RFC 3945 GMPLS Architecture October Table of Contents

Similar documents
GMPLS Overview Generalized MPLS

The LSP Protection/Restoration Mechanism in GMPLS. Ziying Chen

Multi-Protocol Lambda Switching for Packet, Lambda, and Fiber Network

Generalized Multiprotocol Label Switching (GMPLS)

Network Configuration Example

Core Networks Evolution

The Emerging Optical Control Plane

LARGE SCALE IP ROUTING LECTURE BY SEBASTIAN GRAF

Request for Comments: 3717 Category: Informational Marconi Communications D. Awduche MCI March 2004

Multi Protocol Label Switching

MPLS Multi-Protocol Label Switching

Recent Developments in Optical Networking

Tag Switching. Background. Tag-Switching Architecture. Forwarding Component CHAPTER

MPLS etc.. MPLS is not alone TEST. 26 April 2016 AN. Multi-Protocol Label Switching MPLS-TP FEC PBB-TE VPLS ISIS-TE MPƛS GMPLS SR RSVP-TE OSPF-TE PCEP

030220PIL-WS03.ppt Copyright by NTT 2003 Page 1. IP Control Plane Generalized MPLS

3 rd OPTICAL SIGNALING, ROUTING

Overview of GMPLS Protocols and Standardization

MPLS. David Byers. IDA/ADIT/IISLAB David Byers

MPLS Multi-protocol label switching Mario Baldi Politecnico di Torino (Technical University of Torino)

PERFORMANCE EVALUATION OF MPLS/GMPLS CONTROL PLANE SIGNALING PROTOCOLS

MPLS in Optical Networks

Category: Standards Track January Generalized Multi-Protocol Label Switching (GMPLS) Signaling Functional Description

Specification of a Subset of CR-LDP for Hardware Implementation

Generalized MPLS UNI Introduction and Deployment

MPLS/Tag Switching. Background. Chapter Goals CHAPTER

A Segment Routing (SR) Tutorial. R. Bonica NANOG70 June 6, 2017

MultiProtocol Label Switching - MPLS ( RFC 3031 )

Introduction to Segment Routing

Session 2: MPLS Traffic Engineering and Constraint-Based Routing (CR)

MPLS Core Networks Николай Милованов/Nikolay Milovanov

On the design of MPLS-ASON/GMPLS Interconnection Mechanisms

Inter-domain progress between US and Japan

Telematics Chapter 7: MPLS

OSPF Protocol Overview on page 187. OSPF Standards on page 188. OSPF Area Terminology on page 188. OSPF Routing Algorithm on page 190

Generalized MPLS Introduction and Deployment

Computer Network Architectures and Multimedia. Guy Leduc. Chapter 2 MPLS networks. Chapter 2: MPLS

A Comparison Of MPLS Traffic Engineering Initiatives. Robert Pulley & Peter Christensen

ARE CONTROL PLANE BENEFITS APPLICABLE TO SUBMARINE NETWORKS?

Implementing GMPLS UNI

RSVP-TE extensions for interdomain LSPs

Configuring MPLS L3VPN

Specification of a Subset of RSVP-TE

Internetworking: Global Internet and MPLS. Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Master s Thesis. Title. Supervisor Professor Masayuki Murata. Author Yuki Koizumi. February 15th, 2006

Trafffic Engineering 2015/16 1

ISSN: F. Zhang Huawei X. Fu Stairnote D. Ceccarelli Ericsson I. Hussain Infinera November 2015

COMP9332 Network Routing & Switching

Securizarea Calculatoarelor și a Rețelelor 32. Tehnologia MPLS VPN

Multi Protocol Label Switching (an introduction) Karst Koymans. Thursday, March 12, 2015

Simulation of All Optical Networks

Synergies Between Optical and Packet Rings

Category: Experimental Consultant July OSPF-xTE: Experimental Extension to OSPF for Traffic Engineering

Network Working Group. D. Brungard AT&T J. Lang Sonos, Inc. D. Papadimitriou Alcatel February 2006

IEEE Infocom 2005 Demonstration ITEA TBONES Project

Configuring MPLS, MPLS VPN, MPLS OAM, and EoMPLS

Resilient IP Backbones. Debanjan Saha Tellium, Inc.

Old Dog Consulting February Generalized Multiprotocol Label Switching (GMPLS) Traffic Engineering Management Information Base

MPLS L3VPN. The MPLS L3VPN model consists of three kinds of devices: PE CE Site 2. Figure 1 Network diagram for MPLS L3VPN model

2D1490 p MPLS, RSVP, etc. Olof Hagsand KTHNOC/NADA

IP Multicast Technology Overview

Deploying MPLS Traffic Engineering

Category: Standards Track October OSPF Extensions in Support of Generalized Multi-Protocol Label Switching (GMPLS)

MPLS Intro. Cosmin Dumitru March 14, University of Amsterdam System and Network Engineering Research Group ...

BrainDumps.4A0-103,230.Questions

Table of Contents Chapter 1 MPLS Basics Configuration

Configuring GMPLS with CLI

Operation Manual MPLS. Table of Contents

Request for Comments: A. Kullberg NetPlane Systems February 2003

Configuring CRS-1 Series Virtual Interfaces

AToM (Any Transport over MPLS)

Internet Engineering Task Force (IETF) Request for Comments: 6002 Updates: 3471, 3473, 3945, 4202, 4203, ISSN: October 2010

Practice exam questions for the Nokia NRS II Composite Exam

MPLS VPN. 5 ian 2010

Multicast OLSP Establishment Scheme in OVPN over IP/GMPLS over DWDM

A Comparative Study on Protection Methods in MPLS-TP Networks

Multi-layer protection and restoration requirements

Internet Engineering Task Force (IETF)

MPLS Networks: Design and Routing Functions

Introduction to Multi-Protocol Label

Advanced Telecommunications

Copyright (C) The Internet Society (2002). All Rights Reserved.

