Wireless LANs. Characteristics Bluetooth. PHY MAC Roaming Standards

Similar documents
Computer Networks. Wireless LANs

Data Communications. Data Link Layer Protocols Wireless LANs

Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs

Chapter 7: Wireless LANs

Mobile & Wireless Networking. Lecture 7: Wireless LAN

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs

Mobile Communications Chapter 7: Wireless LANs

4.3 IEEE Physical Layer IEEE IEEE b IEEE a IEEE g IEEE n IEEE 802.

ICE 1332/0715 Mobile Computing (Summer, 2008)

WLAN 1 IEEE Basic Connectivity. Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto

WLAN 1 IEEE Manuel Ricardo. Faculdade de Engenharia da Universidade do Porto

Wireless Communication Session 4 Wi-Fi IEEE standard

Lecture 16: QoS and "

Page 1. Wireless LANs: Design Requirements. Evolution. EEC173B/ECS152C, Winter Wireless LANs

MAC in /20/06

IEEE WLANs (WiFi) Part II/III System Overview and MAC Layer

Introduction to IEEE

Computer Communication III

Local Area Networks NETW 901

Chapter 4 WIRELESS LAN

standard. Acknowledgement: Slides borrowed from Richard Y. Yale

Advanced Computer Networks WLAN

IEEE Characteristics System Architecture Protocol Architecture Physical Layer. Power Management Roaming Current Developments

Internet Protocol Stack

Mohammad Hossein Manshaei 1393

WIRELESS LAN (WLAN) Efthyvoulos C. Kyriacou (PhD) Assoc. Prof. Computer Science and Engineering Department

Guide to Wireless Communications, Third Edition. Objectives

MOBILE COMPUTING. Bluetooth 9/20/15. CSE 40814/60814 Fall Basic idea

CS 348: Computer Networks. - WiFi (contd.); 16 th Aug Instructor: Sridhar Iyer IIT Bombay

04/11/2011. Wireless LANs. CSE 3213 Fall November Overview

3.1. Introduction to WLAN IEEE

Vehicle Networks. Wireless Local Area Network (WLAN) Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Wireless# Guide to Wireless Communications. Objectives

Chapter 3: Overview 802 Standard

Wireless Personal Area Networks

original standard a transmission at 5 GHz bit rate 54 Mbit/s b support for 5.5 and 11 Mbit/s e QoS

Lecture 25: CSE 123: Computer Networks Alex C. Snoeren. HW4 due NOW

IEEE Integrated Communication Systems Group Ilmenau University of Technology

Local Area Networks NETW 901

Chapter 3.1 Acknowledgment:

Wireless Communications

Chapter 6 Medium Access Control Protocols and Local Area Networks

Lecture 24: CSE 123: Computer Networks Stefan Savage. HW4 due NOW

CSC344 Wireless and Mobile Computing. Department of Computer Science COMSATS Institute of Information Technology

Wireless LANs. ITS 413 Internet Technologies and Applications

Wireless Local Area Networks. Networks: Wireless LANs 1

Wireless Local Area Networks (WLANs)) and Wireless Sensor Networks (WSNs) Computer Networks: Wireless Networks 1

IEEE Mobile Communication Networks (RCSE) Winter Semester 2011/12. Integrated Communication Systems Group Ilmenau University of Technology

IEEE Characteristics System Architecture Protocol Architecture Physical Layer. Power Management Roaming Current Developments

Wireless Local Area Networks (WLANs) Part I

Data and Computer Communications. Chapter 13 Wireless LANs

MOBILE COMPUTING. Jan-May,2012. ALAK ROY. Assistant Professor Dept. of CSE NIT Agartala.

WiFi Networks: IEEE b Wireless LANs. Carey Williamson Department of Computer Science University of Calgary Winter 2018

Investigation of WLAN

Communication Systems. WPAN: Bluetooth. Page 1

IEEE Technical Tutorial. Introduction. IEEE Architecture

Wireless Local Area Networks (WLANs) and Wireless Sensor Networks (WSNs) Primer. Computer Networks: Wireless LANs

Mobile Communications I

Chapter 6 Wireless and Mobile Networks. Csci 4211 David H.C. Du

Topics for Today. More on Ethernet. Wireless LANs Readings. Topology and Wiring Switched Ethernet Fast Ethernet Gigabit Ethernet. 4.3 to 4.

