Introduc)on to fmri. Natalia Zaretskaya

Similar documents
fmri Analysis Sackler Ins2tute 2011

Introduction to fmri. Pre-processing

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

SPM8 for Basic and Clinical Investigators. Preprocessing. fmri Preprocessing

Basic fmri Design and Analysis. Preprocessing

Functional MRI in Clinical Research and Practice Preprocessing

Introduction to Neuroimaging Janaina Mourao-Miranda

EPI Data Are Acquired Serially. EPI Data Are Acquired Serially 10/23/2011. Functional Connectivity Preprocessing. fmri Preprocessing

Form follows func-on. Which one of them can fly? And why? Why would anyone bother about brain structure, when we can do func5onal imaging?

GLM for fmri data analysis Lab Exercise 1

Surface-based Analysis: Inter-subject Registration and Smoothing

SPM8 for Basic and Clinical Investigators. Preprocessing

Function-Structure Integration in FreeSurfer

Group Sta*s*cs in MEG/EEG

Tutorial BOLD Module

Functional MRI data preprocessing. Cyril Pernet, PhD

FSL Pre-Processing Pipeline

Analysis of fmri data within Brainvisa Example with the Saccades database

Journal of Articles in Support of The Null Hypothesis

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

FSL Pre-Processing Pipeline

FMRI Pre-Processing and Model- Based Statistics

Pa#ern Recogni-on for Neuroimaging Toolbox

Supplementary methods

Version. Getting Started: An fmri-cpca Tutorial

Preprocessing of fmri data

Multi-voxel pattern analysis: Decoding Mental States from fmri Activity Patterns

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco.

Computational Neuroanatomy

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

This Time. fmri Data analysis

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

CS395T Visual Recogni5on and Search. Gautam S. Muralidhar

White Pixel Artifact. Caused by a noise spike during acquisition Spike in K-space <--> sinusoid in image space

Introduc)on to FreeSurfer h0p://surfer.nmr.mgh.harvard.edu. Jenni Pacheco.

Fmri Spatial Processing

Supplementary Figure 1

SPM Introduction. SPM : Overview. SPM: Preprocessing SPM! SPM: Preprocessing. Scott Peltier. FMRI Laboratory University of Michigan

SPM99 fmri Data Analysis Workbook

Basic principles of MR image analysis. Basic principles of MR image analysis. Basic principles of MR image analysis

SPM Introduction SPM! Scott Peltier. FMRI Laboratory University of Michigan. Software to perform computation, manipulation and display of imaging data

Data Visualisation in SPM: An introduction

Bayesian Inference of Hemodynamic Changes in Functional Arterial Spin Labeling Data

Alignment and Image Comparison

Last Time. This Time. Thru-plane dephasing: worse at long TE. Local susceptibility gradients: thru-plane dephasing

Alignment and Image Comparison. Erik Learned- Miller University of Massachuse>s, Amherst

Experimental Design for fmri OHBM Advanced fmri Educational Course Thomas Liu UCSD Center for Func6onal MRI

How about imaging moving subjects at low signal? Fast snapshot imaging

fmri pre-processing Juergen Dukart

Multivariate Pattern Classification. Thomas Wolbers Space and Aging Laboratory Centre for Cognitive and Neural Systems

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Data Visualisation in SPM: An introduction

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2008

Methods for data preprocessing

CS/NEUR125 Brains, Minds, and Machines. Due: Wednesday, April 5

EMPIRICALLY INVESTIGATING THE STATISTICAL VALIDITY OF SPM, FSL AND AFNI FOR SINGLE SUBJECT FMRI ANALYSIS

Adaptive statistical parametric mapping for fmri

AFNI Preprocessing: Outline, Recommendations, and New(ish) Stuff. Robert W Cox SSCC / NIMH & NINDS / NIH / DHHS / USA / EARTH

Multivariate pattern classification

Bias in Resampling-Based Thresholding of Statistical Maps in fmri

I.e. Sex differences in child appetitive traits and Eating in the Absence of Hunger:

Bayesian Spatiotemporal Modeling with Hierarchical Spatial Priors for fmri

Spatial Regularization of Functional Connectivity Using High-Dimensional Markov Random Fields

First-level fmri modeling

Functional MRI. Jerry Allison, Ph. D. Medical College of Georgia

Correction of Partial Volume Effects in Arterial Spin Labeling MRI

Controlling for mul2ple comparisons in imaging analysis. Where we re going. Where we re going 8/15/16

Detecting Brain Activations in Functional Magnetic Resonance Imaging (fmri) Experiments with a Maximum Cross-Correlation Statistic

NeuroImaging. (spatial and statistical processing, maybe) Philippe Peigneux, PhD. UR2NF - Neuropsychology and Functional

MultiVariate Bayesian (MVB) decoding of brain images

BrainVoyager TM. Getting Started Guide. Version 3.0. for BV 21

Getting Started Guide

ASAP_2.0 (Automatic Software for ASL Processing) USER S MANUAL

NA-MIC National Alliance for Medical Image Computing fmri Data Analysis

HST.583 Functional Magnetic Resonance Imaging: Data Acquisition and Analysis Fall 2006

CONN fmri functional connectivity toolbox

SPM Course! Single Subject Analysis

Preprocessing II: Between Subjects John Ashburner

Cluster failure: Why fmri inferences for spatial extent have inflated false positive rates

Noise and Artifacts in FMRI

Head motion in diffusion MRI

Group analysis of fmri data. Why group analysis? What is a population? Reminder: Analysis of data from 1 person. Robert: Roel Willems,

Lecture 14: Tracking mo3on features op3cal flow

Empirical analyses of null-hypothesis perfusion FMRI data at 1.5 and 4 T

Event-related design efficiency and How to plot fmri time series. Sepideh Sadaghiani NeuroSpin Methods Meeting 15. Sept. 2008

Research Article Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fmri Data

FEAT 3 - Advanced FMRI Analysis

CHAPTER 9: Magnetic Susceptibility Effects in High Field MRI

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos

Decoding the Human Motor Cortex

Batch processing of GLMs

fmri Preprocessing & Noise Modeling

n o r d i c B r a i n E x Tutorial DSC Module

Cocozza S., et al. : ALTERATIONS OF FUNCTIONAL CONNECTIVITY OF THE MOTOR CORTEX IN FABRY'S DISEASE: AN RS-FMRI STUDY

Resting state network estimation in individual subjects

Spatial Alignment of Functional Regions in fmri. Gabriel Andres Tobón

Parametric Response Surface Models for Analysis of Multi-Site fmri Data

Chapter #1. Statistical Parametric Mapping 1. INTRODUCTION

An Empirical Comparison of SPM Preprocessing Parameters to the Analysis of fmri Data

Transcription:

Introduc)on to fmri Natalia Zaretskaya

Content fmri signal fmri versus neural ac)vity A classical experiment: flickering checkerboard Preprocessing Univariate analysis Single- subject analysis Group analysis SoHware

fmri in comparison Spa)al resolu)on Temporal resolu)on

Some fmri study examples

Recommended reading!

fmri signal Hemodynamic response S)mulus Neural ac)vity increase Oxygen consump)on increase (CMR02) Cerebral blood flow increase (CBF) Cerebral blood volume increase (CBV) MR signal changes

Blood Oxygen Level Dependent signal (BOLD) Hemodynamic response S)mulus Neural ac)vity increase Oxygen consump)on increase (CMR02) Cerebral blood flow increase (CBF) Cerebral blood volume increase (CBV) MR signal changes BOLD signal

Neural ac)vity and energy consump)on in the primate brain Postsynap)c ac)vity: 75% Ac)on poten)als: 10% Ac)va)on neural excita)on Deac)va)on neural inhibi)on aher AXwell and Iadecola, TINS 2002 See also Logothe)s et al., 2001&2003

Hemodynamic response hxp://hirnforschung.kyb.mpg.de/en/methods/func)onal- magne)c- resonance- imaging- fmri.html