Signaling schemes for distributed connection management in wavelength-routed optical mesh networks

SYSC 5801 Protection and Restoration

Unit 3: Dynamic Routing

MPLS & Frame Relay Alliance. MPLS PVC User to Network Interface. Implementation Agreement MPLS & FR 2.0.1

Multiprotocol Label Switching (MPLS)

Configuring MPLS L3VPN

This chapter covers the following topics: Label Distribution Protocol (LDP) AToM operations

Multiprotocol Label Switching Overview

Overview. Information About Layer 3 Unicast Routing. Send document comments to CHAPTER

An Experimental Analysis on OSPF-TE Convergence Time

Implementing MPLS Layer 3 VPNs

HP 5920 & 5900 Switch Series

internet technologies and standards

6 MPLS Model User Guide

Label Distribution Protocol and Basic MPLS Configuration. APNIC Technical Workshop October 23 to 25, Selangor, Malaysia Hosted by:

MPLS MULTI PROTOCOL LABEL SWITCHING OVERVIEW OF MPLS, A TECHNOLOGY THAT COMBINES LAYER 3 ROUTING WITH LAYER 2 SWITCHING FOR OPTIMIZED NETWORK USAGE

MPLS TRAFFIC ENGINEERING: A CHOICE OF SIGNALING PROTOCOLS

LDP Fast Reroute using LDP Downstream On Demand. 1. Problem: 2. Summary: 3. Description:

Chapter 4. Advanced Internetworking. 4.3 MPLS 4.4 Mobile IP

Transcription:

Network Working Group E. Mannie, Ed. Request for Comments: 3945 October 2004 Category: Standards Track Generalized Multi-Protocol Label Switching (GMPLS) Architecture Status of this Memo This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited. Copyright Notice Copyright (C) The Internet Society (2004). Abstract Future data and transmission networks will consist of elements such as routers, switches, Dense Wavelength Division Multiplexing (DWDM) systems, Add-Drop Multiplexors (ADMs), photonic cross-connects (PXCs), optical cross-connects (OXCs), etc. that will use Generalized Multi-Protocol Label Switching (GMPLS) to dynamically provision resources and to provide network survivability using protection and restoration techniques. This document describes the architecture of GMPLS. GMPLS extends MPLS to encompass time-division (e.g., SONET/SDH, PDH, G.709), wavelength (lambdas), and spatial switching (e.g., incoming port or fiber to outgoing port or fiber). The focus of GMPLS is on the control plane of these various layers since each of them can use physically diverse data or forwarding planes. The intention is to cover both the signaling and the routing part of that control plane. Mannie Standards Track [Page 1]

Table of Contents 1. Introduction......................... 4 1.1. Acronyms & Abbreviations................ 4 1.2. Multiple Types of Switching and Forwarding Hierarchies. 5 1.3. Extension of the MPLS Control Plane.......... 7 1.4. GMPLS Key Extensions to MPLS-TE............ 10 2. Routing and Addressing Model................. 11 2.1. Addressing of PSC and non-psc layers.......... 13 2.2. GMPLS Scalability Enhancements............. 13 2.3. TE Extensions to IP Routing Protocols......... 14 3. Unnumbered Links....................... 15 3.1. Unnumbered Forwarding Adjacencies........... 16 4. Link Bundling........................ 16 4.1. Restrictions on Bundling................ 17 4.2. Routing Considerations for Bundling.......... 17 4.3. Signaling Considerations................ 18 4.3.1. Mechanism 1: Implicit Indication........ 18 4.3.2. Mechanism 2: Explicit Indication by Numbered Interface ID.................. 19 4.3.3. Mechanism 3: Explicit Indication by Unnumbered Interface ID.................. 19 4.4. Unnumbered Bundled Link................ 19 4.5. Forming Bundled Links................. 20 5. Relationship with the UNI.................. 20 5.1. Relationship with the OIF UNI............. 21 5.2. Reachability across the UNI.............. 21 6. Link Management....................... 22 6.1. Control Channel and Control Channel Management..... 23 6.2. Link Property Correlation............... 24 6.3. Link Connectivity Verification............. 24 6.4. Fault Management.................... 25 6.5. LMP for DWDM Optical Line Systems (OLSs)........ 26 7. Generalized Signaling.................... 27 7.1. Overview: How to Request an LSP............ 29 7.2. Generalized Label Request............... 30 7.3. SONET/SDH Traffic Parameters.............. 31 7.4. G.709 Traffic Parameters................ 32 7.5. Bandwidth Encoding................... 33 7.6. Generalized Label................... 34 7.7. Waveband Switching................... 34 7.8. Label Suggestion by the Upstream............ 35 7.9. Label Restriction by the Upstream........... 35 7.10. Bi-directional LSP................... 36 7.11. Bi-directional LSP Contention Resolution........ 37 7.12. Rapid Notification of Failure............. 37 7.13. Link Protection.................... 38 7.14. Explicit Routing and Explicit Label Control...... 39 Mannie Standards Track [Page 2]

7.15. Route Recording.................... 40 7.16. LSP Modification and LSP Re-routing.......... 40 7.17. LSP Administrative Status Handling........... 41 7.18. Control Channel Separation............... 42 8. Forwarding Adjacencies (FA)................. 43 8.1. Routing and Forwarding Adjacencies........... 43 8.2. Signaling Aspects................... 44 8.3. Cascading of Forwarding Adjacencies.......... 44 9. Routing and Signaling Adjacencies.............. 45 10. Control Plane Fault Handling................. 46 11. LSP Protection and Restoration................ 47 11.1. Protection Escalation across Domains and Layers.... 48 11.2. Mapping of Services to P&R Resources.......... 49 11.3. Classification of P&R Mechanism Characteristics.... 49 11.4. Different Stages in P&R................ 50 11.5. Recovery Strategies.................. 50 11.6. Recovery mechanisms: Protection schemes........ 51 11.7. Recovery mechanisms: Restoration schemes........ 52 11.8. Schema Selection Criteria............... 53 12. Network Management...................... 54 12.1. Network Management Systems (NMS)............ 55 12.2. Management Information Base (MIB)........... 55 12.3. Tools......................... 56 12.4. Fault Correlation Between Multiple Layers....... 56 13. Security Considerations................... 57 14. Acknowledgements....................... 58 15. References.......................... 58 15.1. Normative References.................. 58 15.2. Informative References................. 59 16. Contributors......................... 63 17. Author s Address....................... 68 Full Copyright Statement................... 69 Mannie Standards Track [Page 3]