Enabling Technologies

Topic 4. Wireless LAN IEEE

Wireless LANs. Outline. Outline II. Benefits Applications Technologies Issues Configurations Overview of Standard

MSIT 413: Wireless Technologies Week 8

Mohamed Khedr.

Hands-On Exercises: IEEE Standard

Wireless Local Area Network. Internet Protocol Suite

CSMC 417. Computer Networks Prof. Ashok K Agrawala Ashok Agrawala. Fall 2018 CMSC417 Set 1 1

Wireless Local Area Networks (WLAN)

outline background & overview mac & phy wlan management security

IEEE Wireless LANs

Multiple Access Links and Protocols

Wireless Protocols. Training materials for wireless trainers

ECE 435 Network Engineering Lecture 8

Optional Point Coordination Function (PCF)

Guide to Wireless Communications, 3 rd Edition. Objectives

WIRELESS-NETWORK TECHNOLOGIES/PROTOCOLS

Overview of Wireless LANs

CS263: Wireless Communications and Sensor Networks

Wireless Local Area Network (IEEE )

MAC. Fall Data Communications II 1

Bluetooth. Bluetooth Basics Bluetooth and Linux Bluetooth at AG Tech. Dr.-Ing. H. Ritter, 7.1

Actual4Test. Actual4test - actual test exam dumps-pass for IT exams

WLAN. Right, Gentlemen. The aim of our presentation is to give you detailed information on the topic WLAN (Wireless Local Area Network).

Overview : Computer Networking. Spectrum Use Comments. Spectrum Allocation in US Link layer challenges and WiFi WiFi

Multimedia Communication Services Traffic Modeling and Streaming

Data and Computer Communications

Nomadic Communications WLAN MAC Fundamentals

Mohammad Hossein Manshaei

Advanced Computer Networks. WLAN, Cellular Networks

Chapter 5 (Part 3) LINK LAYER

Architecture. Copyright :I1996 IEEE. All rights reserved. This contains parts from an unapproved draft, subject to change

Wireless Data Networking IEEE & Overview of IEEE b

Wireless and Mobile Networks

Internet Structure. network edge:

IEEE MAC Sublayer (Based on IEEE )

Announcements : Wireless Networks Lecture 11: * Outline. Power Management. Page 1

Introduction to Wireless LAN

Transcription:

Wireless LANs Characteristics 802.11 PHY MAC Roaming Standards Bluetooth 1 Significant parts of slides are based on original material by Prof. Dr.-Ing. Jochen Schiller, FU-Berlin www.jochenschiller.de

Characteristics of wireless LANs Advantages very flexible within the reception area Ad-hoc networks without previous planning possible (almost) no wiring difficulties (e.g. historic buildings, firewalls) more robust against disasters like, e.g., earthquakes, fire - or users pulling a plug... Disadvantages typically lower bandwidth compared to wired networks (1-50 Mbit/s) typically much lower throughput (shared unreliable medium) many proprietary solutions, especially for higher bit-rates, standards take their time (e.g. IEEE 802.11) products have to follow many national restrictions if working wireless, it takes a very long time to establish global solutions like, e.g., IMT-2000 2

Design goals for wireless LANs global, seamless operation low power for battery use no special permissions or licenses needed to use the LAN robust transmission technology simplified spontaneous cooperation at meetings easy to use for everyone, simple management protection of investment in wired networks security (no one should be able to read my data), privacy (no one should be able to collect user profiles), safety (low radiation) transparency concerning applications and higher layer protocols, but also location awareness if necessary 3

Comparison: infrared vs. radio transmission Infrared Advantages uses IR diodes, diffuse light, multiple reflections (walls, furniture etc.) simple, cheap, available in many mobile devices no licenses needed simple shielding possible Disadvantages Example interference by sunlight, heat sources etc. many things shield or absorb IR light low bandwidth IrDA (Infrared Data Association) interface available everywhere Radio Advantages typically using the license free ISM band at 2.4 GHz experience from wireless WAN and mobile phones can be used coverage of larger areas possible (radio can penetrate walls, furniture etc.) Disadvantages Example very limited license free frequency bands shielding more difficult, interference with other electrical devices WaveLAN, HIPERLAN, Bluetooth 4

802.11: Ad Hoc Network Base Service Set 5

802.11 Network Infrastructure Extended Service Set 6

802.11 - Architecture of an ad-hoc network 802.11 LAN STA 1 IBSS 1 STA 3 Direct communication within a limited range Station (STA): terminal with access mechanisms to the wireless medium Independent Basic Service Set (IBSS): group of stations using the same radio frequency STA 2 IBSS 2 STA 5 STA 4 802.11 LAN 7

