Super Wi-Fi for Broadband Wireless Access

5G systems. meeting the expectations of the Networked Society. Dr Magnus Frodigh Director Wireless Access Networks GSM. Wi-Fi. New technologies 5G

E3-E4 (CM MODULE) WiMAX OVERVIEW & BSNL WiMAX PROJECT

Learning Objectives. Introduction. Advantages of WLAN. Information Technology. Mobile Computing. Module: Wireless Local Area Network: IEEE 802.

IEEE WLAN Standardization

Etienne Chaponniere Sr. Director, Technical Standards. Introduction to 5G. DASH-IF August 20 th 2015

A Study on Systems Beyond IMT-2000 in Korea

A Guide to Routers. Connectivity Type. ADSL (Telephone Type)

General Important Protocols for Examination of IA Examination 2018

IoT Connectivity Standards

Next Generation Gigabit WiFi ac

WIRELESS ACCESS PRINCIPLES OF AND LOCALIZATION. Wiley. Kaveh Pahlavan. Prashant Krishnamurthy. University of Pittsburgh, Pittsburgh, Pennsylvania, USA

WIRELESS COMMUNICATION SYSTEMS ARE TRANSFORMING OUR LIVES

Dynamic Spectrum Access & TV White Spaces. TATT ICT Open Forum, Trinidad & Tobago, February 2017

Wireless Standards a, b/g/n, and ac The family explained

IMT-2020 NETWORK HIGH LEVEL REQUIREMENTS, HOW AFRICAN COUNTRIES CAN COPE

Lecture 20: Future trends in mobile computing. Mythili Vutukuru CS 653 Spring 2014 April 7, Monday

Future Wireless access. Erik Dahlman Ericsson Research

GENI Experimental Infrastructure Wireless & Sensor Networks Aug 8, 2005

Enabling Technologies for Next Generation Wireless Systems

The IEEE WirelessMAN Standard for Broadband Wireless Metropolitan Area Networks

Frugal 5G Test-bed: A Case Study of Palghar Experiment

Internet Access Technologies

DIFFERENCE BETWEEN WIMAX (WORLDWIDE INTEROPERABILITY FOR MICROWAVE ACCESS) AND Wi-Fi (WIRELESS FIDELITY)

6.9 Summary. 11/20/2013 Wireless and Mobile Networks (SSL) 6-1. Characteristics of selected wireless link standards a, g point-to-point

EtherHaul. Use All-Silicon Backhaul to Ease the Capacity Crunch. in Remote Cellsite Wireless Aggregation Hubs. LTE BackHaul Application Note

Leapfrogging the Infrastructure in Developing Countries

Alcatel-Lucent 9500 Microwave Packet Radio (ETSI Markets)

Nokia Siemens Networks TD-LTE whitepaper

Module Three SG. Study Guide. Exam Three Content Areas. Module Three. Chapter Seven, Backbone Networks

Transcription:

GISFI 5G Workshop Sri Chandra Standards Senior Manager, IEEE-SA

Evolution of xg systems Standards Next Generation Mobile Telephony released every 10 years 1G: Nordic Mobile Telephone introduced in 1981 2G: released in 1991 (GSM) 3G: 2001 (IMT-2000 and UMTS) Cdma/IS95 released in 1995 in the US 4G: Fully compliant with IMT Advanced standardized in 2012 Mobile WiMAX in 2006 First release LTE in 2009 5G: Approximately 2020 Source: Wikipedia

IMT Advanced Requirements IEEE has been engaged in Wireless Mobile Telephony for a very long time; In Connection with next generation standards: Does not support traditional circuit-switched, but all-ip based communication Spread spectrum technology in 3G replaced by frequency domain equalization (OFDMA) Specific data rates specified for high and low mobility users (100 mbps, 1gbs) Smooth handovers across heterogeneous networks

IEEE Standards IEEE has been engaged in Wireless Mobile Telephony for a very long time; In Connection with next generation standards: Two 4G candidate systems have been commercially deployed: ITU-R specified set of requirements for 4G standards, named IMT-A (International Mobile Telecommunications Advanced), with peak speed requirements for 4G at 100 megabits-per-second for highly mobile communications and 1Gbits per second for low mobility First release Long Term Evolution (LTE) Standard first released in 2009 Mobile WiMAX (Worldwide Interoperability for Microwave Access): IEEE 802.16e-2005 WirelessMAN Advanced Evolution Standard based on 802.16m Enabling the delivery of last mile wireless broadband access Initially designed for 30-40 megabit-per-second when released 2011 update providing upto 1Gb-per-second for fixed base station