1. Introduction The architecture described in this document covers the main building blocks needed to build a consistent control plane for multiple switching layers. It does not restrict the way that these layers work together. Different models can be applied, e.g., overlay, augmented or integrated. Moreover, each pair of contiguous layers may collaborate in different ways, resulting in a number of possible combinations, at the discretion of manufacturers and operators. This architecture clearly separates the control plane and the forwarding plane. In addition, it also clearly separates the control plane in two parts, the signaling plane containing the signaling protocols and the routing plane containing the routing protocols. This document is a generalization of the Multi-Protocol Label Switching (MPLS) architecture [RFC3031], and in some cases may differ slightly from that architecture since non packet-based forwarding planes are now considered. It is not the intention of this document to describe concepts already described in the current MPLS architecture. The goal is to describe specific concepts of Generalized MPLS (GMPLS). However, some of the concepts explained hereafter are not part of the current MPLS architecture and are applicable to both MPLS and GMPLS (i.e., link bundling, unnumbered links, and LSP hierarchy). Since these concepts were introduced together with GMPLS and since they are of paramount importance for an operational GMPLS network, they will be discussed here. The organization of the remainder of this document is as follows. We begin with an introduction of GMPLS. We then present the specific GMPLS building blocks and explain how they can be combined together to build an operational GMPLS network. Specific details of the separate building blocks can be found in the corresponding documents. 1.1. Acronyms & Abbreviations AS BGP CR-LDP CSPF DWDM FA GMPLS IGP LDP LMP Autonomous System Border Gateway Protocol Constraint-based Routing LDP Constraint-based Shortest Path First Dense Wavelength Division Multiplexing Forwarding Adjacency Generalized Multi-Protocol Label Switching Interior Gateway Protocol Label Distribution Protocol Link Management Protocol Mannie Standards Track [Page 4]

LSA LSR LSP MIB MPLS NMS OXC PXC RSVP SDH SONET STM(-N) STS(-N) TDM TE Link State Advertisement Label Switching Router Label Switched Path Management Information Base Multi-Protocol Label Switching Network Management System Optical Cross-Connect Photonic Cross-Connect ReSource reservation Protocol Synchronous Digital Hierarchy Synchronous Optical Networks Synchronous Transport Module (-N) Synchronous Transport Signal-Level N (SONET) Time Division Multiplexing Traffic Engineering 1.2. Multiple Types of Switching and Forwarding Hierarchies Generalized MPLS (GMPLS) differs from traditional MPLS in that it supports multiple types of switching, i.e., the addition of support for TDM, lambda, and fiber (port) switching. The support for the additional types of switching has driven GMPLS to extend certain base functions of traditional MPLS and, in some cases, to add functionality. These changes and additions impact basic LSP properties: how labels are requested and communicated, the unidirectional nature of LSPs, how errors are propagated, and information provided for synchronizing the ingress and egress LSRs. The MPLS architecture [RFC3031] was defined to support the forwarding of data based on a label. In this architecture, Label Switching Routers (LSRs) were assumed to have a forwarding plane that is capable of (a) recognizing either packet or cell boundaries, and (b) being able to process either packet headers (for LSRs capable of recognizing packet boundaries) or cell headers (for LSRs capable of recognizing cell boundaries). The original MPLS architecture is here being extended to include LSRs whose forwarding plane recognizes neither packet, nor cell boundaries, and therefore, cannot forward data based on the information carried in either packet or cell headers. Specifically, such LSRs include devices where the switching decision is based on time slots, wavelengths, or physical ports. So, the new set of LSRs, or more precisely interfaces on these LSRs, can be subdivided into the following classes: Mannie Standards Track [Page 5]

1. Packet Switch Capable (PSC) interfaces: Interfaces that recognize packet boundaries and can forward data based on the content of the packet header. Examples include interfaces on routers that forward data based on the content of the IP header and interfaces on routers that switch data based on the content of the MPLS "shim" header. 2. Layer-2 Switch Capable (L2SC) interfaces: Interfaces that recognize frame/cell boundaries and can switch data based on the content of the frame/cell header. Examples include interfaces on Ethernet bridges that switch data based on the content of the MAC header and interfaces on ATM-LSRs that forward data based on the ATM VPI/VCI. 3. Time-Division Multiplex Capable (TDM) interfaces: Interfaces that switch data based on the data s time slot in a repeating cycle. An example of such an interface is that of a SONET/SDH Cross-Connect (XC), Terminal Multiplexer (TM), or Add- Drop Multiplexer (ADM). Other examples include interfaces providing G.709 TDM capabilities (the "digital wrapper") and PDH interfaces. 4. Lambda Switch Capable (LSC) interfaces: Interfaces that switch data based on the wavelength on which the data is received. An example of such an interface is that of a Photonic Cross-Connect (PXC) or Optical Cross-Connect (OXC) that can operate at the level of an individual wavelength. Additional examples include PXC interfaces that can operate at the level of a group of wavelengths, i.e., a waveband and G.709 interfaces providing optical capabilities. 5. Fiber-Switch Capable (FSC) interfaces: Interfaces that switch data based on a position of the data in the (real world) physical spaces. An example of such an interface is that of a PXC or OXC that can operate at the level of a single or multiple fibers. A circuit can be established only between, or through, interfaces of the same type. Depending on the particular technology being used for each interface, different circuit names can be used, e.g., SDH circuit, optical trail, light-path, etc. In the context of GMPLS, all these circuits are referenced by a common name: Label Switched Path (LSP). Mannie Standards Track [Page 6]