802.11 - Architecture of an infrastructure network STA 1 ESS 802.11 LAN BSS 1 Access Point BSS 2 Distribution System Access Point 802.x LAN Portal STA 2 802.11 LAN STA 3 Station (STA) terminal with access mechanisms to the wireless medium and radio contact to the access point Basic Service Set (BSS) group of stations using the same radio frequency Access Point Portal station integrated into the wireless LAN and the distribution system bridge to other (wired) networks Distribution System interconnection network to form one logical network (EES: Extended Service Set) based on several BSS 8

IEEE standard 802.11 mobile terminal fixed terminal application TCP IP LLC access point LLC infrastructure network application TCP IP LLC 802.11 MAC 802.11 MAC 802.3 MAC 802.3 MAC 802.11 PHY 802.11 PHY 802.3 PHY 802.3 PHY 9

802.11 - Layers and functions MAC access mechanisms, fragmentation, encryption MAC Management synchronization, roaming, MIB, power management PLCP Physical Layer Convergence Protocol clear channel assessment signal (carrier sense) PMD Physical Medium Dependent modulation, coding PHY Management channel selection, MIB Station Management coordination of all management functions DLC PHY LLC MAC PLCP PMD MAC Management PHY Management Station Management 10

802.11 - Physical layer 3 versions: 2 radio (type. 2.4 GHz), 1 IR data rates 1 or 2 Mbit/s FHSS (Frequency Hopping Spread Spectrum) spreading, despreading, signal strength, typ. 1 Mbit/s min. 2.5 frequency hops/s (USA), two-level GFSK modulation DSSS (Direct Sequence Spread Spectrum) Infrared DBPSK modulation for 1 Mbit/s (Differential Binary Phase Shift Keying), DQPSK for 2 Mbit/s (Differential Quadrature PSK) preamble and header of a frame is always transmitted with 1 Mbit/s, rest of transmission 1 or 2 Mbit/s chipping sequence: +1, -1, +1, +1, -1, +1, +1, +1, -1, -1, -1 (Barker code) max. radiated power 1 W (USA), 100 mw (EU), min. 1mW 850-950 nm, diffuse light, typ. 10 m range carrier detection, energy detection, synchonization 11

FHSS PHY packet format Synchronization synch with 010101... pattern SFD (Start Frame Delimiter) 0000110010111101 start pattern PLW (PLCP_PDU Length Word) length of payload incl. 32 bit CRC of payload, PLW < 4096 PSF (PLCP Signaling Field) data of payload (1 or 2 Mbit/s) HEC (Header Error Check) CRC with x 16 +x 12 +x 5 +1 80 16 12 4 16 variable bits synchronization SFD PLW PSF HEC payload PLCP preamble PLCP header 12

DSSS PHY packet format Synchronization synch., gain setting, energy detection, frequency offset compensation SFD (Start Frame Delimiter) 1111001110100000 Signal data rate of the payload (0A: 1 Mbit/s DBPSK; 14: 2 Mbit/s DQPSK) Service Length future use, 00: 802.11 compliant length of the payload HEC (Header Error Check) protection of signal, service and length, x 16 +x 12 +x 5 +1 128 16 8 8 16 16 variable synchronization SFD signal service length HEC payload bits PLCP preamble PLCP header 13

802.11 - MAC layer I - DFWMAC Traffic services Asynchronous Data Service (mandatory) exchange of data packets based on best-effort support of broadcast and multicast Time-Bounded Service (optional) implemented using PCF (Point Coordination Function) Access methods DFWMAC-DCF CSMA/CA (mandatory) collision avoidance via randomized back-off mechanism minimum distance between consecutive packets ACK packet for acknowledgements (not for broadcasts) DFWMAC-DCF w/ RTS/CTS (optional) Distributed Foundation Wireless MAC avoids hidden terminal problem DFWMAC- PCF (optional) access point polls terminals according to a list 14

802.11 - MAC layer II Priorities defined through different inter frame spaces no guaranteed, hard priorities SIFS (Short Inter Frame Spacing) highest priority, for ACK, CTS, polling response PIFS (PCF IFS) medium priority, for time-bounded service using PCF DIFS (DCF, Distributed Coordination Function IFS) lowest priority, for asynchronous data service DIFS DIFS medium busy PIFS SIFS contention next frame 15 direct access if medium is free DIFS t

