DATA MINING LECTURE 7. Hierarchical Clustering, DBSCAN The EM Algorithm

Similar documents
CSE 347/447: DATA MINING

Hierarchical Clustering

Lecture Notes for Chapter 7. Introduction to Data Mining, 2 nd Edition. by Tan, Steinbach, Karpatne, Kumar

Data Mining Concepts & Techniques

BBS654 Data Mining. Pinar Duygulu. Slides are adapted from Nazli Ikizler

Clustering Part 3. Hierarchical Clustering

CSE 5243 INTRO. TO DATA MINING

MultiDimensional Signal Processing Master Degree in Ingegneria delle Telecomunicazioni A.A

CSE 5243 INTRO. TO DATA MINING

CS7267 MACHINE LEARNING

Clustering CS 550: Machine Learning

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Slides From Lecture Notes for Chapter 8. Introduction to Data Mining

Hierarchical Clustering

CSE 5243 INTRO. TO DATA MINING

DATA MINING - 1DL105, 1Dl111. An introductory class in data mining

Clustering Lecture 3: Hierarchical Methods

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Notes. Reminder: HW2 Due Today by 11:59PM. Review session on Thursday. Midterm next Tuesday (10/09/2018)

Lecture Notes for Chapter 8. Introduction to Data Mining

Hierarchical clustering

Knowledge Discovery in Databases

Cluster analysis. Agnieszka Nowak - Brzezinska

Part I. Hierarchical clustering. Hierarchical Clustering. Hierarchical clustering. Produces a set of nested clusters organized as a

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

5/15/16. Computational Methods for Data Analysis. Massimo Poesio UNSUPERVISED LEARNING. Clustering. Unsupervised learning introduction

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Clustering Part 4 DBSCAN

Cluster Analysis. Ying Shen, SSE, Tongji University

University of Florida CISE department Gator Engineering. Clustering Part 4

Unsupervised Learning. Supervised learning vs. unsupervised learning. What is Cluster Analysis? Applications of Cluster Analysis

ALTERNATIVE METHODS FOR CLUSTERING

What is Cluster Analysis?

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

Working with Unlabeled Data Clustering Analysis. Hsiao-Lung Chan Dept Electrical Engineering Chang Gung University, Taiwan

Clustering fundamentals

Unsupervised Learning : Clustering

Notes. Reminder: HW2 Due Today by 11:59PM. Review session on Thursday. Midterm next Tuesday (10/10/2017)

University of Florida CISE department Gator Engineering. Clustering Part 2

Cluster Analysis: Basic Concepts and Algorithms

Clustering Lecture 4: Density-based Methods

Data Mining Cluster Analysis: Advanced Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining, 2 nd Edition

Data Mining Chapter 9: Descriptive Modeling Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Cluster Analysis: Basic Concepts and Algorithms. Lecture Notes for Chapter 8. Introduction to Data Mining

COMP20008 Elements of Data Processing. Outlier Detection and Clustering

CHAPTER 4: CLUSTER ANALYSIS

DS504/CS586: Big Data Analytics Big Data Clustering II

Tan,Steinbach, Kumar Introduction to Data Mining 4/18/ Tan,Steinbach, Kumar Introduction to Data Mining 4/18/

DS504/CS586: Big Data Analytics Big Data Clustering II

CS570: Introduction to Data Mining

Clustering in R d. Clustering. Widely-used clustering methods. The k-means optimization problem CSE 250B

Statistics 202: Data Mining. c Jonathan Taylor. Week 8 Based in part on slides from textbook, slides of Susan Holmes. December 2, / 1

CS Introduction to Data Mining Instructor: Abdullah Mueen

Data Mining. Clustering. Hamid Beigy. Sharif University of Technology. Fall 1394

Clustering part II 1

Clustering Tips and Tricks in 45 minutes (maybe more :)

Unsupervised Learning

Introduction to Mobile Robotics

Network Traffic Measurements and Analysis

Machine Learning (BSMC-GA 4439) Wenke Liu

Chapter VIII.3: Hierarchical Clustering

PAM algorithm. Types of Data in Cluster Analysis. A Categorization of Major Clustering Methods. Partitioning i Methods. Hierarchical Methods

Clustering. CE-717: Machine Learning Sharif University of Technology Spring Soleymani