The concept of nested LSP (LSP within LSP), already available in the traditional MPLS, facilitates building a forwarding hierarchy, i.e., a hierarchy of LSPs. This hierarchy of LSPs can occur on the same interface, or between different interfaces. For example, a hierarchy can be built if an interface is capable of multiplexing several LSPs from the same technology (layer), e.g., a lower order SONET/SDH LSP (e.g., VT2/VC-12) nested in a higher order SONET/SDH LSP (e.g., STS-3c/VC-4). Several levels of signal (LSP) nesting are defined in the SONET/SDH multiplexing hierarchy. The nesting can also occur between interface types. At the top of the hierarchy are FSC interfaces, followed by LSC interfaces, followed by TDM interfaces, followed by L2SC, and followed by PSC interfaces. This way, an LSP that starts and ends on a PSC interface can be nested (together with other LSPs) into an LSP that starts and ends on a L2SC interface. This LSP, in turn, can be nested (together with other LSPs) into an LSP that starts and ends on a TDM interface. In turn, this LSP can be nested (together with other LSPs) into an LSP that starts and ends on a LSC interface, which in turn can be nested (together with other LSPs) into an LSP that starts and ends on a FSC interface. 1.3. Extension of the MPLS Control Plane The establishment of LSPs that span only Packet Switch Capable (PSC) or Layer-2 Switch Capable (L2SC) interfaces is defined for the original MPLS and/or MPLS-TE control planes. GMPLS extends these control planes to support each of the five classes of interfaces (i.e., layers) defined in the previous section. Note that the GMPLS control plane supports an overlay model, an augmented model, and a peer (integrated) model. In the near term, GMPLS appears to be very suitable for controlling each layer independently. This elegant approach will facilitate the future deployment of other models. The GMPLS control plane is made of several building blocks as described in more details in the following sections. These building blocks are based on well-known signaling and routing protocols that have been extended and/or modified to support GMPLS. They use IPv4 and/or IPv6 addresses. Only one new specialized protocol is required to support the operations of GMPLS, a signaling protocol for link management [LMP]. GMPLS is indeed based on the Traffic Engineering (TE) extensions to MPLS, a.k.a. MPLS-TE [RFC2702]. This, because most of the technologies that can be used below the PSC level requires some Mannie Standards Track [Page 7]

traffic engineering. The placement of LSPs at these levels needs in general to consider several constraints (such as framing, bandwidth, protection capability, etc) and to bypass the legacy Shortest-Path First (SPF) algorithm. Note, however, that this is not mandatory and that in some cases SPF routing can be applied. In order to facilitate constrained-based SPF routing of LSPs, nodes that perform LSP establishment need more information about the links in the network than standard intra-domain routing protocols provide. These TE attributes are distributed using the transport mechanisms already available in IGPs (e.g., flooding) and taken into consideration by the LSP routing algorithm. Optimization of the LSP routes may also require some external simulations using heuristics that serve as input for the actual path calculation and LSP establishment process. By definition, a TE link is a representation in the IS-IS/OSPF Link State advertisements and in the link state database of certain physical resources, and their properties, between two GMPLS nodes. TE Links are used by the GMPLS control plane (routing and signaling) for establishing LSPs. Extensions to traditional routing protocols and algorithms are needed to uniformly encode and carry TE link information, and explicit routes (e.g., source routes) are required in the signaling. In addition, the signaling must now be capable of transporting the required circuit (LSP) parameters such as the bandwidth, the type of signal, the desired protection and/or restoration, the position in a particular multiplex, etc. Most of these extensions have already been defined for PSC and L2SC traffic engineering with MPLS. GMPLS primarily defines additional extensions for TDM, LSC, and FSC traffic engineering. A very few elements are technology specific. Thus, GMPLS extends the two signaling protocols defined for MPLS-TE signaling, i.e., RSVP-TE [RFC3209] and CR-LDP [RFC3212]. However, GMPLS does not specify which one of these two signaling protocols must be used. It is the role of manufacturers and operators to evaluate the two possible solutions for their own interest. Since GMPLS signaling is based on RSVP-TE and CR-LDP, it mandates a downstream-on-demand label allocation and distribution, with ingress initiated ordered control. Liberal label retention is normally used, but conservative label retention mode could also be used. Mannie Standards Track [Page 8]

Furthermore, there is no restriction on the label allocation strategy, it can be request/signaling driven (obvious for circuit switching technologies), traffic/data driven, or even topology driven. There is also no restriction on the route selection; explicit routing is normally used (strict or loose) but hop-by-hop routing could be used as well. GMPLS also extends two traditional intra-domain link-state routing protocols already extended for TE purposes, i.e., OSPF-TE [OSPF-TE] and IS-IS-TE [ISIS-TE]. However, if explicit (source) routing is used, the routing algorithms used by these protocols no longer need to be standardized. Extensions for inter-domain routing (e.g., BGP) are for further study. The use of technologies like DWDM (Dense Wavelength Division Multiplexing) implies that we can now have a very large number of parallel links between two directly adjacent nodes (hundreds of wavelengths, or even thousands of wavelengths if multiple fibers are used). Such a large number of links was not originally considered for an IP or MPLS control plane, although it could be done. Some slight adaptations of that control plane are thus required if we want to better reuse it in the GMPLS context. For instance, the traditional IP routing model assumes the establishment of a routing adjacency over each link connecting two adjacent nodes. Having such a large number of adjacencies does not scale well. Each node needs to maintain each of its adjacencies one by one, and link state routing information must be flooded throughout the network. To solve this issue the concept of link bundling was introduced. Moreover, the manual configuration and control of these links, even if they are unnumbered, becomes impractical. The Link Management Protocol (LMP) was specified to solve these issues. LMP runs between data plane adjacent nodes and is used to manage TE links. Specifically, LMP provides mechanisms to maintain control channel connectivity (IP Control Channel Maintenance), verify the physical connectivity of the data-bearing links (Link Verification), correlate the link property information (Link Property Correlation), and manage link failures (Fault Localization and Fault Notification). A unique feature of LMP is that it is able to localize faults in both opaque and transparent networks (i.e., independent of the encoding scheme and bit rate used for the data). LMP is defined in the context of GMPLS, but is specified independently of the GMPLS signaling specification since it is a local protocol running between data-plane adjacent nodes. Mannie Standards Track [Page 9]

Consequently, LMP can be used in other contexts with non-gmpls signaling protocols. MPLS signaling and routing protocols require at least one bidirectional control channel to communicate even if two adjacent nodes are connected by unidirectional links. Several control channels can be used. LMP can be used to establish, maintain and manage these control channels. GMPLS does not specify how these control channels must be implemented, but GMPLS requires IP to transport the signaling and routing protocols over them. Control channels can be either in-band or out-of-band, and several solutions can be used to carry IP. Note also that one type of LMP message (the Test message) is used in-band in the data plane and may not be transported over IP, but this is a particular case, needed to verify connectivity in the data plane. 1.4. GMPLS Key Extensions to MPLS-TE Some key extensions brought by GMPLS to MPLS-TE are highlighted in the following. Some of them are key advantages of GMPLS to control TDM, LSC and FSC layers. - In MPLS-TE, links traversed by an LSP can include an intermix of links with heterogeneous label encoding (e.g., links between routers, links between routers and ATM-LSRs, and links between ATM-LSRs. GMPLS extends this by including links where the label is encoded as a time slot, or a wavelength, or a position in the (real world) physical space. - In MPLS-TE, an LSP that carries IP has to start and end on a router. GMPLS extends this by requiring an LSP to start and end on similar type of interfaces. - The type of a payload that can be carried in GMPLS by an LSP is extended to allow such payloads as SONET/SDH, G.709, 1Gb or 10Gb Ethernet, etc. - The use of Forwarding Adjacencies (FA) provides a mechanism that can improve bandwidth utilization, when bandwidth allocation can be performed only in discrete units. It offers also a mechanism to aggregate forwarding state, thus allowing the number of required labels to be reduced. Mannie Standards Track [Page 10]