802.11 - CSMA/CA access method I DIFS DIFS contention window (randomized back-off mechanism) medium busy direct access if medium is free DIFS slot time next frame t station ready to send starts sensing the medium (Carrier Sense based on CCA, Clear Channel Assessment) if the medium is free for the duration of an Inter-Frame Space (IFS), the station can start sending (IFS depends on service type) if the medium is busy, the station has to wait for a free IFS, then the station must additionally wait a random back-off time (collision avoidance, multiple of slot-time) if another station occupies the medium during the back-off time of the station, the back-off timer stops (fairness) 16

802.11 - competing stations - simple version DIFS DIFS bo e bo r DIFS bo e bo r DIFS bo e busy station 1 bo e busy station 2 station 3 busy bo e busy bo e bo r station 4 bo e bo r bo e busy bo e bo r station 5 t busy medium not idle (frame, ack etc.) bo e elapsed backoff time packet arrival at MAC bo r residual backoff time 17

802.11 - CSMA/CA access method II Sending unicast packets station has to wait for DIFS before sending data receivers acknowledge at once (after waiting for SIFS) if the packet was received correctly (CRC) automatic retransmission of data packets in case of transmission errors sender DIFS data receiver SIFS ACK other stations waiting time DIFS contention data t 18

802.11 - DFWMAC Sending unicast packets station can send RTS with reservation parameter after waiting for DIFS (reservation determines amount of time the data packet needs the medium) acknowledgement via CTS after SIFS by receiver (if ready to receive) sender can now send data at once, acknowledgement via ACK other stations store medium reservations distributed via RTS and CTS sender receiver DIFS RTS SIFS CTS SIFS data SIFS ACK other stations NAV (RTS) NAV (CTS) defer access DIFS contention data t 19

Fragmentation sender receiver DIFS RTS SIFS CTS SIFS frag 1 SIFS ACK SIFS 1 frag 2 SIFS ACK2 other stations NAV (RTS) NAV (CTS) NAV (frag 1 ) NAV (ACK 1 ) DIFS contention data t 20

DFWMAC-PCF I t 0 t 1 SuperFrame medium busy point coordinator PIFS D 1 SIFS SIFS D 2 SIFS SIFS wireless stations U 1 U 2 stations NAV NAV 21

DFWMAC-PCF II t 2 t 3 t 4 PIFS SIFS CFend point coordinator D 3 D 4 SIFS wireless stations U 4 stations NAV NAV contention free period contention period t 22

Types 802.11 - Frame format control frames, management frames, data frames Sequence numbers important against duplicated frames due to lost ACKs Addresses receiver, transmitter (physical), BSS identifier, sender (logical) Miscellaneous bytes sending time, checksum, frame control, data 2 2 6 6 6 6 Duration/ ID Address 1 Address 2 Address 3 Sequence Control Frame Control Protocol version Type Subtype To DS More Frag Power Retry Mgmt 2 0-2312 4 Address Data 4 bits 2 2 4 1 1 1 1 1 1 1 1 From DS More Data WEP Order CRC 23

MAC address format scenario to DS from address 1 address 2 address 3 address 4 DS ad-hoc network 0 0 DA SA BSSID - infrastructure 0 1 DA BSSID SA - network, from AP infrastructure 1 0 BSSID SA DA - network, to AP infrastructure network, within DS 1 1 RA TA DA SA DS: Distribution System AP: Access Point DA: Destination Address SA: Source Address BSSID: Basic Service Set Identifier RA: Receiver Address TA: Transmitter Address 24

802.11 - MAC management Synchronization try to find a LAN, try to stay within a LAN timer etc. Power management sleep-mode without missing a message periodic sleep, frame buffering, traffic measurements Association/Reassociation integration into a LAN roaming, i.e. change networks by changing access points scanning, i.e. active search for a network MIB - Management Information Base managing, read, write 25

Synchronization using a Beacon (infrastructure) beacon interval access point medium B B B B busy busy busy busy value of the timestamp B beacon frame t 26

Synchronization using a Beacon (ad-hoc) beacon interval station 1 B 1 B 1 station 2 B 2 B 2 medium busy busy busy busy t value of the timestamp B beacon frame random delay 27

