WLAN 1 IEEE Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto

Similar documents
WLAN 1 IEEE Basic Connectivity. Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto

Computer Networks. Wireless LANs

Chapter 7: Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs

ICE 1332/0715 Mobile Computing (Summer, 2008)

MAC in /20/06

Wireless Communication Session 4 Wi-Fi IEEE standard

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

Lecture 16: QoS and "

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

Introduction to IEEE

Wireless LANs. Characteristics Bluetooth. PHY MAC Roaming Standards

Advanced Computer Networks WLAN

Chapter 4 WIRELESS LAN

Page 1. Wireless LANs: Design Requirements. Evolution. EEC173B/ECS152C, Winter Wireless LANs

Local Area Networks NETW 901

Computer Communication III

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay

Internet Protocol Stack

Wireless Communications and Mobile Computing

Vehicle Networks. Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

IEEE Characteristics System Architecture Protocol Architecture Physical Layer. Power Management Roaming Current Developments

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

Guide to Wireless Communications, Third Edition. Objectives

Mohammad Hossein Manshaei 1393

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW

Chapter 6 Medium Access Control Protocols and Local Area Networks

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

IEEE Technical Tutorial. Introduction. IEEE Architecture

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du

Chapter 3.1 Acknowledgment:

MAC. Fall Data Communications II 1

Wireless Protocols. Training materials for wireless trainers

Wireless# Guide to Wireless Communications. Objectives

3.1. Introduction to WLAN IEEE

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW

IEEE Integrated Communication Systems Group Ilmenau University of Technology

Wireless Local Area Networks (WLANs) Part I

Wireless LANs. ITS 413 Internet Technologies and Applications

Mobile Communications I

Optional Point Coordination Function (PCF)

Wireless LANs. Outline. Outline II. Benefits Applications Technologies Issues Configurations Overview of Standard

Investigation of WLAN

Actual4Test. Actual4test - actual test exam dumps-pass for IT exams

IEEE Characteristics System Architecture Protocol Architecture Physical Layer. Power Management Roaming Current Developments

Hands-On Exercises: IEEE Standard

IEEE Mobile Communication Networks (RCSE) Winter Semester 2011/12. Integrated Communication Systems Group Ilmenau University of Technology

Wireless Local Area Network (IEEE )

Topic 4. Wireless LAN IEEE

Wireless Local Area Networks. Networks: Wireless LANs 1

Data and Computer Communications. Chapter 13 Wireless LANs

IEEE MAC Sublayer (Based on IEEE )

IEEE Wireless LANs

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1

Mohamed Khedr.

Laboratory of Nomadic Communication. Quick introduction to IEEE

Introduction to Wireless LAN

Wireless and Mobile Networks

Announcements : Wireless Networks Lecture 11: * Outline. Power Management. Page 1

Mohammad Hossein Manshaei

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

Advanced Computer Networks. WLAN, Cellular Networks

Chapter 3: Overview 802 Standard

Nomadic Communications WLAN MAC Fundamentals

Outline. CS5984 Mobile Computing. IEEE 802 Architecture 1/7. IEEE 802 Architecture 2/7. IEEE 802 Architecture 3/7. Dr. Ayman Abdel-Hamid, CS5984

MSIT 413: Wireless Technologies Week 8

Wireless Networking & Mobile Computing

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Lecture (08) Wireless Traffic Flow and AP Discovery

IEEE Wireless LANs Part I: Basics

Lesson 2-3: The IEEE x MAC Layer

Wireless Networked Systems

ECE442 Communications Lecture 3. Wireless Local Area Networks

WLAN (802.11) Nomadic Communications. Renato Lo Cigno - Tel: Dipartimento di Ingegneria e Scienza dell Informazione

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs

Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands

IEEE WLAN (802.11) Copyright. Nomadic Communications

Enabling Technologies

Media Access Control. Chapter 6. Ad Hoc and Sensor Networks. Roger Wattenhofer 6/1

Functions of physical layer:

Transmission Control Protocol over Wireless LAN

outline background & overview mac & phy wlan management security

Data and Computer Communications

Wireless Data Networking IEEE & Overview of IEEE b

Wireless Communication and Networking CMPT 371

IEEE Medium Access Control. Medium Access Control

Introduction. Giuseppe Bianchi, Ilenia Tinnirello

Wireless Communication and Networking CMPT 371

Architecture. Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change

Wireless LAN -Architecture

Transcription:

WLAN 1 IEEE 802.11 Basic Connectivity Manuel Ricardo Faculdade de Engenharia da Universidade do Porto

WLAN 2 Acknowledgements Based on Jochen Schiller slides Supporting text» Jochen Schiller, Mobile Comunications, Addison-Wesley» Section 7.3 Wireless LAN

WLAN 3 Characteristics of Wireless LAN Advantages over wired LANS» Receiver free to move» Network with less cabling» Possibility of forming, unplanned, ad-hoc networks Disadvantage» Smaller and variable bitrates

WLAN 4 Transmission - Radio vs Infrared Radio Infrared» Band ISM, 2.4 GHz» Diods, multiple reflection Advantages Advantages» Planning similar to cellular networks» Simple» Large coverage Disadvantages Disadvantages» Limited resources and ISM bands» Less secure» Interferences Solar light, heat sources» Smaller bitrates

WLAN 5 Infrastructure vs Ad-Hoc Networks Infrastructure AP AP wired network AP: Access Point AP Ad-hoc

WLAN 6 802.11 Infrastructure Network STA 1 ESS 802.11 LAN BSS 1 Access Point BSS 2 802.x LAN Portal Distribution System Access Point Station» Terminal with radio access Basic Service Set (BSS)» Set of stations in the same band Access Point» Interconnects LAN to wired network Portal bridge to other networks Distribution System» Interconnection network» Logical network EES, Extended Service Set Based on BSSs STA 2 802.11 LAN STA 3

WLAN 7 802.11 Ad-Hoc Network 802.11 LAN Direct communication between stations STA 1 IBSS 1 STA 3 Independent Basic Service Set, IBSS» Set of stations working the the same carrier (radio channel) STA 2 IBSS 2 STA 5 STA 4 802.11 LAN

WLAN 8 IEEE 802.11 Protocol Stack mobile terminal fixed terminal application TCP IP LLC access point LLC infrastructure network application TCP IP LLC 802.11 MAC 802.11 MAC 802.3 MAC 802.3 MAC 802.11 PHY 802.11 PHY 802.3 PHY 802.3 PHY

802.11 Protocol Stack WLAN 9

WLAN 10 802.11 Layers and Functionalities Data plane» MAC medium access, fragmentation, encryption» PLCP - Physical Layer Convergence Protocol carrier detection» PMD - Physical Medium Dependent modulation, codification Management plane» PHY Management channel selection, MIB» MAC Management synchronisation, mobility, power, MIB» Station Management coordenation management functions PHY DLC LLC MAC PLCP PMD MAC Management PHY Management Station Management

WLAN 11 MAC Layer - Characteristics Traffic Services» Asynchronous Data Service (obrigatório) Packet exchanged in best-effort Broadcast and multicast support» Time-Bounded Service (opcional) Implemented as PCF (Point Coordination Function) Medium access methods» MAC-DCF CSMA/CA (obrigatório) Carrier sense, collision avoidance using back-off mechanism ACK packet required for confirmations (except broadcasts)» MAC-DCF c/ RTS/CTS (optional) Used to avoid hidden terminal problem» MAC- PCF (opcional) Access Point interrogates stations according to a rule DCF Distributed Coordination Function PCF - Point Coordination Function

WLAN 12 Nível MAC Tempos de Guarda» Access Priorities Defined by inter-frame-space (intervals); fix» SIFS (Short Inter Frame Spacing) Maximum priority used for ACK, CTS, answers to polling» PIFS (PCF IFS) Medium priority, real time service using PCF» DIFS (DCF IFS) Lowest priority, used for asynchronous data DIFS DIFS medium busy PIFS SIFS contention next frame direct access if medium is free DIFS t