Hemodynamic response func)on (hrf) 0.12 HRF 0.1 0.08 0.06 0.04 0.02 0-0.02 Brief s)mulus 0 1.5 3 4.5 6 7.5 9 10.5 12 13.5 15 16.5 18 19.5 21 22.5 24 25.5 27 28.5 30 31.5

Image types Func1onal/BOLD/ T2,T2*weighted Structural/anatomical/T1- weigted SagiXal view Coronal view Resolu)on 3x3x3 mm Transverse view Resolu)on: 1x1x1 mm

Image acquisi)on In- plane resolu)on 3x3mm Slice thickness 3mm Voxel size 3x3x3mm

Experimental design Condi1on of interest Checkerboard Control Gray background Finger tapping Rest Faces Houses Cola Pepsi

20 s on 20 s off A typical experiment 2 1.5 1 0.5 0-0.5-1 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s) 1.5 1 0.5 0 TR 0.0 2.5 5.0 Time (s)

4D func)onal dataset 3D Repe))on )me (TR) )me Voxel 1me course 2.00 1.50 1.00 0.50 0.00-0.50-1.00 Time (s)

Analysis steps Single- subject preprocessing Single- subject analysis (1 st level analysis) Group analysis (2 nd level analysis)

Mo)on correc)on Purpose: compensate for subject movement 2 1 0 0.0 2.5 5.0 Time (s)

Mo)on correc)on Purpose: compensate for subject movement 6 parameter rigid body transform 3x 3x # volume

Slice- )me correc)on Purpose: compensate for the lag in slice acquisi)on ascending interleaved

Slice- )me correc)on Purpose: compensate for the lag in slice acquisi)on 2.5 s 0.12 0.1 0.08 0.06 0.04 Before correc1on 0.02 0-0.02 0.0 7.5 15.0 22.5 30.0 37.5 45.0 52.5 60.0 67.5 75.0 82.5 90.0 97.5 105.0 112.5 Time (s) AIer correc1on 0.12 0 s 0.1 0.08 0.06 0.04 0.02 0 0.0 7.5 15.0 22.5 30.0 37.5 45.0 52.5 60.0 67.5 Time (s) 75.0 82.5 90.0 97.5 105.0 112.5-0.02 0 4 8 12 16 20 24 28 32 0 4 8 12 16 20 24 28 32

Normaliza)on to common space Purpose1: compensate individual differences in brain shape for the group analysis hxp://publicdomainreview.org/collec)ons/phrenology- diagrams- from- vaughts- prac)cal- character- reader- 1902/

Templates & coordinate systems Purpose2: Unified coordinate system Talairach MNI hxp://imaging.mrc- cbu.cam.ac.uk/imaging/mnitalairach

Rigid transform Template 6 parameter rigid transform 3x 3x

Affine transform 12 parameter affine transform 3x 3x 3x 3x

Deforma)on field Warped image Nonlinear transform Source Template warping

Co- registra)on Subject 1 Template Group ac)va)on Subject 2 Subject n

Spa)al smoothing Purpose: increase the signal and suppress the noise 0 FWHM 5 FWHM 10 FWHM Full Max Full- Width/Half- max 2mm FWHM Half Max 5mm FWHM 10mm FWHM

More on smoothing later In the sohware sec)on!

Single- subject (first- level) analysis Univariate/voxel- wise analysis Ques)on: Which areas are ac)vated by the flickering checkerboard?

Checkerboard experiment - 1-0.5 0 0.5 1 1.5 2 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s) S1mulus func1on

Checkerboard experiment - 1-0.5 0 0.5 1 1.5 2 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s)

Simplest analysis - 1-0.5 0 0.5 1 1.5 2 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s)

Simplest analysis 2 1.5 1 0.5 0-0.5-1 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s) T- test OFF ON - 1-0.5 0 0.5 1 1.5 2

Simplest analysis 2 1.5 1 0.5 0-0.5-1 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s) T- test OFF ON - 1-0.5 0 0.5 1 1.5 2

General Linear Model (GLM) Build a predic)on about the signal Fit predic)on to actual data If it fits nicely there is ac)va)on!