802.11 - Roaming No or bad connection? Then perform: Scanning scan the environment, i.e., listen into the medium for beacon signals or send probes into the medium and wait for an answer Reassociation Request station sends a request to one or several AP(s) Reassociation Response success: AP has answered, station can now participate failure: continue scanning AP accepts Reassociation Request signal the new station to the distribution system the distribution system updates its data base (i.e., location information) typically, the distribution system now informs the old AP so it can release resources 28

Handoff 29

WLAN: IEEE 802.11b Data rate 30 1, 2, 5.5, 11 Mbit/s, depending on SNR User data rate max. approx. 6 Mbit/s Transmission range Frequency Security Cost Availability 300m outdoor, 30m indoor Max. data rate ~10m indoor Free 2.4 GHz ISM-band Limited, WEP insecure, SSID 50 adapter, 200 base station, dropping Many products, many vendors Connection set-up time Connectionless/always on Quality of Service Typ. Best effort, no guarantees (unless polling is used, limited support in products) Manageability Limited (no automated key distribution, sym. Encryption) Special Advantages/Disadvantages Advantage: many installed systems, lot of experience, available worldwide, free ISM-band, many vendors, integrated in laptops, simple system Disadvantage: heavy interference on ISM-band, no service guarantees, slow relative speed only

IEEE 802.11b PHY frame formats Long PLCP PPDU format 128 16 8 8 16 16 variable synchronization SFD signal service length HEC payload bits PLCP preamble PLCP header 192 µs at 1 Mbit/s DBPSK 1, 2, 5.5 or 11 Mbit/s Short PLCP PPDU format (optional) 56 16 8 8 16 16 variable short synch. SFD signal service length HEC payload bits PLCP preamble (1 Mbit/s, DBPSK) PLCP header (2 Mbit/s, DQPSK) 96 µs 2, 5.5 or 11 Mbit/s 31

Channel selection (non-overlapping) Europe (ETSI) channel 1 channel 7 channel 13 2400 2412 2442 2472 2483.5 22 MHz [MHz] US (FCC)/Canada (IC) channel 1 channel 6 channel 11 2400 2412 2437 2462 2483.5 22 MHz [MHz] 32

WLAN: IEEE 802.11a Data rate 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s, depending on SNR User throughput (1500 byte packets): 5.3 (6), 18 (24), 24 (36), 32 (54) 6, 12, 24 Mbit/s mandatory Transmission range Frequency Security Cost 100m outdoor, 10m indoor E.g., 54 Mbit/s up to 5 m, 48 up to 12 m, 36 up to 25 m, 24 up to 30m, 18 up to 40 m, 12 up to 60 m Free 5.15-5.25, 5.25-5.35, 5.725-5.825 GHz ISM-band Availability Limited, WEP insecure, SSID 280 adapter, 500 base station Some products, some vendors Connection set-up time Connectionless/always on Quality of Service Manageability Typ. best effort, no guarantees (same as all 802.11 products) Limited (no automated key distribution, sym. Encryption) Special Advantages/Disadvantages Advantage: fits into 802.x standards, free ISM-band, available, simple system, uses less crowded 5 GHz band Disadvantage: stronger shading due to higher frequency, no QoS 33

IEEE 802.11a PHY frame format 4 1 12 1 6 16 variable 6 variable bits rate reserved length parity tail service payload tail pad PLCP header PLCP preamble signal data 12 1 variable symbols 6 Mbit/s 6, 9, 12, 18, 24, 36, 48, 54 Mbit/s 34

Operating channels for 802.11a / US U-NII 36 40 44 48 52 56 60 64 channel 5150 5180 5200 5220 5240 5260 5280 5300 5320 5350 [MHz] 16.6 MHz 149 153 157 161 channel center frequency = 5000 + 5*channel number [MHz] 5725 5745 5765 5785 5805 5825 [MHz] 16.6 MHz 35

OFDM in IEEE 802.11a (and HiperLAN2) OFDM with 52 used subcarriers (64 in total) 48 data + 4 pilot (plus 12 virtual subcarriers) 312.5 khz spacing pilot 312.5 khz -26-21 -7-1 1 7 21 26 channel center frequency subcarrier number 36