HW4 VINH NGUYEN. Q1 (6 points). Chapter 8 Exercise 20

Hard clustering. Each object is assigned to one and only one cluster. Hierarchical clustering is usually hard. Soft (fuzzy) clustering

Clustering in Data Mining

Lesson 3. Prof. Enza Messina

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

INF4820. Clustering. Erik Velldal. Nov. 17, University of Oslo. Erik Velldal INF / 22

Lecture-17: Clustering with K-Means (Contd: DT + Random Forest)

数据挖掘 Introduction to Data Mining

Clustering in Ratemaking: Applications in Territories Clustering

University of Florida CISE department Gator Engineering. Clustering Part 5

CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling

Clustering Lecture 5: Mixture Model

10701 Machine Learning. Clustering

Gene Clustering & Classification

Online Social Networks and Media. Community detection

Data Mining. Cluster Analysis: Basic Concepts and Algorithms

Cluster Analysis. Summer School on Geocomputation. 27 June July 2011 Vysoké Pole

Understanding Clustering Supervising the unsupervised

Data Mining Algorithms

STATS306B STATS306B. Clustering. Jonathan Taylor Department of Statistics Stanford University. June 3, 2010

SGN (4 cr) Chapter 11

DBSCAN. Presented by: Garrett Poppe

d(2,1) d(3,1 ) d (3,2) 0 ( n, ) ( n ,2)......

Machine Learning. Unsupervised Learning. Manfred Huber

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering

Statistics 202: Data Mining. c Jonathan Taylor. Clustering Based in part on slides from textbook, slides of Susan Holmes.

Today. Lecture 4: Last time. The EM algorithm. We examine clustering in a little more detail; we went over it a somewhat quickly last time

CS 2750 Machine Learning. Lecture 19. Clustering. CS 2750 Machine Learning. Clustering. Groups together similar instances in the data sample

Unsupervised Learning. Andrea G. B. Tettamanzi I3S Laboratory SPARKS Team

What is Cluster Analysis? COMP 465: Data Mining Clustering Basics. Applications of Cluster Analysis. Clustering: Application Examples 3/17/2015

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM.

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning 15/04/2015. Supervised learning vs. unsupervised learning. What is Cluster Analysis? Applications of Cluster Analysis

Unsupervised Learning. Clustering and the EM Algorithm. Unsupervised Learning is Model Learning

Clustering algorithms

K-means and Hierarchical Clustering

Based on Raymond J. Mooney s slides

k-means demo Administrative Machine learning: Unsupervised learning" Assignment 5 out

Transcription:

DATA MINING LECTURE 7 Hierarchical Clustering, DBSCAN The EM Algorithm

CLUSTERING

What is a Clustering? In general a grouping of objects such that the objects in a group (cluster) are similar (or related) to one another and different from (or unrelated to) the objects in other groups Intra-cluster distances are minimized Inter-cluster distances are maximized

Clustering Algorithms K-means and its variants Hierarchical clustering DBSCAN

HIERARCHICAL CLUSTERING

Hierarchical Clustering Two main types of hierarchical clustering Agglomerative: Start with the points as individual clusters At each step, merge the closest pair of clusters until only one cluster (or k clusters) left Divisive: Start with one, all-inclusive cluster At each step, split a cluster until each cluster contains a point (or there are k clusters) Traditional hierarchical algorithms use a similarity or distance matrix Merge or split one cluster at a time

Hierarchical Clustering Produces a set of nested clusters organized as a hierarchical tree Can be visualized as a dendrogram A tree like diagram that records the sequences of merges or splits 6 5 0.2 0.15 0.1 4 3 4 2 5 2 0.05 3 1 1 0 1 3 2 5 4 6

Strengths of Hierarchical Clustering Do not have to assume any particular number of clusters Any desired number of clusters can be obtained by cutting the dendogram at the proper level They may correspond to meaningful taxonomies Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, )

Agglomerative Clustering Algorithm More popular hierarchical clustering technique Basic algorithm is straightforward 1. Compute the proximity matrix 2. Let each data point be a cluster 3. Repeat 4. Merge the two closest clusters 5. Update the proximity matrix 6. Until only a single cluster remains Key operation is the computation of the proximity of two clusters Different approaches to defining the distance between clusters distinguish the different algorithms

