Technical Note: NVMe Basic Management Command

Similar documents
Technical Note: NVMe Simple Management Interface

LEGAL NOTICE: LEGAL DISCLAIMER:

Block Data is the data transferred to or from the device using SCT Command Transport feature set capabilities.

Technical Note. SMART Command Feature Set for the eu500. Introduction. TN-FD-35: eu500 eusb SMART Commands. Introduction

Multifunction Expansion Board. Installation and Operation Manual

NVMe Management Interface (NVMe-MI)

Technical Note. Client SATA SSD SMART Attribute Reference. Introduction. TN-FD-22: Client SATA SSD SMART Attribute Reference.

06-078r3 SAS-2 Expander Route Table (REPORT EXPANDER ROUTE TABLE) 21 June 2006

04-352r0 SAS-1.1 Phy test functions for SMP 29 October 2004

Technical Note. SMART Command Feature Set for the Introduction. TN-FD-34: 5100 SSD SMART Implementation. Introduction

Technical Note. SMART Command Feature Set for the M510DC. Introduction. TN-FD-33: M510DC SSD SMART Implementation. Introduction

New Standard for Remote Monitoring and Management of NVMe SSDs: NVMe-MI

Intel Storage System JBOD 2000S3 Product Family

Architecture Specification

Contents. Additional Instructions P-3X CANopen

The next page shows the questions asked in revision 0 of this proposal and the answers supplied by the May SCSI Working Group meeting.

PMBus Power System Management Protocol Specification Part I General Requirements, Transport And Electrical Interface

Technical Note. SMART Command Feature Set for the M500DC. Introduction. TN-FD-26: M500DC SSD SMART Implimentation. Introduction

NVM Express TM Management Interface

SFF Committee Specification for. Self-Monitoring, Analysis and Reporting Technology (S.M.A.R.T.) SFF-8035i Revision 2.0

Linear-Encoders CANopen Profile

SMART Self-Test Reference for P400e SATA SSDs

Management Component Transport Protocol (MCTP) IDs and Codes

Open-Channel Solid State Drives Specification

SCSI is often the best choice of bus for high-specification systems. It has many advantages over IDE, these include:

AC/DC Modular Power Supply Series PMBus APPLICATION NOTES

750/760 COMMUNICATIONS GUIDE. Digital Energy Multilin. Feeder Management Relay

06-037r5 SAS-2 SMP Lists (DISCOVER LIST) 1 May, 2006

GT34C02. 2Kb SPD EEPROM

Seagate Nytro XF1440. PCIe Gen 3 x4 - NVMe SSD

Document Revision 1.0 September 16, 1998 Intel Hewlett-Packard NEC Dell

DS1625. Digital Thermometer and Thermostat FEATURES PIN ASSIGNMENT

Fieldbus Appendix AnyBus-S FIPIO

Seagate Nytro XM1440. PCIe Gen 3 x4 - NVMe SSD

06-037r3 SAS-2 SMP Lists (DISCOVER LIST) 28 April, 2006

Model IR700. Infrared Point Detector for Carbon Dioxide Gas Applications. Modbus Programming Guide

Optimized for V CC range of 1.7V to 3.6V. 2-wire serial interface: I 2 C Fast Mode Plus (FM+) compatible

Model IR4000M. HART Field Device Specification Multi-Point Monitor. Instruction Manual 07-08

I 2 C Application Note in Protocol B

DCMI Data Center Manageability Interface Specification v1.0, Revision 1.0. Addenda, Errata, and Clarifications

DELTA CONTROLS CORPORATION

Linear-Encoder Multi-Sensor CANopen Profile

Technical Description. Wired M-Bus. Water Meters flowiq 2101/3100

Tongta Inverter TDS-F8

PCI Compliance Checklist

FieldServer Driver FS Heatcraft-Smart Controller II

MF1ICS General description. Functional specification. 1.1 Key applications. 1.2 Anticollision. Energy. MIFARE card contacts La, Lb.