Virtual Carrier Sensing Network Allocation Vector WLAN 13 How does a station detect is the medium is free?» Usually, by listening the carrier IEEE 802.11 also uses Network Allocation Vector (NAV)» 802.11 frames contain a duration field; used to reserve the medium» Stations have a timer NAV Updated with the values seen in the frames Decremented in real-time If!= zero medium not free

MAC-DCF CSMA/CA Access Method Station having a packet to transmit senses the medium» Carrier Sense based on CCA (Clear Channel Assessment) If the medium is free during one Inter-Frame Space (IFS) WLAN 14» Station starts sending the frame (IFS depends on the service type) contention window DIFS DIFS (randomized back-off mechanism) medium busy direct access if medium is free DIFS slot time next frame t If medium is busy» Station waits for the medium to become free (using NAV), + one IFS + random contention period (collision avoidance, múltiplo de slot n* 20 us) If other station accesses the medium during the contention time» Timer is suspended

MAC-DCF CSMA/CA Concurrent Stations WLAN 15 DIFS DIFS bo e bo r DIFS bo e bo r DIFS bo e busy station 1 bo e busy station 2 station 3 busy bo e busy bo e bo r station 4 bo e bo r bo e busy bo e bo r station 5 t busy medium not idle (frame, ack etc.) bo e elapsed backoff time packet arrival at MAC bo r residual backoff time

WLAN 16 MAC-DCF CSMA/CA Access Method Sending a frame in unicast» Station waits DIFS before sending the packet» If packet is correctly received (no errors in CRC) Receiver confirms reception immediatly, using ACK, after waiting SIFS» In case of errors, frame is re-transmitted» In case of retransmission Maximum value for the contention window duplicates Contetion window has minimum and maximum values (eg.: 7 and 255) sender DIFS data receiver SIFS ACK other stations waiting time DIFS contention data t

WLAN 17 MAC DCF c/ RTS/CTS Sending a frame in unicast» Station sends RTS with a reserve parameter, after waiting DIFS Reserve time includes RTS+SIFS+CTS+SIFS+DATA+SIFS+ACK» Receiver confirms with CTS, after waiting SIFS» Transmitter sends frame, after waiting SIFS. Confirmation with ACK» Other stations become aware of reserved time by listening RTS and CTS sender receiver DIFS RTS SIFS CTS SIFS data SIFS ACK other stations NAV (RTS) NAV (CTS) defer access DIFS contention data t

WLAN 18 MAC- PCF I t 0 t 1 SuperFrame medium busy point coordinator PIFS D 1 SIFS SIFS D 2 SIFS SIFS wireless stations U 1 U 2 stations NAV NAV

WLAN 19 MAC-PCF II t 2 t 3 t 4 PIFS SIFS CFend point coordinator D 3 D 4 SIFS wireless stations U 4 stations NAV NAV contention free period contention period t

WLAN 20 MAC Frame Format Frame types» Data, control, management Sequence number Addresses» destination, source, BSS identifier,... Others» Error control, frame control, data bytes 2 2 6 6 6 6 Duration/ ID Address 1 Address 2 Address 3 Sequence Control Frame Control Protocol version Type Subtype To DS More Frag Power Retry Mgmt 2 0-2312 4 Address Data 4 bits 2 2 4 1 1 1 1 1 1 1 1 From DS More Data WEP Order CRC

WLAN 21 Addresses in MAC scenario to DS from address 1 address 2 address 3 address 4 DS ad-hoc network 0 0 DA SA BSSID - infrastructure 0 1 DA BSSID SA - network, from AP infrastructure 1 0 BSSID SA DA - network, to AP infrastructure network, within DS 1 1 RA TA DA SA DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address

WLAN 22 Special Frames- ACK, RTS, CTS Acknowledgement ACK bytes 2 2 6 4 Frame Duration Receiver CRC Control Address Request To Send RTS bytes 2 2 6 6 4 Frame Duration Receiver Transmitter CRC Control Address Address Clear To Send CTS bytes 2 2 6 4 Frame Duration Receiver CRC Control Address (Fig. 7.17 do livro está errada)