Building predic)on - 1-0.5 0 0.5 1 1.5 2 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 110.0 115.0 Time (s) S1mulus func1on - 0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 HRF - 1.00-0.50 0.00 0.50 1.00 1.50 2.00 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s) Regressor (signal predictor) convolu)on

Building regressors - 1-0.5 0 0.5 1 1.5 2 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 70.0 75.0 80.0 85.0 90.0 95.0 100.0 105.0 110.0 115.0 Time (s) S1mulus func1on - 0.02 0 0.02 0.04 0.06 0.08 0.1 0.12 0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 HRF - 1.00-0.50 0.00 0.50 1.00 1.50 2.00 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s) convolu)on

General Linear Model Y(t) = β * X(t) + c + e(t) Measured data Modeled data (regressors) Constant offset Error (e.g. noise, confounds)

General linear model fit Y = Xβ + e β = (X T X) -1 X T y

Sta)s)cal inference (t- test) in GLM Voxel- wise t- sta)s)c t = β/se(β) 3D t- sta)s)c map 72,221 voxels Final result Is related to the variance of error Thresholding: deal with mul)ple comparison problem!

What about two condi)ons? Condi)on A Condi)on B - 1-0.5 0 0.5 1 1.5 2 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 52.5 55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5 75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5 95.0 97.5 100.0 102.5 105.0 107.5 110.0 112.5 115.0 117.5 Time (s)

General Linear Model Y(t) = + + c + e(t) Measured data Modeled data (regressor 1) Modeled data (regressor 2) Error (e.g. noise, confounds)

Sta)s)cal inference (t- test) in GLM Voxel- wise t- sta)s)c t = (β1 β2) / SE(β1;β2) 3D t- sta)s)c map 72,221 voxels Final result Thresholding: deal with mul)ple comparison problem!

What about X condi)ons? Design Matrix Condi)ons of interest regressors Nuissance regressors )me Y = Xβ + e

Contrast: linear combina)on of betas Contrast vector: describes how beta- es1mates are combined ( weighted ) Contrast image: a 3D volume containing the result of beta- combina1ons Y(t) = β1*x1(t) + β2* X2(t) + c + e(t) [ 1-1 ] β1- β2

Group analysis (second- level analysis) Subject 1 contrast image Subject 2 contrast image Subject n contrast image Voxel- wise one- sample t- test Is our combina)o n of betas different from zero? 3D t- sta)s)c map Thresholding: deal with mul)ple comparison problem! Final result

GLM advantages Complex experimental designs Regress out uninteres)ng effects/ confounds Es)mate HRF shape 0.12 0.1 0.08 0.06 0.04 0.02 0-0.02? 0 4 8 12 16 20 24 28 32

Different sohware, different philosophies Since 1994 hxp://www.fil.ion.ucl.ac.uk/spm/ Since 1994 hxps://github.com/wanderine/broccoli/ Doug Greve hxp://afni.nimh.nih.gov/afni/ Since 2000 hxp://fsl.fmrib.ox.ac.uk/fsl/fslwiki/ hxps://surfer.nmr.mgh.harvard.edu/fswiki/fsfast

Surface- based analysis advantages 14 mm FWHM Surface- based smoothing 5 mm apart in 3D 25 mm apart on surface Averaging with other )ssue types (WM, CSF) Averaging with other func)onal areas Surface- based inter- subject registra)on slide courtesy of Doug Greve

500 µm 0.6 mm isotropic voxels 3 mm isotropic voxels Weber et al., 2008

500 µm 0.6 mm isotropic voxels 3 mm isotropic voxels Weber et al., 2008

500 µm 0.6 mm isotropic voxels Thank you for your axen)on Also thanks to: Jon Polimeni Andreas Bartels Doug Greve for some of the slides and ideas 3 mm isotropic voxels Weber et al., 2008