- GMPLS allows suggesting a label by an upstream node to reduce the setup latency. This suggestion may be overridden by a downstream node but in some cases, at the cost of higher LSP setup time. - GMPLS extends on the notion of restricting the range of labels that may be selected by a downstream node. In GMPLS, an upstream node may restrict the labels for an LSP along either a single hop or the entire LSP path. This feature is useful in photonic networks where wavelength conversion may not be available. - While traditional TE-based (and even LDP-based) LSPs are unidirectional, GMPLS supports the establishment of bi-directional LSPs. - GMPLS supports the termination of an LSP on a specific egress port, i.e., the port selection at the destination side. - GMPLS with RSVP-TE supports an RSVP specific mechanism for rapid failure notification. Note also some other key differences between MPLS-TE and GMPLS: - For TDM, LSC and FSC interfaces, bandwidth allocation for an LSP can be performed only in discrete units. - It is expected to have (much) fewer labels on TDM, LSC or FSC links than on PSC or L2SC links, because the former are physical labels instead of logical labels. 2. Routing and Addressing Model GMPLS is based on the IP routing and addressing models. This assumes that IPv4 and/or IPv6 addresses are used to identify interfaces but also that traditional (distributed) IP routing protocols are reused. Indeed, the discovery of the topology and the resource state of all links in a routing domain is achieved via these routing protocols. Since control and data planes are de-coupled in GMPLS, control-plane neighbors (i.e., IGP-learnt neighbors) may not be data-plane neighbors. Hence, mechanisms like LMP are needed to associate TE links with neighboring nodes. IP addresses are not used only to identify interfaces of IP hosts and routers, but more generally to identify any PSC and non-psc interfaces. Similarly, IP routing protocols are used to find routes for IP datagrams with a SPF algorithm; they are also used to find routes for non-psc circuits by using a CSPF algorithm. Mannie Standards Track [Page 11]

However, some additional mechanisms are needed to increase the scalability of these models and to deal with specific traffic engineering requirements of non-psc layers. These mechanisms will be introduced in the following. Re-using existing IP routing protocols allows for non-psc layers taking advantage of all the valuable developments that took place since years for IP routing, in particular, in the context of intradomain routing (link-state routing) and inter-domain routing (policy routing). In an overlay model, each particular non-psc layer can be seen as a set of Autonomous Systems (ASs) interconnected in an arbitrary way. Similarly to the traditional IP routing, each AS is managed by a single administrative authority. For instance, an AS can be an SONET/SDH network operated by a given carrier. The set of interconnected ASs can be viewed as SONET/SDH internetworks. Exchange of routing information between ASs can be done via an inter-domain routing protocol like BGP-4. There is obviously a huge value of re-using well-known policy routing facilities provided by BGP in a non-psc context. Extensions for BGP traffic engineering (BGP-TE) in the context of non-psc layers are left for further study. Each AS can be sub-divided in different routing domains, and each can run a different intra-domain routing protocol. In turn, each routing-domain can be divided in areas. A routing domain is made of GMPLS enabled nodes (i.e., a network device including a GMPLS entity). These nodes can be either edge nodes (i.e., hosts, ingress LSRs or egress LSRs), or internal LSRs. An example of non-psc host is an SONET/SDH Terminal Multiplexer (TM). Another example is an SONET/SDH interface card within an IP router or ATM switch. Note that traffic engineering in the intra-domain requires the use of link-state routing protocols like OSPF or IS-IS. GMPLS defines extensions to these protocols. These extensions are needed to disseminate specific TDM, LSC and FSC static and dynamic characteristics related to nodes and links. The current focus is on Mannie Standards Track [Page 12]

intra-area traffic engineering. However, inter-area traffic engineering is also under investigation. 2.1. Addressing of PSC and non-psc Layers The fact that IPv4 and/or IPv6 addresses are used does not imply at all that they should be allocated in the same addressing space than public IPv4 and/or IPv6 addresses used for the Internet. Private IP addresses can be used if they do not require to be exchanged with any other operator; public IP addresses are otherwise required. Of course, if an integrated model is used, two layers could share the same addressing space. Finally, TE links may be "unnumbered" i.e., not have any IP addresses, in case IP addresses are not available, or the overhead of managing them is considered too high. Note that there is a benefit of using public IPv4 and/or IPv6 Internet addresses for non-psc layers if an integrated model with the IP layer is foreseen. If we consider the scalability enhancements proposed in the next section, the IPv4 (32 bits) and the IPv6 (128 bits) addressing spaces are both more than sufficient to accommodate any non-psc layer. We can reasonably expect to have much less non-psc devices (e.g., SONET/SDH nodes) than we have today IP hosts and routers. 2.2. GMPLS Scalability Enhancements TDM, LSC and FSC layers introduce new constraints on the IP addressing and routing models since several hundreds of parallel physical links (e.g., wavelengths) can now connect two nodes. Most of the carriers already have today several tens of wavelengths per fiber between two nodes. New generation of DWDM systems will allow several hundreds of wavelengths per fiber. It becomes rather impractical to associate an IP address with each end of each physical link, to represent each link as a separate routing adjacency, and to advertise and to maintain link states for each of these links. For that purpose, GMPLS enhances the MPLS routing and addressing models to increase their scalability. Two optional mechanisms can be used to increase the scalability of the addressing and the routing: unnumbered links and link bundling. These two mechanisms can also be combined. They require extensions to signaling (RSVP-TE and CR-LDP) and routing (OSPF-TE and IS-IS-TE) protocols. Mannie Standards Track [Page 13]