Temperature Sensor. Overview. Features

04-172r1 SAS-2 More counters 11 September 2005

DS2430A 256-Bit 1-Wire EEPROM

BiSS C (unidirectional) PROTOCOL DESCRIPTION

Application note Differential Pressure Sensor Type D6F-PH (Rev 1.0)

S218 SATA SSD. 1.8 Solid State SATA Drives. Engineering Specification. Document Number L Revision: D

DELTA CONTROLS CORPORATION

04-374r0 SES-2 Define a SAS Expander element 7 November 2004

ACS Proposal - Device Internal Status Log

Modbus Protocol For FTS/FTM 3x&8x

3MV2-P Series. Customer Approver. Approver. Customer: Customer Part Number: Innodisk Part Number: Model Name: Date:

PLC2 Board Communication Manual CANopen Slave

21154 PCI-to-PCI Bridge Configuration

SCT LBA Segment Access Command Extension Proposal

AT25PE40. 4-Mbit DataFlash-L Page Erase Serial Flash Memory ADVANCE DATASHEET. Features

CFast Embedded Flash Module

Open CloudServer OCS Solid State Drive Version 2.1

DS Wire Digital Thermometer and Thermostat

PFC96Evo / PFC144Evo CONTROLLER MODBUS PROTOCOL

August 14, T10 Technical Committee John Lohmeyer, LSI Logic Principal Member of T10 Expander Communication Protocol. Revision 1 changes:

J1939 USER MANUAL POWERKEY PRO SERIES

16-Megabit 2.3V or 2.7V Minimum SPI Serial Flash Memory

AN NTAG I²C plus memory configuration options. Application note COMPANY PUBLIC. Rev June Document information

NVM Express 1.3 Delivering Continuous Innovation

PMBus Power System Management Protocol Specification Part I General Requirements, Transport And Electrical Interface

INTELLIS. Modbus Direct Network Monitor

FeliCa Card User's Manual Excerpted Edition

Type 1 Tag Operation Specification. Technical Specification NFC Forum TM T1TOP 1.1 NFCForum-TS-Type-1-Tag_

Table 1 - GET CONFIGURATION Command Descriptor Block

PCI Express TM. Architecture. Configuration Space Test Considerations Revision 1.0

ORDERING INFORMATION. OPERATION Measuring Temperature A block diagram of the DS1621 is shown in Figure 1. DESCRIPTION ORDERING PACKAGE

PMBus. Specification

MOS INTEGRATED CIRCUIT

LMV2 / LMV3... Modbus. User Documentation. Building Technologies Division

NVM Express Technical Errata

DS1821 Programmable Digital Thermostat and Thermometer

1 Overview. T10/ revision 0

FlashFlex MCU SST89C58RC

PMBus Application Profile for DC-DC Power Modules

INTEGRATED CIRTUIT OF DIGITAL THERMOMETER OF INDUSTRIAL TEMPERATURE RANGE (functional equivalent of DS18B20 "Maxim-Dallas Semiconductor")

MF1ICS General description. Functional specification. 1.1 Key applications. 1.2 Anticollision. Product data sheet PUBLIC

IS-Dev Kit-8 User Manual

AT89S4D12. 8-Bit Microcontroller with 132K Bytes Flash Data Memory AT89S4D12. Features. Description. Pin Configurations

PowerKey and PowerKey pro serier. J1939 Programmers Manual

Automationdirect.com. D i r e c t L o g i c S D S N e t w o r k M a s t e r. S m a r t D i s t r i b u t e d. S y s t e m M o d u l e

PowerKey 1000 J1939 user manual

FlashFlex MCU SST89E54RD2A/RDA / SST89E58RD2A/RDA

LUTs. Block RAMs. Instantiation. Additional Items. Xilinx Implementation Tools. Verification. Simulation

ReeR MOSAIC SUPPLEMENTAL MANUAL. Please refer to the Safety Components Disclaimer which1 follows these examples

RM24C64AF 64-Kbit 1.65V Minimum Non-volatile Fast Write Serial EEPROM I 2 C Bus

PM130 Powermeters Reference Guide ASCII Communications Protocol

The Cubesat Internal bus: The I2C

White Paper Using the MAX II altufm Megafunction I 2 C Interface

Transcription:

Technical Note: NVMe Basic Management Command Revision 1.0a April 16, 2015 LEGAL NOTICE: Copyright 2007-2015 NVM Express, Inc. ALL RIGHTS RESERVED. This Technical Note on the NVMe Basic Management Command is proprietary to the NVM Express, Inc. (also referred to as Company ) and/or its successors and assigns. LEGAL DISCLAIMER: THIS DOCUMENT AND THE INFORMATION CONTAINED HEREIN IS PROED ON AN AS IS BASIS. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LA, NVM EXPRESS, INC. (ALONG ITH THE CONTRIBUTORS TO THIS DOCUMENT) HEREBY DISCLAIM ALL REPRESENTATIONS, ARRANTIES AND/OR COVENANTS, EITHER EXPRESS OR IMPLIED, STATUTORY OR AT COMMON LA, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED ARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, VALIDITY, AND/OR NONINFRINGEMENT. All product names, trademarks, registered trademarks, and/or servicemarks may be claimed as the property of their respective owners. NVM Express orkgroup c/o Virtual, Inc. 401 Edgewater Place, Suite 600 akefield, MA 01880 info@nvmexpress.org