Starting Situation Start with clusters of individual points and a proximity matrix p1 p2 p3 p4 p5.. p1 p2 p3 p4 p5.... Proximity Matrix... p1 p2 p3 p4 p9 p10 p11 p12

Intermediate Situation After some merging steps, we have some clusters C1 C2 C3 C4 C5 C1 C3 C4 C2 C3 C4 C1 C5 Proximity Matrix C2 C5... p1 p2 p3 p4 p9 p10 p11 p12

Intermediate Situation We want to merge the two closest clusters (C2 and C5) and update the proximity matrix. C3 C4 C1 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 Proximity Matrix C2 C5... p1 p2 p3 p4 p9 p10 p11 p12

After Merging The question is How do we update the proximity matrix? C1 C3 C4 C1 C2 U C5 C3 C4 C1 C2 U C5??????? C3 Proximity Matrix C4 C2 U C5... p1 p2 p3 p4 p9 p10 p11 p12

How to Define Inter-Cluster Similarity Similarity? p1 p2 p3 p1 p2 p3 p4 p5... MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward s Method uses squared error p4 p5... Proximity Matrix

How to Define Inter-Cluster Similarity p1 p1 p2 p3 p4 p5... p2 p3 MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward s Method uses squared error p4 p5... Proximity Matrix

How to Define Inter-Cluster Similarity p1 p1 p2 p3 p4 p5... p2 p3 MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward s Method uses squared error p4 p5... Proximity Matrix

How to Define Inter-Cluster Similarity p1 p1 p2 p3 p4 p5... p2 p3 MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward s Method uses squared error p4 p5... Proximity Matrix

How to Define Inter-Cluster Similarity p1 p2 p3 p1 p2 p3 p4 p5... MIN MAX Group Average Distance Between Centroids Other methods driven by an objective function Ward s Method uses squared error p4 p5... Proximity Matrix

Single Link Complete Link Another way to view the processing of the hierarchical algorithm is that we create links between their elements in order of increasing distance The MIN Single Link, will merge two clusters when a single pair of elements is linked The MAX Complete Linkage will merge two clusters when all pairs of elements have been linked.

Hierarchical Clustering: MIN 1 2 3 4 5 6 5 2 2 3 3 1 5 1 6 1 0.24.22.37.34.23 2.24 0.15.20.14.25 3.22.15 0.15.28.11 4.37.20.15 0.29.22 5.34.14.28.29 0.39 6.23.25.11.22.39 0 4 4 0.2 0.15 0.1 0.05 Nested Clusters Dendrogram 0 3 6 2 5 4 1

Strength of MIN Original Points Two Clusters Can handle non-elliptical shapes

Limitations of MIN Original Points Two Clusters Sensitive to noise and outliers

Hierarchical Clustering: MAX 1 2 3 4 5 6 4 1 1 0.24.22.37.34.23 2.24 0.15.20.14.25 5 2 5 2 3.22.15 0.15.28.11 4.37.20.15 0.29.22 5.34.14.28.29 0.39 3 4 3 1 6 0.4 0.35 0.3 6.23.25.11.22.39 0 0.25 0.2 Nested Clusters Dendrogram 0.15 0.1 0.05 0 3 6 4 1 2 5

Strength of MAX Original Points Two Clusters Less susceptible to noise and outliers

Limitations of MAX Original Points Two Clusters Tends to break large clusters Biased towards globular clusters

Cluster Similarity: Group Average Proximity of two clusters is the average of pairwise proximity between points in the two clusters. pi Cluster i p Cluster proximity(p,p j j proximity(cluster i, Cluster j) Cluster Cluster Need to use average connectivity for scalability since total proximity favors large clusters 1 2 3 4 5 6 1 0.24.22.37.34.23 2.24 0.15.20.14.25 3.22.15 0.15.28.11 4.37.20.15 0.29.22 5.34.14.28.29 0.39 6.23.25.11.22.39 0 i i j j )

Hierarchical Clustering: Group Average 1 2 3 4 5 6 5 4 1 1 0.24.22.37.34.23 2.24 0.15.20.14.25 5 2 2 3.22.15 0.15.28.11 4.37.20.15 0.29.22 5.34.14.28.29 0.39 4 3 3 1 6 0.25 0.2 6.23.25.11.22.39 0 0.15 Nested Clusters Dendrogram 0.1 0.05 0 3 6 4 1 2 5