WLAN: IEEE 802.11 future developments (08/2004) 802.11d: Regulatory Domain Update completed 802.11e: MAC Enhancements QoS ongoing Enhance the current 802.11 MAC to expand support for applications with Quality of Service requirements, and in the capabilities and efficiency of the protocol. 802.11f: Inter-Access Point Protocol completed Establish an Inter-Access Point Protocol for data exchange via the distribution system. 802.11g: Data Rates > 20 Mbit/s at 2.4 GHz; 54 Mbit/s, OFDM completed 802.11h: Spectrum Managed 802.11a (DCS, TPC) completed 802.11i: Enhanced Security Mechanisms ongoing Enhance the current 802.11 MAC to provide improvements in security. 802.11n: Data Rates > 100 Mbit/s ongoing Study Groups 5 GHz (harmonization ETSI/IEEE) closed Radio Resource Measurements started High Throughput started 37

Bluetooth Idea Universal radio interface for ad-hoc wireless connectivity Interconnecting computer and peripherals, handheld devices, PDAs, cell phones replacement of IrDA Embedded in other devices, goal: 5 /device (2002: 50 /USB bluetooth) Short range (10 m), low power consumption, license-free 2.45 GHz ISM Voice and data transmission, approx. 1 Mbit/s gross data rate One of the first modules (Ericsson). 38

Bluetooth History 1994: Ericsson (Mattison/Haartsen), MC-link project Renaming of the project: Bluetooth according to Harald Blåtand Gormsen [son of Gorm], King of Denmark in the 10 th century 1998: foundation of Bluetooth SIG, www.bluetooth.org 1999: erection of a rune stone at Ercisson/Lund ;-) (was: ) 2001: first consumer products for mass market, spec. version 1.1 released Special Interest Group Original founding members: Ericsson, Intel, IBM, Nokia, Toshiba Added promoters: 3Com, Agere (was: Lucent), Microsoft, Motorola > 2500 members Common specification and certification of products 39

Characteristics 2.4 GHz ISM band, 79 (23) RF channels, 1 MHz carrier spacing Channel 0: 2402 MHz channel 78: 2480 MHz G-FSK modulation, 1-100 mw transmit power FHSS and TDD Frequency hopping with 1600 hops/s Hopping sequence in a pseudo random fashion, determined by a master Time division duplex for send/receive separation Voice link SCO (Synchronous Connection Oriented) FEC (forward error correction), no retransmission, 64 kbit/s duplex, pointto-point, circuit switched Data link ACL (Asynchronous ConnectionLess) Asynchronous, fast acknowledge, point-to-multipoint, up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched Topology Overlapping piconets (stars) forming a scatternet 40

Piconet Collection of devices connected in an ad hoc fashion One unit acts as master and the others as slaves for the lifetime of the piconet S P M S P Master determines hopping pattern, slaves have to synchronize SB S Each piconet has a unique hopping pattern P SB Participation in a piconet = synchronization to hopping sequence Each piconet has one master and up to 7 simultaneous slaves (> 200 could be parked) 41 M=Master S=Slave P=Parked SB=Standby

Forming a piconet All devices in a piconet hop together Master gives slaves its clock and device ID Addressing Hopping pattern: determined by device ID (48 bit, unique worldwide) Phase in hopping pattern determined by clock Active Member Address (AMA, 3 bit) Parked Member Address (PMA, 8 bit) SB SB SB SB SB SB SB SB SB S SB P P M SB S S P 42

Scatternet Linking of multiple co-located piconets through the sharing of common master or slave devices Devices can be slave in one piconet and master of another Communication between piconets Devices jumping back and forth between the piconets P S S Piconets (each with a capacity of < 1 Mbit/s) S SB M S P M P M=Master S=Slave P=Parked SB=Standby P SB S SB 43

Example: Bluetooth/USB adapter 44

WPAN: IEEE 802.15-1 Bluetooth Data rate 45 Synchronous, connection-oriented: 64 kbit/s Asynchronous, connectionless Transmission range Frequency Security Cost Availability 433.9 kbit/s symmetric 723.2 / 57.6 kbit/s asymmetric POS (Personal Operating Space) up to 10 m with special transceivers up to 100 m Free 2.4 GHz ISM-band Challenge/response (SAFER+), hopping sequence 50 adapter, drop to 5 if integrated Integrated into some products, several vendors Connection set-up time Depends on power-mode Max. 2.56s, avg. 0.64s Quality of Service Manageability Guarantees, ARQ/FEC Public/private keys needed, key management not specified, simple system integration Special Advantages/Disadvantages Advantage: already integrated into several products, available worldwide, free ISM-band, several vendors, simple system, simple ad-hoc networking, peer to peer, scatternets Disadvantage: interference on ISM-band, limited range, max. 8 devices/network&master, high set-up latency