5G Mobile Telephone Features Mobile traffic requirements have shown different features that introduce significant impact on future mobile system architectures, technology developments, and evolution Big traffic volume: 1000-fold data traffic increase for 2020 and beyond Increased indoor or hotspot traffic Higher traffic data asymmetry: Ratio of download:upload will increase as video communications grwo Huge numbers of subscribers will be created (M2M applications) Energy Efficiency Future mobile networks will face great challenges, including higher capacity, higher performance, lower power consumption, higher spectrum efficiency, more spectrum resource and lower cost. Source: The Requirements, Challenges and Technologies for 5G Terrestrial Mobile Telecommunication, Shanzi Chen, Jian Zhao, IEEE Communications Society Magazine, May 2014

Millimeter Waves (IEEE Uwave: WiFi/WiGig According to IEEE Spectrum, May 2013, By the end of this decade, analysts say, 50 billion things such as these will connect to mobile networks. consume 1000 times as much data as today s mobile gadgets, at rates 10 to 100 times as fast as existing networks can support. New technology 5G beam-forming Antenna that could send and receive mobile data faster than 1 gigabit per second over distances as great as 2 kilometers designed to operate at or near millimeter-wave frequencies (3 to 300 gigahertz) Bands lower on the spectrum very heavily used: 4G networks have just about reached the theoretical limit on how many bits they can squeeze into a given amount of spectrum. IEEE 802.11ad The IEEE 802.11ad standard is aimed at providing data throughput speeds of up to 7 Gbps. To achieve these speeds the technology uses the 60 GHz ISM band to achieve the levels of bandwidth needed and ensure reduced interference levels. the aim is that it will be used for very short range (across a room) high volume data transfers such as HD video transfers. When longer ranges are needed standards such as 802.11ac can be used

LTE-WiFi Handover: The Challenges Premature Wi-Fi Selection: As devices with Wi-Fi enabled move into Wi-Fi coverage, they reselect to Wi-Fi without comparative evaluation of existing cellular and incoming Wi-Fi capabilities. This can result in degradation of end user experience due to premature reselection of the Wi-Fi. Real time throughput based traffic steering can be used to mitigate this. Unhealthy choices: In a mixed wireless network of LTE, HSPA and Wi-Fi, reselection may occur to a strong Wi-Fi network, which is under heavy load. The resulting unhealthy choice results in a degradation of end user experience as performance on the cell edge of a lightly loaded cellular network may be superior to performance close to a heavily loaded Wi-Fi AP. Real time load based traffic steering can be used to mitigate this. Lower capabilities: In some cases, reselection to a strong Wi-Fi AP may result in reduced performance (e.g. if the Wi-Fi AP is served by lower bandwidth in the backhaul than the cellular base station presently serving the device). Evaluation of criteria beyond wireless capabilities prior to access selection can be used to mitigate this. Ping-Pong: This is an example of reduced end user experience due to pingponging between Wi-Fi and cellular accesses. This could be a result of premature Wi-Fi selection and mobility in a cellular environment with signal strengths very similar in both access types. Hysteresis concepts used in access selection similar to cellular IRAT, applied between Wi-Fi and cellular accesses can be used to mitigate this. Source: 4G Americas Whitepaper, Integration of Cellular and WiFi networks

IEEE ComSoC Webinars and Tutorials IEEE Communications Society: www.comsoc.org IEEE Communication Society Digital Library: http://dl.comsoc.org/comsocdl IEEE Communications Magazine IEEE Network IEEE Wireless Communication IEEE ComSoc Education Free ComSoc Tutorials Wireless Communications Engineering Technologies (WCET) Certification Free ComSoc Webinars Note: Recently a free webinar was offered on 5G

IEEE 802 & Telecommunications standards An Overview

Telecommunication Standards at the IEEE IEEE Telecom Standards is developed within different groups IEEE 802 Working Group IEEE Computer Society http://grouper.ieee.org/groups/802/dots.shtml IEEE Communication Society Standards Board IEEE Communications Society http://committees.comsoc.org/standards/ Cloud Computing and Emerging Technologies Cloud Computing Standards Committee (Computer Society): http://www.computer.org/portal/web/sab/cloud-committee Industry Connections Program