2.3. TE Extensions to IP Routing Protocols Traditionally, a TE link is advertised as an adjunct to a "regular" OSPF or IS-IS link, i.e., an adjacency is brought up on the link. When the link is up, both the regular IGP properties of the link (basically, the SPF metric) and the TE properties of the link are then advertised. However, GMPLS challenges this notion in three ways: - First, links that are non-psc may yet have TE properties; however, an OSPF adjacency could not be brought up directly on such links. - Second, an LSP can be advertised as a point-to-point TE link in the routing protocol, i.e., as a Forwarding Adjacency (FA); thus, an advertised TE link need no longer be between two OSPF direct neighbors. Forwarding Adjacencies (FA) are further described in Section 8. - Third, a number of links may be advertised as a single TE link (e.g., for improved scalability), so again, there is no longer a one-to-one association of a regular adjacency and a TE link. Thus, we have a more general notion of a TE link. A TE link is a logical link that has TE properties. Some of these properties may be configured on the advertising LSR, others may be obtained from other LSRs by means of some protocol, and yet others may be deduced from the component(s) of the TE link. An important TE property of a TE link is related to the bandwidth accounting for that link. GMPLS will define different accounting rules for different non-psc layers. Generic bandwidth attributes are however defined by the TE routing extensions and by GMPLS, such as the unreserved bandwidth, the maximum reservable bandwidth and the maximum LSP bandwidth. It is expected in a dynamic environment to have frequent changes of bandwidth accounting information. A flexible policy for triggering link state updates based on bandwidth thresholds and link-dampening mechanism can be implemented. TE properties associated with a link should also capture protection and restoration related characteristics. For instance, shared protection can be elegantly combined with bundling. Protection and restoration are mainly generic mechanisms also applicable to MPLS. It is expected that they will first be developed for MPLS and later on generalized to GMPLS. Mannie Standards Track [Page 14]

A TE link between a pair of LSRs does not imply the existence of an IGP adjacency between these LSRs. A TE link must also have some means by which the advertising LSR can know of its liveness (e.g., by using LMP hellos). When an LSR knows that a TE link is up, and can determine the TE link s TE properties, the LSR may then advertise that link to its GMPLS enhanced OSPF or IS-IS neighbors using the TE objects/tlvs. We call the interfaces over which GMPLS enhanced OSPF or IS-IS adjacencies are established "control channels". 3. Unnumbered Links Unnumbered links (or interfaces) are links (or interfaces) that do not have IP addresses. Using such links involves two capabilities: the ability to specify unnumbered links in MPLS TE signaling, and the ability to carry (TE) information about unnumbered links in IGP TE extensions of IS-IS-TE and OSPF-TE. A. The ability to specify unnumbered links in MPLS TE signaling requires extensions to RSVP-TE [RFC3477] and CR-LDP [RFC3480]. The MPLS-TE signaling does not provide support for unnumbered links, because it does not provide a way to indicate an unnumbered link in its Explicit Route Object/TLV and in its Record Route Object (there is no such TLV for CR-LDP). GMPLS defines simple extensions to indicate an unnumbered link in these two Objects/TLVs, using a new Unnumbered Interface ID sub-object/sub- TLV. Since unnumbered links are not identified by an IP address, then for the purpose of MPLS TE each end need some other identifier, local to the LSR to which the link belongs. LSRs at the two endpoints of an unnumbered link exchange with each other the identifiers they assign to the link. Exchanging the identifiers may be accomplished by configuration, by means of a protocol such as LMP ([LMP]), by means of RSVP-TE/CR-LDP (especially in the case where a link is a Forwarding Adjacency, see below), or by means of IS-IS or OSPF extensions ([ISIS-TE-GMPLS], [OSPF-TE-GMPLS]). Consider an (unnumbered) link between LSRs A and B. LSR A chooses an identifier for that link. So does LSR B. From A s perspective we refer to the identifier that A assigned to the link as the "link local identifier" (or just "local identifier"), and to the identifier that B assigned to the link as the "link remote identifier" (or just "remote identifier"). Likewise, from B s perspective the identifier that B assigned to the link is the local identifier, and the identifier that A assigned to the link is the remote identifier. Mannie Standards Track [Page 15]

The new Unnumbered Interface ID sub-object/sub-tlv for the ER Object/TLV contains the Router ID of the LSR at the upstream end of the unnumbered link and the link local identifier with respect to that upstream LSR. The new Unnumbered Interface ID sub-object for the RR Object contains the link local identifier with respect to the LSR that adds it in the RR Object. B. The ability to carry (TE) information about unnumbered links in IGP TE extensions requires new sub-tlvs for the extended IS reachability TLV defined in IS-IS-TE and for the TE LSA (which is an opaque LSA) defined in OSPF-TE. A Link Local Identifier sub- TLV and a Link Remote Identifier sub-tlv are defined. 3.1. Unnumbered Forwarding Adjacencies If an LSR that originates an LSP advertises this LSP as an unnumbered FA in IS-IS or OSPF, or the LSR uses this FA as an unnumbered component link of a bundled link, the LSR must allocate an Interface ID to that FA. If the LSP is bi-directional, the tail end does the same and allocates an Interface ID to the reverse FA. Signaling has been enhanced to carry the Interface ID of a FA in the new LSP Tunnel Interface ID object/tlv. This object/tlv contains the Router ID (of the LSR that generates it) and the Interface ID. It is called the Forward Interface ID when it appears in a Path/REQUEST message, and it is called the Reverse Interface ID when it appears in the Resv/MAPPING message. 4. Link Bundling The concept of link bundling is essential in certain networks employing the GMPLS control plane as is defined in [BUNDLE]. A typical example is an optical meshed network where adjacent optical cross-connects (LSRs) are connected by several hundreds of parallel wavelengths. In this network, consider the application of link state routing protocols, like OSPF or IS-IS, with suitable extensions for resource discovery and dynamic route computation. Each wavelength must be advertised separately to be used, except if link bundling is used. When a pair of LSRs is connected by multiple links, it is possible to advertise several (or all) of these links as a single link into OSPF and/or IS-IS. This process is called link bundling, or just bundling. The resulting logical link is called a bundled link as its physical links are called component links (and are identified by interface indexes). Mannie Standards Track [Page 16]

