Quine-McCluskey Algorithm

Similar documents
Synthesis 1. 1 Figures in this chapter taken from S. H. Gerez, Algorithms for VLSI Design Automation, Wiley, Typeset by FoilTEX 1

Karnaugh Map (K-Map) Karnaugh Map. Karnaugh Map Examples. Ch. 2.4 Ch. 2.5 Simplification using K-map

Larger K-maps. So far we have only discussed 2 and 3-variable K-maps. We can now create a 4-variable map in the

Introduction. The Quine-McCluskey Method Handout 5 January 24, CSEE E6861y Prof. Steven Nowick

Combinational Logic Circuits Part III -Theoretical Foundations

User s Manual. Ronwaldo A. Collado Diosdado Y. Tejoso Jr. CMSC 130 Logistic Design and Digital Computer Circuits Second Semester, A. Y.

Switching Circuits & Logic Design

3.4 QUINE MCCLUSKEY METHOD 73. f(a, B, C, D, E)¼AC ĒþB CD þ BCDþĀBD.

CHAPTER-2 STRUCTURE OF BOOLEAN FUNCTION USING GATES, K-Map and Quine-McCluskey

Introduction to Microprocessors and Digital Logic (ME262) Boolean Algebra and Logic Equations. Spring 2011

Graduate Institute of Electronics Engineering, NTU. CH5 Karnaugh Maps. Lecturer: 吳安宇教授 Date:2006/10/20 ACCESS IC LAB

A B AB CD Objectives:

Chapter 3 Simplification of Boolean functions

CMPE223/CMSE222 Digital Logic

SEE1223: Digital Electronics

DKT 122/3 DIGITAL SYSTEM 1

ECE380 Digital Logic

UNIT II. Circuit minimization

Module -7. Karnaugh Maps

Gate Level Minimization

CSE 140: Logic Minimization Lecture

CSCI 220: Computer Architecture I Instructor: Pranava K. Jha. Simplification of Boolean Functions using a Karnaugh Map

Chapter 2 Combinational Logic Circuits

4 KARNAUGH MAP MINIMIZATION

Specifying logic functions

Simplification of Boolean Functions

Points Addressed in this Lecture. Standard form of Boolean Expressions. Lecture 4: Logic Simplication & Karnaugh Map

Combinational Logic & Circuits

Chapter 3. Gate-Level Minimization. Outlines

Combinational Logic Circuits

VLSI System Design Part II : Logic Synthesis (1) Oct Feb.2007

Gate-Level Minimization. BME208 Logic Circuits Yalçın İŞLER

ELCT201: DIGITAL LOGIC DESIGN

Gate-Level Minimization. section instructor: Ufuk Çelikcan

ELCT201: DIGITAL LOGIC DESIGN

DIGITAL CIRCUIT LOGIC UNIT 5: KARNAUGH MAPS (K-MAPS)

CS8803: Advanced Digital Design for Embedded Hardware

Gate Level Minimization Map Method

Chapter 2 Combinational

IT 201 Digital System Design Module II Notes

Slides for Lecture 15

Literal Cost F = BD + A B C + A C D F = BD + A B C + A BD + AB C F = (A + B)(A + D)(B + C + D )( B + C + D) L = 10

Chapter 6. Logic Design Optimization Chapter 6

DIGITAL TECHNICS. Dr. Bálint Pődör. Óbuda University, Microelectronics and Technology Institute 2. LECTURE: LOGIC NETWORK MINIMIZATION 2016/2017

WWW-BASED BOOLEAN FUNCTION MINIMIZATION

Chapter 2 Combinational Logic Circuits

ESE535: Electronic Design Automation. Today. EDA Use. Problem PLA. Programmable Logic Arrays (PLAs) Two-Level Logic Optimization

The Pythagorean Theorem: Prove it!!

VALLIAMMAI ENGINEERING COLLEGE. SRM Nagar, Kattankulathur DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING EC6302 DIGITAL ELECTRONICS

TWO-LEVEL COMBINATIONAL LOGIC

Switching Theory And Logic Design UNIT-II GATE LEVEL MINIMIZATION

CS470: Computer Architecture. AMD Quad Core

ECE 5745 Complex Digital ASIC Design Topic 12: Synthesis Algorithms

Gate-Level Minimization

Contents. Chapter 3 Combinational Circuits Page 1 of 34

Combinational Logic Circuits

Slide Set 5. for ENEL 353 Fall Steve Norman, PhD, PEng. Electrical & Computer Engineering Schulich School of Engineering University of Calgary

MUX using Tri-State Buffers. Chapter 2 - Part 2 1

ADAPTIVE MAP FOR SIMPLIFYING BOOLEAN EXPRESSIONS

Department of Electrical and Computer Engineering University of Wisconsin - Madison. ECE/CS 352 Digital System Fundamentals.