Hierarchical Clustering: Group Average Compromise between Single and Complete Link Strengths Less susceptible to noise and outliers Limitations Biased towards globular clusters

Cluster Similarity: Ward s Method Similarity of two clusters is based on the increase in squared error (SSE) when two clusters are merged Similar to group average if distance between points is distance squared Less susceptible to noise and outliers Biased towards globular clusters Hierarchical analogue of K-means Can be used to initialize K-means

Hierarchical Clustering: Comparison Group Average Ward s Method 1 2 3 4 5 6 1 2 5 3 4 MIN MAX 1 2 3 4 5 6 1 2 5 3 4 1 2 3 4 5 6 1 2 5 3 4 1 2 3 4 5 6 1 2 3 4 5

Hierarchical Clustering: Time and Space requirements O(N 2 ) space since it uses the proximity matrix. N is the number of points. O(N 3 ) time in many cases There are N steps and at each step the size, N 2, proximity matrix must be updated and searched Complexity can be reduced to O(N 2 log(n) ) time for some approaches

Hierarchical Clustering: Problems and Limitations Computational complexity in time and space Once a decision is made to combine two clusters, it cannot be undone No objective function is directly minimized Different schemes have problems with one or more of the following: Sensitivity to noise and outliers Difficulty handling different sized clusters and convex shapes Breaking large clusters

DBSCAN

DBSCAN: Density-Based Clustering DBSCAN is a Density-Based Clustering algorithm Reminder: In density based clustering we partition points into dense regions separated by not-so-dense regions. Important Questions: How do we measure density? What is a dense region? DBSCAN: Density at point p: number of points within a circle of radius Eps Dense Region: A circle of radius Eps that contains at least MinPts points

DBSCAN Characterization of points A point is a core point if it has more than a specified number of points (MinPts) within Eps These points belong in a dense region and are at the interior of a cluster A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point. A noise point is any point that is not a core point or a border point.

DBSCAN: Core, Border, and Noise Points

DBSCAN: Core, Border and Noise Points Original Points Point types: core, border and noise Eps = 10, MinPts = 4

Density-Connected points Density edge We place an edge between two core points q and p if they are within distance Eps. q p 1 p Density-connected A point p is density-connected to a point q if there is a path of edges from p to q p q o

DBSCAN Algorithm Label points as core, border and noise Eliminate noise points For every core point p that has not been assigned to a cluster Create a new cluster with the point p and all the points that are density-connected to p. Assign border points to the cluster of the closest core point.

DBSCAN: Determining Eps and MinPts Idea is that for points in a cluster, their k th nearest neighbors are at roughly the same distance Noise points have the k th nearest neighbor at farther distance So, plot sorted distance of every point to its k th nearest neighbor Find the distance d where there is a knee in the curve Eps = d, MinPts = k Eps ~ 7-10 MinPts = 4

When DBSCAN Works Well Original Points Clusters Resistant to Noise Can handle clusters of different shapes and sizes

When DBSCAN Does NOT Work Well Original Points (MinPts=4, Eps=9.75). Varying densities High-dimensional data (MinPts=4, Eps=9.92)

DBSCAN: Sensitive to Parameters

Other algorithms PAM, CLARANS: Solutions for the k-medoids problem BIRCH: Constructs a hierarchical tree that acts a summary of the data, and then clusters the leaves. MST: Clustering using the Minimum Spanning Tree. ROCK: clustering categorical data by neighbor and link analysis LIMBO, COOLCAT: Clustering categorical data using information theoretic tools. CURE: Hierarchical algorithm uses different representation of the cluster CHAMELEON: Hierarchical algorithm uses closeness and interconnectivity for merging

MIXTURE MODELS AND THE EM ALGORITHM

Model-based clustering In order to understand our data, we will assume that there is a generative process (a model) that creates/describes the data, and we will try to find the model that best fits the data. Models of different complexity can be defined, but we will assume that our model is a distribution from which data points are sampled Example: the data is the height of all people in Greece In most cases, a single distribution is not good enough to describe all data points: different parts of the data follow a different distribution Example: the data is the height of all people in Greece and China We need a mixture model Different distributions correspond to different clusters in the data.