MAC Management Synchronization Station discovers a LAN; station associates to an AP PHY DLC LLC MAC PLCP PMD stations synchronize clocks; Beacon is generated MAC Management PHY Management Station Management WLAN 23 Power management Save terminal s power terminal enters sleep mode Periodically No frame loss; frames are stored Roaming Station looks for new access points Station decides about best access point Station (re-)associates to new AP MIB - Management Information Base

Synchronization by Beacon Infrastructure Network WLAN 24 Stations must be synchornised. E.g. To preview PCF cycles To change state: sleep wake Infrastructure networks Access Point sends (almost) periodically beacon with timestamp e BSSid sometimes medium is busy Timestamp sent is the correct Other stations adjust their clocks beacon interval access point medium B B B B busy busy busy busy value of the timestamp B beacon frame t

Syncronization by Beacon Ad-hoc Network WLAN 25 Every station tries to send a beacon Stations use normal method to access the networks CSMA/CA Only one station gains the medium the other difer attempt to next period beacon interval station 1 B 1 B 1 station 2 B 2 B 2 medium busy busy busy busy t value of the timestamp B beacon frame random delay

WLAN 26 Power Management Objective» If transceiver not in use sleep mode Station in 2 states: sleep, wake Infrastructure network» Stations wake periodically and simultaneously» They listen beacon to know if there are packets to receive» If a station has packets to receive remains awake until it receives them If not, go sleep; after sending its packets! Ad-hoc network, a station» Listens/sends the beacon» Informs other stations it has packets for them» Receive and send packets» Sleeps again

Power Management Infrastructure Network WLAN 27 Infrastructure network traffic information sent in the beacon» Traffic Indication Map TIM: list of unicast receivers» Delivery Traffic Indication Map - DTIM: list broadcast/multicast receivers TIM interval DTIM interval access point medium D B busy T T D D busy busy busy B station P D t T TIM D DTIM awake B broadcast/multicast P PS poll D data transmission to/from the station

WLAN 28 Power Management Ad-hoc Network ATIM window beacon interval B 1 A D B station 1 1 station 2 B 2 B 2 a D B beacon frame random delay A transmit ATIM D transmit data t awake a acknowledge ATIM d acknowledge data

WLAN 29 (Micro) Mobility Station without link or with bad link? Then:» Monitor the medium Passively listen to Beacons Actively sending Probe message in every channel; waits an answer» Re-association request. Station Selects best access point (eg., AP with best power received) Sends Re-association Request to AP» Answer to request Sucess AP answered; station can use new AP. Fail station continues monitoring» New AP accepts Re-association Request AP informs distribution system about the new station arrival Distribution system may inform old AP about the new location of station 4 addresses used to route traffic

WLAN 30 (Micro) Mobility 802.11 LAN 802.x LAN STA 1 ESS BSS 1 Access Point Portal Distribution System Access Point BSS 2 STA 2 802.11 LAN STA 3

WLAN 31 802.11 Nível Físico 3 versões: 2 rádio, 1 IR Bitrates: 1, 2 Mbit/s FHSS (Frequency Hopping Spread Spectrum) Spreading, despreading 79 sequências de salto pseudo aleatórias. Para 1 Mbit/s, modulação de 2 níveis GFSK DSSS (Direct Sequence Spread Spectrum) 1 Mbit/s Modulation DBPSK (Differential Binary Phase Shift Keying) 2 Mbit/s Modulation DQPSK (Differential Quadrature PSK) Preamble and header of frame transmitted at 1 Mbit/s (DBPSK) Remainning transmitted at 1 (DBPSK) ou 2 Mbit/s (DQPSK) Maximum radiated power 1 W (EUA), 100 mw (UE), min. 1mW Infravermelho 850-950 nm, distância de 10 m Detecção de portadora, detecção de energia, sincronização All versions provide Clear Channel Assessment (CCA) Used by MAC to detect if medium is free