10EC33: DIGITAL ELECTRONICS QUESTION BANK

Gate-Level Minimization

Final Examination (Open Katz, asynchronous & test notes only, Calculators OK, 3 hours)

數位系統 Digital Systems 朝陽科技大學資工系. Speaker: Fuw-Yi Yang 楊伏夷. 伏夷非征番, 道德經察政章 (Chapter 58) 伏者潛藏也道紀章 (Chapter 14) 道無形象, 視之不可見者曰夷

Supplement to. Logic and Computer Design Fundamentals 4th Edition 1

2.1 Binary Logic and Gates

Giovanni De Micheli. Integrated Systems Centre EPF Lausanne

CprE 281: Digital Logic

CSE241 VLSI Digital Circuits UC San Diego

Gate-Level Minimization

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Stamp / Signature of the Invigilator

Chapter 2. Boolean Expressions:

ICS 252 Introduction to Computer Design

University of Technology

GATE Exercises on Boolean Logic

Experiment 3: Logic Simplification

Boolean Function Simplification

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY CS 2202 DIGITAL PRINCIPLES AND SYSTEM DESIGN

Introduction to synthesis. Logic Synthesis

LSN 4 Boolean Algebra & Logic Simplification. ECT 224 Digital Computer Fundamentals. Department of Engineering Technology

1.4 Euler Diagram Layout Techniques

Digital Logic Design. Outline

Introduction to Programmable Logic Devices (Class 7.2 2/28/2013)

BCNF. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong BCNF

BHARATHIDASAN ENGINEERING COLLEGE Degree / Branch : B.E./ECE Year / Sem : II/ III Sub.Code / Name : EC6302/DIGITAL ELECTRONICS

Combinational hazards

Digital Logic Design (CEN-120) (3+1)

Unit-IV Boolean Algebra

Chapter 2 Part 5 Combinational Logic Circuits

To write Boolean functions in their standard Min and Max terms format. To simplify Boolean expressions using Karnaugh Map.

Ch. 5 : Boolean Algebra &

Outcomes. Unit 9. Logic Function Synthesis KARNAUGH MAPS. Implementing Combinational Functions with Karnaugh Maps

McGILL UNIVERSITY Electrical and Computer Engineering Department MIDTERM EXAM

Lesson 10: Special Relationships within Right Triangles Dividing into Two Similar Sub-Triangles

EE 214 Lab 7 Computer-Based Minimization Tools Page 1/8

Type of Triangle Definition Drawing. Name the triangles below, and list the # of congruent sides and angles:

9/10/2016. ECE 120: Introduction to Computing. The Domain of a Boolean Function is a Hypercube. List All Implicants for One Variable A

February Regional Geometry Team: Question #1

Two-Level Logic Optimization ( Introduction to Computer-Aided Design) School of EECS Seoul National University

Chapter 2 QUIZ. Section 2.1 The Parallel Postulate and Special Angles

Transcription:

Quine-McCluskey Algorithm Useful for minimizing equations with more than 4 inputs. Like K-map, also uses combining theorem Allows for automation Chapter <>

Edward McCluskey (99-06) Pioneer in Electrical Engineering First president of IEEE Professor at Princeton, then Stanford 955: Quine-McCluskey Algorithm Chapter <>

Quine-McCluskey Algorithm Method:. s Table: List each minterm, sorted by the number of s it contains. Combine minterms.. Prime Implicant Table: When you can t combine anymore, list prime implicants and the minterms they cover. 3. Select Prime to cover all minterms. Chapter <3>

Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 Chapter <4>

s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Order the minterms by the number of s they have. Chapter <5>

s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Size 00- m(0,) 0-0 m(0,) 0- m(,3) -0 m(,5) 0- m(,3) -0 m(,6) Combine minterms in adjacent groups (starting with the top group). To combine terms, minterm can differ (be or 0) in only place - indicates don t care Chapter <6>

s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Size 00- m(0,) 0-0 m(0,) 0- m(,3) -0 m(,5) 0- m(,3) -0 m(,6) Size 4 0-- m(0,,,3) Combine minterms in adjacent groups (starting with the top group). To combine terms, minterm can differ (be or 0) in only place - (don t care) acts like another variable (0,, -) Match up - first. Chapter <7>

s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Size 00- m(0,) 0-0 m(0,) 0- m(,3) -0 m(,5)* 0- m(,3) -0 m(,6)* Size 4 0-- m(0,,,3)* List prime implicants: Largest implicants containing a given minterm For example m(0,) is an implicant but not a prime implicant, because m(0,,,3) is a larger implicant containing those minterms. However, m(,5) is a prime implicant no larger implicant exists that contains minterm 5. Chapter <8>

Prime Implicant Table s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Size 00- m(0,) 0-0 m(0,) 0- m(,3) -0 m(,5)* 0- m(,3) -0 m(,6)* Size 4 0-- m(0,,,3)* List prime implicants. Prime m(0,,,3) m(,5) m(,6) Minterms 0 3 5 6 ABC 0 - - - 0-0 Show which of the required minterms each includes. Chapter <9>