Gaussian Distribution Example: the data is the height of all people in Greece Experience has shown that this data follows a Gaussian (Normal) distribution Reminder: Normal distribution: P x = 1 2πσ e μ = mean, σ = standard deviation x μ 2 2σ 2

Gaussian Model What is a model? A Gaussian distribution is fully defined by the mean μ and the standard deviation σ We define our model as the pair of parameters θ = (μ, σ) This is a general principle: a model is defined as a vector of parameters θ

Fitting the model We want to find the normal distribution that best fits our data Find the best values for μ and σ But what does best fit mean?

Maximum Likelihood Estimation (MLE) Suppose that we have a vector X = (x 1,, x n ) of values And we want to fit a Gaussian N(μ, σ) model to the data Probability of observing point x i : P x i = 1 2πσ e Probability of observing all points (assume independence) n P X = P x i i=1 = x i μ 2 2σ 2 1 2πσ e x i μ 2 2σ 2 We want to find the parameters θ = (μ, σ) that maximize the probability P(X θ) n i=1

Maximum Likelihood Estimation (MLE) The probability P(X θ) as a function of θ is called the Likelihood function L(θ) = 1 2πσ e It is usually easier to work with the Log-Likelihood function Maximum Likelihood Estimation x i μ 2 2σ 2 Find parameters μ, σ that maximize LL(θ) μ = 1 n n i=1 x i = μ X LL θ = n i=1 n i=1 Sample Mean x i μ 2 2σ 2 σ 2 = 1 n 1 n log 2π n log σ 2 n i=1 (x i μ) 2 = σ X 2 Sample Variance

MLE Note: these are also the most likely parameters given the data P θ X = P X θ P(θ) P(X) If we have no prior information about θ, or X, then maximizing P X θ is the same as maximizing P θ X

Mixture of Gaussians Suppose that you have the heights of people from Greece and China and the distribution looks like the figure below (dramatization)

Mixture of Gaussians In this case the data is the result of the mixture of two Gaussians One for Greek people, and one for Chinese people Identifying for each value which Gaussian is most likely to have generated it will give us a clustering.

Mixture model A value x i is generated according to the following process: First select the nationality With probability π G select Greek, with probability π C select China (π G + π C = 1) Given the nationality, generate the point from the corresponding Gaussian P x i θ G ~ N μ G, σ G if Greece P x i θ G ~ N μ G, σ G if China We can also thing of this as a Hidden Variable Z

Mixture Model Our model has the following parameters Θ = (π G, π C, μ G, μ C, σ G, σ C ) Mixture probabilities Distribution Parameters For value x i, we have: P x i Θ = π G P x i θ G + π C P(x i θ C ) For all values X = x 1,, x n P X Θ = P(x i Θ) i=1 We want to estimate the parameters that maximize the Likelihood of the data n

Mixture Models Once we have the parameters Θ = (π G, π C, μ G, μ C, σ G, σ C ) we can estimate the membership probabilities P G x i and P C x i for each point x i : This is the probability that point x i belongs to the Greek or the Chinese population (cluster) P G x i = = P x i G P(G) P x i G P G + P x i C P(C) P x i G π G P x i G π G + P x i C π C

EM (Expectation Maximization) Algorithm Initialize the values of the parameters in Θ to some random values Repeat until convergence E-Step: Given the parameters Θ estimate the membership probabilities P G x i and P C x i M-Step: Compute the parameter values that (in expectation) maximize the data likelihood π G = 1 n μ C = σ C 2 = n i=1 n i=1 n i=1 P(G x i ) P C x i n π C x i P C x i n π C x i μ C 2 π C = 1 n μ G = σ G 2 = n i=1 n i=1 n i=1 P(C x i ) P G x i n π G x i P G x i n π G x i μ G 2 Fraction of population in G,C MLE Estimates if π s were fixed

Relationship to K-means E-Step: Assignment of points to clusters K-means: hard assignment, EM: soft assignment M-Step: Computation of centroids K-means assumes common fixed variance (spherical clusters) EM: can change the variance for different clusters or different dimensions (elipsoid clusters) If the variance is fixed then both minimize the same error function