WLAN 32 Frame FHSS PHY» Sincronization 010101...» SFD (Start Frame Delimiter 0000110010111101» PLW (PLCP_PDU Length Word) Payload length in bytes, including 2 CRC bytes. PLW < 4096» PSF (PLCP Signaling Field) Transmission bitrate of payload (1, 2 Mbit/s) PLCP (preâmbulo and header) sent at 1 Mbit/s Payload sent at 1 ou 2 Mbit/s» HEC (Header Error Check) CRC with x 16 +x 12 +x 5 +1» Data MAC scrambled with z 7 +z 4 +1 80 16 12 4 16 variable bits synchronization SFD PLW PSF HEC payload PLCP preamble PLCP header

WLAN 33 Frame DSSS PHY Barker sequence of 11 chips +1,-1,+1,+1,-1,+1,+1,+1,-1,-1,-1 Sincronization Sincronization Gain control, Clear Channel Assessement, compensate frequency deviation SFD (Start Frame Delimiter 1111001110100000 Signal Payload bitrate (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK) Service utilização futura, 00 = conforme 802.11 Length Payload length in us HEC (Header Error Check) Protection of sinal, service and length, using x 16 +x 12 +x 5 +1 Data (payload) MAC scrambled with z 7 +z 4 +1 128 16 8 8 16 16 variable bits synchronization SFD signal service length HEC payload PLCP preamble PLCP header

WLAN 34 IEEE 802.11b Bitrate (Mbit/s) 1, 2, 5.5, 11 (depends on SNR) Useful bitrate 6 Transmission range 300m outdoor, 30m indoor Frequencies open, ISM 2.4 GHz band Only physical layer is redefined» MAC and MAC management are the same

WLAN 35 IEEE 802.11b Trama PHY Long PLCP PPDU format Payload bitrate 128 16 8 8 16 16 variable bits synchronization SFD signal service length HEC payload PLCP preamble PLCP header 192 µs at 1 Mbit/s DBPSK 1, 2, 5.5 or11 Mbit/s Short PLCP PPDU format (optional) 56 16 8 8 16 16 variable bits short synch. SFD signal service length HEC payload PLCP preamble (1 Mbit/s, DBPSK) PLCP header (2 Mbit/s, DQPSK) 96 µs 2, 5.5 or 11 Mbit/s

WLAN 36 Channel Selection Europe (ETSI) channel i = 2412MHz + (i-1)*5mhz There are 14 channels of 5MHz In 801.11b only 3 non-overlap channels can be used channel 1 channel 7 channel 13 2400 2412 2442 2472 2483.5 US (FCC)/Canada (IC) 22 MHz [MHz] channel 1 channel 6 channel 11 2400 2412 2437 2462 2483.5 22 MHz [MHz]

WLAN 37 IEEE 802.11a Bitrate (Mbit/s)» 6, 9, 12, 18, 24, 36, 48, 54 (depends on SNR)» Mandatory 6, 12, 24 Useful bit rate (frames 1500 bytes, Mbit/s)» 5.3 (6), 18 (24), 24 (36), 32 (54) Transmission range» 100m outdoor, 10 m indoor 54 Mbit/s até 5 m, 48 até 12 m, 36 até 25 m, 24 até 30m, 18 até 40 m, 12 até 60 m Frequencies» Free, band ISM» 5.15-5.35, 5.47-5.725 GHz (Europa) Only the physical layer changes

WLAN 38 Operating channels for 802.11a / US U-NII 36 40 44 48 52 56 60 64 channel 5150 5180 5200 5220 5240 5260 5280 5300 5320 5350 [MHz] 16.6 MHz 149 153 157 161 channel center frequency = 5000 + 5*channel number [MHz] 5725 5745 5765 5785 5805 5825 [MHz] 16.6 MHz

WLAN 39 OFDM in IEEE 802.11a OFDM with 52 used subcarriers (64 in total) 48 data + 4 pilot (plus 12 virtual subcarriers) 312.5 khz spacing pilot 312.5 khz -26-21 -7-1 1 7 21 26 channel center frequency subcarrier number

WLAN 40 802.11a Rate Dependent Parameters % of useful information 250 ksymbol/s