Prime Implicant Table s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Prime m(0,,,3) m(,5) m(,6) Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Minterms 0 3 5 6 Size 00- m(0,) 0-0 m(0,) 0- m(,3) -0 m(,5)* 0- m(,3) -0 m(,6)* Size 4 0-- m(0,,,3)* ABC 0 - - - 0-0 Select columns with only. Corresponding prime implicants must be included in equation. Chapter <0>

Prime Implicant Table s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Prime m(0,,,3) m(,5) m(,6) Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Minterms 0 3 5 6 Size 00- m(0,) 0-0 m(0,) 0- m(,3) -0 m(,5)* 0- m(,3) -0 m(,6)* Size 4 0-- m(0,,,3)* ABC 0 - - - 0-0 Select columns with only. Corresponding prime implicants must be included in equation. Chapter <>

Prime Implicant Table s Table Quine-McCluskey Example ABC Y 000 00 00 0 00 0 0 0 0 of 's 0 Prime m(0,,,3) m(,5) m(,6) Size 000 m0 00 m 00 m 0 m3 0 m5 0 m6 Minterms 0 3 5 6 Size 00- m(0,) 0-0 m(0,) 0- m(,3) -0 m(,5)* 0- m(,3) -0 m(,6)* Y = A + BC + BC ABC 0 - - - 0-0 Chapter <> Size 4 0-- m(0,,,3)* Select columns with only. Corresponding prime implicants must be included in equation.

Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 Chapter <3>

s Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 of 's 3 Size 000 m 000 m 000 m4 000 m8 00 m3 00 m6 00 m9 00 m0 0 m4 Chapter <4>

s Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 of 's 3 Size 000 m 000 m 000 m4 000 m8 00 m3 00 m6 00 m9 00 m0 0 m4 Size 00- m(,3) -00 m(,9) 00- m(,3) 0-0 m(,6) -00 m(,0) 0-0 m(4,6) 00- m(8,9) 0-0 m(8,0) -0 m(6,4) -0 m(0,4) Chapter <5>

s Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 of 's 3 Size 000 m 000 m 000 m4 000 m8 00 m3 00 m6 00 m9 00 m0 0 m4 Size 00- m(,3) -00 m(,9) 00- m(,3) 0-0 m(,6) -00 m(,0) 0-0 m(4,6) 00- m(8,9) 0-0 m(8,0) -0 m(6,4) -0 m(0,4) Size 4 --0 m(,6,0,4) Chapter <6>

s Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 of 's 3 Size 000 m 000 m 000 m4 000 m8 00 m3 00 m6 00 m9 00 m0 0 m4 Size 00- m(,3)* -00 m(,9)* 00- m(,3)* 0-0 m(,6) -00 m(,0) 0-0 m(4,6)* 00- m(8,9)* 0-0 m(8,0)* -0 m(6,4) -0 m(0,4) Size 4 --0 m(,6,0,4)* Chapter <7>

Prime Implicant Table s Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 of 's 3 Size 000 m 000 m 000 m4 000 m8 00 m3 00 m6 00 m9 00 m0 0 m4 Prime m(,6,0,4) m(,3) m(,9) m(,3) m(4,6) m(8,9) m(8,0) Size 00- m(,3)* -00 m(,9)* 00- m(,3)* 0-0 m(,6) -00 m(,0) 0-0 m(4,6)* 00- m(8,9)* 0-0 m(8,0)* -0 m(6,4) -0 m(0,4) Minterms 4 8 9 4 0-0 Chapter <8> Size 4 --0 m(,6,0,4)* ABCD --0 00- -00 0-0 00-00-

Prime Implicant Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 Prime m(,6,0,4) m(,3) m(,9) m(,3) m(4,6) m(8,9) m(8,0) Minterms 4 8 9 4 ABCD --0 00- -00 00-0-0 00-0-0 Chapter <9>

Prime Implicant Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 Prime m(,6,0,4) m(,3) m(,9) m(,3) m(4,6) m(8,9) m(8,0) Minterms 4 8 9 4 ABCD --0 00- -00 00-0-0 00-0-0 Chapter <0>

Prime Implicant Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 Prime m(,6,0,4) m(,3) m(,9) m(,3) m(4,6) m(8,9) m(8,0) Minterms 4 8 9 4 ABCD --0 00- -00 00-0-0 00-0-0 Chapter <>

Prime Implicant Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 Prime m(,6,0,4) m(,3) m(,9) m(,3) m(4,6) m(8,9) m(8,0) Minterms 4 8 9 4 ABCD --0 00- -00 00-0-0 00-0-0 Chapter <>

Prime Implicant Table Quine-McCluskey Example ABCD Y 0000 0 000 000 00 000 00 0 00 0 0 000 00 00 0 0 00 0 0 0 0 0 Prime m(,6,0,4) m(,3) m(,9) m(,3) m(4,6) m(8,9) m(8,0) Minterms 4 8 9 4 ABCD --0 00- -00 00-0-0 00-0-0 Y = CD + ABD + ABC Chapter <3>