The NVMe Management Interface (NVMe-MI) workgroup is developing a specification using Management Component Transport Protocol (MCTP) messages. One command will not use MCTP and it is being released early by this whitepaper so that systems may already start polling their NVMe devices for basic health status information over SMBus. This whitepaper will be superseded when the full specification is released. This command does not provide any mechanism to modify or configure the NVMe device. Such features will use the more capable MCTP protocol rather than this command s simpler SMBus Block Read. The host can reuse existing SMBus or serial EEPROM read subroutines for this read and is not required to switch the SMBus between master and slave modes as in MCTP. The block read protocol is specified by the SMBus specification which is available online at www.smbus.org. First slave address write and command code bytes are transmitted by the host, then a repeated start and finally a slave address read. The host keeps clocking as the drive then responds in slave mode with the selected data. The command code is used as a starting offset into the data block shown in Figure 1, like an address on a serial EEPROM. The offset value increments on every byte read and is reset to zero on a stop condition. A read command without a repeated start is permissible and would always start transmission from offset zero. Reading more than the block length with an I2C read is also permissible and these reads would continue into the first byte in the next block of data. The accumulates all bytes sent or received after the start condition and the current value is inserted whenever a field is reached. Blocks of data are packed sequentially. The first 2 blocks are defined by the NVMe-MI workgroup. The first block is the dynamic host health data. The second block includes the Vendor ID () and serial number of the drive. Additional blocks of data can be defined by the owner of the. Reading past the end of the vendor defined blocks shall return zeros. The SMBus slave address to read this data structure is the same address we use for MCTP, and defaults to 6Ah if ARP is not invoked. Since SMBus shifts the address left to make room for the read/write direction bit, the address appears in the examples below as for write and D5h for read. Interleaved MCTP and block read traffic is permissible and neither command type shall disturb the state of the other commands. Here are a few example reads from an NVMe drive at 30 C, no alarms, =12, serial number is AZ123456 using the format defined in Figure 1. Host transmissions are shown in white blocks and drive responses are shown in grey blocks: Example 1: SMBus block read of the drive s status (status flags, SMART warnings, temperature): Restart D5h R 06h Status Flags BFh SMART arnings FFh Temp 1Eh Drive Life Used 01h 10h

Example 2: SMBus block read of the drive s static data ( and serial number): 08h Restart D5h R 16h 12h A 41h Z 5Ah 1 31h 2 32h 3 33h 4 5 35h 6 36h DAh Example 3: SMBus send byte to reset Arbitration bit: FFh Example 4: I2C read of status and vendor content, I2C allows reading across SMBus block boundaries: Restart D5h R 06h Status Flags BFh SMART arnings FFh Temp 1Eh Drive Life Used 01h 10h 16h 12h A 41h Z 5Ah 1 31h 2 32h 3 33h 4 5 35h 6 36h B0h The SMBus Arbitration bit may be used for simple arbitration on systems that have multiple drives on the same SMBus segment without ARP or muxes to separate them. To use this mechanism, the host follows this 3 step process to handle collisions for the same slave address: 1. The host does a SMBus byte write to send byte FFh which clears the SMBus Arbitration bit on all listening NVMe Management Endpoints at this slave address. 2. The host does an I2C read starting from offset 0h and continuing at least through the serial number in the second block. The drive transmitting a 0 when other drives sent a 1 wins arbitration and sets the arbitration bit to 1 upon read completion to give other drives priority on the next read. 3. Repeat step 2 until all drives are read, host receiving the Arbitration bit as a 1 indicates loop is done. 4. Sort the responses by serial number since the order of drive responses varies with health status and temperatures.

Be careful that there are no short reads of similar data between steps 1 and 3. If the read data is exactly the same on multiple drives then all these drives will set the arbitration bit. After that a new send byte FFh is required to restart the process. The logic levels were intentionally inverted to normally high in the bytes 1 and 2. This is an additional mechanism to assist systems that do not have ARP or muxes. Since 0 bits win arbitration on SMBus, a drive with an alarm condition will be prioritized over healthy drives in the above arbitration scheme. Thus a single I2C read of byte offsets 1&2 from an array of drives will detect alarm conditions. Note that only one drive with an alarm can be reliably detected because drives without the same alarm stop transmitting once the bus contention is detected. For this reason the bits are sorted in order of priority. Continuing to read further will provide the serial number of the drive that had the alarm.