Wireless communications 802.11, 802.15, 802.16, 802.19 802.21 802.22 P1902.1 P1907.1 DYSPAN P1900.1 to P1900.7 11 P1903

IEEE 802 Group Summary IEEE 802.1 Bridging and Architecture; Time Sensitive Networks IEEE 802.3 Wired Ethernet IEEE 802.11 Wireless LAN IEEE 802.15 Wireless Personal Area Networks IEEE 802.16 Broadband Wireless Access IEEE 802.18 Radio Regulatory Technical Advisory Group IEEE 802.19 Wireless Coexistence IEEE 802.20 Mobile broadband wireless access- completed 802.20 series IEEE 802.21 Media Independent Handover across different types of wireless networks (including cellular) IEEE 802.22 Wireless Regional Area Networks IEEE 802.24 Smart Grid Technical Advisory Group 12

Wireless standards 802.11, 802.15, 802.16, 802.19, 802.21, 802.22: Wireless standards at the PHY and MAC layer IEEE 1902.1-2009: Air interface for radiating transceiver radio tags using long wavelength signals IEEE 1903-2011: Functional architecture of Next Generation Service Overlay Networks (NGSON) Three protocol projects underway: P1903.1, content delivery; P1903.2, service composition; and P1903.3, selforganizing management P1907.1: End-to-end quality of experience management scheme for real-time mobile video communication systems 13

DYSPAN: Software Defined Radio IEEE P1900.1 Terms, Definitions, and Concepts (revision) IEEE 1900.2-2008 Coexistence and interference between various radio services IEEE 1900.4a-2011: Enables mobile wireless access service in white space frequency bands without any limitation on used radio interface (physical and media access control layers, carrier frequency, etc.) IEEE P1900.4.1: Interfaces and protocols that enable distributed decision making to optimize radio resource usage IEEE 1900.5-2011: A policy language that specifies interoperable, vendor-independent control of cognitive radio functionality and behavior for DYSPAN resources and services P1900.5.1: Vendor-independent policy language for managing the functionality and behavior of dynamic spectrum access networks P1900.5.2 vendor-independent generalized method for modeling spectrum consumption of any type of use of RF spectrum and the attendant computations for arbitrating the compatibility among models P1900.6a: Procedures, protocols and message format specifications for the exchange of sensing related data, control data and configuration data between spectrum sensors and their clients (IEEE Std 1900.6-2011) P1900.7: Radio interface (MAC and PHY layers) for white space dynamic spectrum access radio systems supporting fixed and mobile operation in white space frequency bands 14

Example of Dynamic Spectrum Allocation TV white space (TVWS) extends Wi-Fi into new spectrum with better coverage TVWS has superior propagation and extends the reach of wireless networks and it enables: Wireless networking with longer range TVWS Wi-Fi network can be established with fewer APs / Repeaters TVWS Wi-Fi as a supplement to current Wi-Fi, can fill the coverage holes that are not covered by current Wi-Fi DYSPAN IEEE 802.19

IEEE 802 Summary 802.1 Bridging and Architecture Interworking Security Audio/Video bridging Congestion management 802.3 Wired Ethernet Backplane Ethernet Congestion management Frame expansion Power management (Power over Ethernet) 10Gb/s PHY for EPON Gigabit Ethernet Energy Efficient Ethernet 802.11 Wireless LAN Radio resource management Very high throughput Vehicular environment Fast roaming Mesh networking Performance preduction Interworking with external networks Network management Robust audio/video Sub 1 GHz, 5 Ghz, 60 Ghz 802.15 Wireless Personal Area Networks Bluetooth, Zigbee lower layers Body area networks Millimeter wave alternative PHY (.3c) Wireless mesh topologies (.5) 802.16 Broadband Wireless Access Mobility enhancements Cellular layer requirements M2M 802.19 Wireless coexistence 802.21 Media independent handover across different types of wireless networks (including cellular) 802.22 Wireless Regional Area Networks Cognitive Wireless Regional Area Networks (RAN) for operation in TV bands Identifies where unused spectrum exists based on location

New Programs & Initiatives IEEE P2413: Internet of Things IEEE Initiative on Software Defined Networks by the Communications Society Cloud Computing Initiatives IEEE Cloud Computing Innovation Council of India (Industry Connections Program) IEEE Intercloud Testbed (Industry Connections Program) IEEE P2302: Standards for Intercloud Interoperability and Federation (SIIF) sponsored by IEEE Computer Society 17