The result is that a combination of three identifiers ((bundled) link identifier, component link identifier, label) is sufficient to unambiguously identify the appropriate resources used by an LSP. The purpose of link bundling is to improve routing scalability by reducing the amount of information that has to be handled by OSPF and/or IS-IS. This reduction is accomplished by performing information aggregation/abstraction. As with any other information aggregation/abstraction, this results in losing some of the information. To limit the amount of losses one need to restrict the type of the information that can be aggregated/abstracted. 4.1. Restrictions on Bundling The following restrictions are required for bundling links. All component links in a bundle must begin and end on the same pair of LSRs; and share some common characteristics or properties defined in [OSPF-TE] and [ISIS-TE], i.e., they must have the same: - Link Type (i.e., point-to-point or multi-access), - TE Metric (i.e., an administrative cost), - Set of Resource Classes at each end of the links (i.e., colors). Note that a FA may also be a component link. In fact, a bundle can consist of a mix of point-to-point links and FAs, but all sharing some common properties. 4.2. Routing Considerations for Bundling A bundled link is just another kind of TE link such as those defined by [GMPLS-ROUTING]. The liveness of the bundled link is determined by the liveness of each its component links. A bundled link is alive when at least one of its component links is alive. The liveness of a component link can be determined by any of several means: IS-IS or OSPF hellos over the component link, or RSVP Hello (hop local), or LMP hellos (link local), or from layer 1 or layer 2 indications. Note that (according to the RSVP-TE specification [RFC3209]) the RSVP Hello mechanism is intended to be used when notification of link layer failures is not available and unnumbered links are not used, or when the failure detection mechanisms provided by the link layer are not sufficient for timely node failure detection. Once a bundled link is determined to be alive, it can be advertised as a TE link and the TE information can be flooded. If IS-IS/OSPF hellos are run over the component links, IS-IS/OSPF flooding can be restricted to just one of the component links. Mannie Standards Track [Page 17]

Note that advertising a (bundled) TE link between a pair of LSRs does not imply that there is an IGP adjacency between these LSRs that is associated with just that link. In fact, in certain cases a TE link between a pair of LSRs could be advertised even if there is no IGP adjacency at all between the LSR (e.g., when the TE link is an FA). Forming a bundled link consist in aggregating the identical TE parameters of each individual component link to produce aggregated TE parameters. A TE link as defined by [GMPLS-ROUTING] has many parameters; adequate aggregation rules must be defined for each one. Some parameters can be sums of component characteristics such as the unreserved bandwidth and the maximum reservable bandwidth. Bandwidth information is an important part of a bundle advertisement and it must be clearly defined since an abstraction is done. A GMPLS node with bundled links must apply admission control on a per-component link basis. 4.3. Signaling Considerations Typically, an LSP s explicit route (e.g., contained in an explicit route Object/TLV) will choose the bundled link to be used for the LSP, but not the component link(s). This because information about the bundled link is flooded but information about the component links is not. The choice of the component link to use is always made by an upstream node. If the LSP is bi-directional, the upstream node chooses a component link in each direction. Three mechanisms for indicating this choice to the downstream node are possible. 4.3.1. Mechanism 1: Implicit Indication This mechanism requires that each component link has a dedicated signaling channel (e.g., the link is a Sonet/SDH link using the DCC for in-band signaling). The upstream node tells the receiver which component link to use by sending the message over the chosen component link s dedicated signaling channel. Note that this signaling channel can be in-band or out-of-band. In this last case, the association between the signaling channel and that component link need to be explicitly configured. Mannie Standards Track [Page 18]

4.3.2. Mechanism 2: Explicit Indication by Numbered Interface ID This mechanism requires that the component link has a unique remote IP address. The upstream node indicates the choice of the component link by including a new IF_ID RSVP_HOP object/if_id TLV carrying either an IPv4 or an IPv6 address in the Path/Label Request message (see [RFC3473]/[RFC3472], respectively). For a bi-directional LSP, a component link is provided for each direction by the upstream node. This mechanism does not require each component link to have its own control channel. In fact, it does not even require the whole (bundled) link to have its own control channel. 4.3.3. Mechanism 3: Explicit Indication by Unnumbered Interface ID With this mechanism, each component link that is unnumbered is assigned a unique Interface Identifier (32 bits value). The upstream node indicates the choice of the component link by including a new IF_ID RSVP_HOP object/if_id TLV in the Path/Label Request message (see [RFC3473]/[RFC3472], respectively). This object/tlv carries the component interface ID in the downstream direction for a unidirectional LSP, and in addition, the component interface ID in the upstream direction for a bi-directional LSP. The two LSRs at each end of the bundled link exchange these identifiers. Exchanging the identifiers may be accomplished by configuration, by means of a protocol such as LMP (preferred solution), by means of RSVP-TE/CR-LDP (especially in the case where a component link is a Forwarding Adjacency), or by means of IS-IS or OSPF extensions. This mechanism does not require each component link to have its own control channel. In fact, it does not even require the whole (bundled) link to have its own control channel. 4.4. Unnumbered Bundled Link A bundled link may itself be numbered or unnumbered independent of whether the component links are numbered or not. This affects how the bundled link is advertised in IS-IS/OSPF and the format of LSP EROs that traverse the bundled link. Furthermore, unnumbered Interface Identifiers for all unnumbered outgoing links of a given LSR (whether component links, Forwarding Adjacencies or bundled links) must be unique in the context of that LSR. Mannie Standards Track [Page 19]

4.5. Forming Bundled Links The generic rule for bundling component links is to place those links that are correlated in some manner in the same bundle. If links may be correlated based on multiple properties then the bundling may be applied sequentially based on these properties. For instance, links may be first grouped based on the first property. Each of these groups may be then divided into smaller groups based on the second property and so on. The main principle followed in this process is that the properties of the resulting bundles should be concisely summarizable. Link bundling may be done automatically or by configuration. Automatic link bundling can apply bundling rules sequentially to produce bundles. For instance, the first property on which component links may be correlated could be the Interface Switching Capability [GMPLS-ROUTING], the second property could be the Encoding [GMPLS-ROUTING], the third property could be the Administrative Weight (cost), the fourth property could be the Resource Classes and finally links may be correlated based on other metrics such as SRLG (Shared Risk Link Groups). When routing an alternate path for protection purposes, the general principle followed is that the alternate path is not routed over any link belonging to an SRLG that belongs to some link of the primary path. Thus, the rule to be followed is to group links belonging to exactly the same set of SRLGs. This type of sequential sub-division may result in a number of bundles between two adjacent nodes. In practice, however, the link properties may not be very heterogeneous among component links between two adjacent nodes. Thus, the number of bundles in practice may not be large. 5. Relationship with the UNI The interface between an edge GMPLS node and a GMPLS LSR on the network side may be referred to as a User to Network Interface (UNI), while the interface between two-network side LSRs may be referred to as a Network to Network Interface (NNI). GMPLS does not specify separately a UNI and an NNI. Edge nodes are connected to LSRs on the network side, and these LSRs are in turn connected between them. Of course, the behavior of an edge node is not exactly the same as the behavior of an LSR on the network side. Note also, that an edge node may run a routing protocol, however it is expected that in most of the cases it will not (see also section 5.2 and the section about signaling with an explicit route). Mannie Standards Track [Page 20]