Command Offset (byte) 00 Description of Status: Indicates number of additional bytes to read before encountering. This value should always be 6 (06h) in implementations of this version of the spec. Status Flags (SFLGS): This field indicates the status of the NVM subsystem. SMBus Arbitration Bit 7 is set 1 after a SMBus block read is completed all the way to the stop bit without bus contention and cleared to 0 if a SMBus Send Byte FFh is received on this SMBus slave address. Drive Not Ready Bit 6 is set to 1 when the subsystem cannot process NVMe management commands, and the rest of the transmission may be invalid. If cleared to 0, then the NVM subsystem is fully powered and ready to respond to management commands. This logic level intentionally identifies and prioritizes powered up and ready drives over their powered off neighbors on the same SMBus segment. 01 Drive Functional Bit 5 is set to 1 to indicate an NVM subsystem is functional. If cleared to 0, then there is an unrecoverable failure in the NVM subsystem and the rest of the transmission may be invalid. 0 Reset Not Required - Bit 4 is set to 1 to indicate the NVM subsystem does not need a reset to resume normal operation. If cleared to 0 then the NVM subsystem has experienced an error that prevents continued normal operation. A controller reset is required to resume normal operation. Port 0 PCIe Link Active - Bit 3 is set to 1 to indicate the first port s PCIe link is up (i.e., the Data Link Control and Management State Machine is in the DL_Active state). If cleared to 0, then the PCIe link is down. Port 1 PCIe Link Active - Bit 2 is set to 1 to indicate the second port s PCIe link is up. If cleared to 0, then the second port s PCIe link is down or not present. 02 Bits 1-0 shall be set to 1. SMART arnings: This field shall contain the Critical arning field (byte 0) of the NVMe SMART / Health Information log. Each bit in this field shall be inverted from the NVMe definition (i.e., the management interface shall indicate a 0 value while the corresponding bit is 1 in the log page). Refer to the NVMe specification for bit definitions. If there are multiple controllers in the NVM subsystem, the management endpoint shall combine the Critical arning field from every controller such that a bit in this field is: Cleared to 0 if any controller in the subsystem indicates a critical warning for that corresponding bit. Set to 1 if all controllers in the NVM subsystem do not indicate a critical warning for the corresponding bit.

Composite Temperature (CTemp): This field indicates the current temperature in degrees Celsius. If a temperature value is reported, it should be the same temperature as the Composite Temperature from the SMART log of hottest controller in the NVM subsystem. The reported temperature range is vendor specific, and shall not exceed the range -60 to +127 C. The 8 bit format of the data is shown below. This field should not report a temperature when that is older than 5 seconds. If recent data is not available, the NVMe management endpoint should indicate a value of 80h for this field. 03 Value Description -7Eh Temperature is measured in degrees Celsius (0 to 126C) 7Fh 80h 81h 82h-C3h C4 C5-FFh 127C or higher No temperature data or temperature data is more the 5 seconds old. Temperature sensor failure Temperature is -60C or lower Temperature measured in degrees Celsius is represented in twos complement (-1 to -59C) 8 32+ 255:32 Percentage Drive Life Used (PDLU): Contains a vendor specific estimate of the percentage of NVM subsystem NVM life used based on the actual usage and the manufacturer s prediction of NVM life. If an NVM subsystem has multiple controllers the highest value is returned. A value of 100 indicates that the estimated endurance of the 04 NVM in the NVM subsystem has been consumed, but may not indicate an NVM subsystem failure. The value is allowed to exceed 100. Percentages greater than 254 shall be represented as 255. This value should be updated once per power-on hour and equal the Percentage Used value in the NVMe SMART Health Log Page. 06:05 : Shall be set to 00 : An 8 bit CRC calculated over the slave address, command code, second slave 07 address and returned data. Algorithm is in SMBus Specifications. of identification: Indicates number of additional bytes to read before encountering 08. This value should always be 22 (16h) in implementations of this version of the spec. Vendor ID: The 2 byte vendor ID, assigned by the PCI SIG. Should match in the 10:09 Identify Controller command response. MSB is transmitted first. Serial Number: 20 characters that match the serial number in the NVMe Identify Controller 30:11 command response. First character is transmitted first : An 8 bit CRC calculated over the slave address, command code, second slave 31 address and returned data. Algorithm is in SMBus Specifications. Vendor Specific This data structure shall not exceed the maximum read length of 255 specified in the SMBus version 3 specification. Preferably length is not greater than 32 for compatibility with SMBus 2.0, additional blocks shall be on 8 byte boundaries. Figure 1: Subsystem Management Data Structure