Conceptually, a difference between UNI and NNI make sense either if both interface uses completely different protocols, or if they use the same protocols but with some outstanding differences. In the first case, separate protocols are often defined successively, with more or less success. The GMPLS approach consisted in building a consistent model from day one, considering both the UNI and NNI interfaces at the same time [GMPLS-OVERLAY]. For that purpose, a very few specific UNI particularities have been ignored in a first time. GMPLS has been enhanced to support such particularities at the UNI by some other standardization bodies (see hereafter). 5.1. Relationship with the OIF UNI This section is only given for reference to the OIF work related to GMPLS. The current OIF UNI specification [OIF-UNI] defines an interface between a client SONET/SDH equipment and an SONET/SDH network, each belonging to a distinct administrative authority. It is designed for an overlay model. The OIF UNI defines additional mechanisms on the top of GMPLS for the UNI. For instance, the OIF service discovery procedure is a precursor to obtaining UNI services. Service discovery allows a client to determine the static parameters of the interconnection with the network, including the UNI signaling protocol, the type of concatenation, the transparency level as well as the type of diversity (node, link, SRLG) supported by the network. Since the current OIF UNI interface does not cover photonic networks, G.709 Digital Wrapper, etc, it is from that perspective a subset of the GMPLS Architecture at the UNI. 5.2. Reachability across the UNI This section discusses the selection of an explicit route by an edge node. The selection of the first LSR by an edge node connected to multiple LSRs is part of that problem. An edge node (host or LSR) can participate more or less deeply in the GMPLS routing. Four different routing models can be supported at the UNI: configuration based, partial peering, silent listening and full peering. - Configuration based: this routing model requires the manual or automatic configuration of an edge node with a list of neighbor LSRs sorted by preference order. Automatic configuration can be achieved using DHCP for instance. No routing information is Mannie Standards Track [Page 21]

exchanged at the UNI, except maybe the ordered list of LSRs. The only routing information used by the edge node is that list. The edge node sends by default an LSP request to the preferred LSR. ICMP redirects could be send by this LSR to redirect some LSP requests to another LSR connected to the edge node. GMPLS does not preclude that model. - Partial peering: limited routing information (mainly reachability) can be exchanged across the UNI using some extensions in the signaling plane. The reachability information exchanged at the UNI may be used to initiate edge node specific routing decision over the network. GMPLS does not have any capability to support this model today. - Silent listening: the edge node can silently listen to routing protocols and take routing decisions based on the information obtained. An edge node receives the full routing information, including traffic engineering extensions. One LSR should forward transparently all routing PDUs to the edge node. An edge node can now compute a complete explicit route taking into consideration all the end-to-end routing information. GMPLS does not preclude this model. - Full peering: in addition to silent listening, the edge node participates within the routing, establish adjacencies with its neighbors and advertises LSAs. This is useful only if there are benefits for edge nodes to advertise themselves traffic engineering information. GMPLS does not preclude this model. 6. Link Management In the context of GMPLS, a pair of nodes (e.g., a photonic switch) may be connected by tens of fibers, and each fiber may be used to transmit hundreds of wavelengths if DWDM is used. Multiple fibers and/or multiple wavelengths may also be combined into one or more bundled links for routing purposes. Furthermore, to enable communication between nodes for routing, signaling, and link management, control channels must be established between a node pair. Link management is a collection of useful procedures between adjacent nodes that provide local services such as control channel management, link connectivity verification, link property correlation, and fault management. The Link Management Protocol (LMP) [LMP] has been defined to fulfill these operations. LMP has been initiated in the context of GMPLS but is a generic toolbox that can be also used in other contexts. Mannie Standards Track [Page 22]

In GMPLS, the control channels between two adjacent nodes are no longer required to use the same physical medium as the data links between those nodes. Moreover, the control channels that are used to exchange the GMPLS control-plane information exist independently of the links they manage. Hence, LMP was designed to manage the data links, independently of the termination capabilities of those data links. Control channel management and link property correlation procedures are mandatory per LMP. Link connectivity verification and fault management procedures are optional. 6.1. Control Channel and Control Channel Management LMP control channel management is used to establish and maintain control channels between nodes. Control channels exist independently of TE links, and can be used to exchange MPLS control-plane information such as signaling, routing, and link management information. An "LMP adjacency" is formed between two nodes that support the same LMP capabilities. Multiple control channels may be active simultaneously for each adjacency. A control channel can be either explicitly configured or automatically selected, however, LMP currently assume that control channels are explicitly configured while the configuration of the control channel capabilities can be dynamically negotiated. For the purposes of LMP, the exact implementation of the control channel is left unspecified. The control channel(s) between two adjacent nodes is no longer required to use the same physical medium as the data-bearing links between those nodes. For example, a control channel could use a separate wavelength or fiber, an Ethernet link, or an IP tunnel through a separate management network. A consequence of allowing the control channel(s) between two nodes to be physically diverse from the associated data-bearing links is that the health of a control channel does not necessarily correlate to the health of the data-bearing links, and vice-versa. Therefore, new mechanisms have been developed in LMP to manage links, both in terms of link provisioning and fault isolation. LMP does not specify the signaling transport mechanism used in the control channel, however it states that messages transported over a control channel must be IP encoded. Furthermore, since the messages are IP encoded, the link level encoding is not part of LMP. A 32-bit non-zero integer Control Channel Identifier (CCId) is assigned to each direction of a control channel. Mannie Standards Track [Page 23]