MICHELSON S INTERFEROMETER

Similar documents
INTERFERENCE. (i) When the film is quite thin as compared to the wavelength of light,

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

Chapter 8: Physical Optics

Related topics Interference, wavelength, refractive index, speed of light, phase, virtuallight source.

Chapter 2: Wave Optics

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura

Chapter 37. Wave Optics

Interference of Light

Lecture 22 (Interference III Thin Film Interference and the Michelson Interferometer) Physics Spring 2018 Douglas Fields

College Physics 150. Chapter 25 Interference and Diffraction

Fresnel's biprism and mirrors

Interference of Light

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

Lecture 4 Recap of PHYS110-1 lecture Physical Optics - 4 lectures EM spectrum and colour Light sources Interference and diffraction Polarization

Chapter 82 Example and Supplementary Problems

CHAPTER 26 INTERFERENCE AND DIFFRACTION

Diffraction at a single slit and double slit Measurement of the diameter of a hair

light Chapter Type equation here. Important long questions

Izmir Institute of Technology Department of Physics

Where n = 0, 1, 2, 3, 4

Chapter 37. Interference of Light Waves

Holography & Coherence For Holography need coherent beams Two waves coherent if fixed phase relationship between them for some period of time

Chapter 38. Diffraction Patterns and Polarization

Reflection and Refraction of Light

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

ConcepTest PowerPoints

STEP-BY-STEP INSTRUCTIONS FOR BUILDING A MICHELSON INTERFEROMETER. TECHSPEC Optical Cage System

POLARIZATION 3.5 RETARDATION PLATES

College Physics B - PHY2054C

Reflections from a thin film

Intermediate Physics PHYS102

Laboratory 6: Light and the Laser

Diffraction and Interference of Plane Light Waves

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference II: Thin Films

LECTURE 26: Interference ANNOUNCEMENT. Interference. Interference: Phase Differences

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Single Photon Interference

INTERFERENCE. A wave travelling in the z direction (for example) satisfies the differential wave equation. For a light wave:

AP Physics Problems -- Waves and Light

Laser Diffraction and Interference

Michelson Interferometer

Chapter 24. Wave Optics

Name: Lab Partner: Section:

Experiment 6. Snell s Law. Use Snell s Law to determine the index of refraction of Lucite.

Applied Optics. Dr D. Arun Kumar Assistant Professor Department of Physical Sciences Bannari Amman Institute of Technology Sathyamangalam

UNIT 102-9: INTERFERENCE AND DIFFRACTION

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Experiment 5: Polarization and Interference

AP* Optics Free Response Questions

Lab 5: Diffraction and Interference

Waves & Oscillations

specular diffuse reflection.

Name: Date: Course number: MAKE SURE YOUR TA OR TI STAMPS EVERY PAGE BEFORE YOU START! EXPERIMENT 13. The Wave Nature of the Electromagnetic Spectrum

Case I: Thin film of uniform thickness:

To find the position of maximum and minimum energy, consider two sources of light A and B, as in the following figure (1), lying close to one another.

Models of Light The wave model: The ray model: The photon model:

5. Double Slit Diffraction

Optics: Reflection and Refraction (approx. completion time: 2.5 h) (3/28/11)

Optics Vac Work MT 2008

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE

Diffraction and Interference of Plane Light Waves

Chapter 36. Diffraction. Dr. Armen Kocharian

PHYSICS 116 INTERFERENCE AND DIFFRACTION

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

10.4 Interference in Thin Films

Second Year Optics 2017 Problem Set 1

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

Interference Effects. 6.2 Interference. Coherence. Coherence. Interference. Interference

Experimental Competition. Sample Solution

Basic optics. Geometrical optics and images Interference Diffraction Diffraction integral. we use simple models that say a lot! more rigorous approach

To determine the wavelength of laser light using single slit diffraction

MDHS Science Department SPH 4U - Student Goal Tracking Sheet

Interference of Light

Light and refractive index

Waves & Oscillations

A Level. A Level Physics. WAVES: Combining Waves (Answers) Edexcel. Name: Total Marks: /30

Applications of Piezo Actuators for Space Instrument Optical Alignment

Operation Manual. Autocollimator Test Wedge for quick testing of Electronic Autocollimators

Reflection and Refraction

Interference with polarized light

Physics 214 Midterm Fall 2003 Form A

Diffraction. Factors that affect Diffraction

Wave Optics. April 11, 2014 Chapter 34 1

Wallace Hall Academy

Lab 12 - Interference-Diffraction of Light Waves

Downloaded from UNIT 06 Optics

Interference and Diffraction of Light

Physical optics. Introduction. University of Ottawa Department of Physics

9. Polarization. 1) General observations [Room 310]

Name Section Date. Experiment Reflection and Refraction

Unit-22 Interference and Diffraction

Diffraction and Interference Lab 7 PRECAUTION

Phy 133 Section 1: f. Geometric Optics: Assume the rays follow straight lines. (No diffraction). v 1 λ 1. = v 2. λ 2. = c λ 2. c λ 1.

Physics 202 Homework 9

Chapter 9. Coherence

Electricity & Optics

Assignment 1 Due September 6, 2011

Transcription:

MICHELSON S INTERFEROMETER Objectives: 1. Alignment of Michelson s Interferometer using He-Ne laser to observe concentric circular fringes 2. Measurement of the wavelength of He-Ne Laser and Na lamp using circular fringes 3. Study of fringes of equal inclination and equal thickness using Na lamp Introduction The instruments based upon the principle of interference are called interferometers. These are basic optical tools used to precisely measure wavelength, distance, index of refraction, and temporal coherence of optical beams etc. It is an amplitude-splitting interferometers devised by Albert Michelson in 1890, the first American physicist to receive the Nobel Prize (1907 for work in optics). Michelson and Morley used this interferometer in their celebrated series of experiments designed to demonstrate the existence of the ether. It is still an important instrument in today's laboratories and it is being widely used as an instrument for measuring the wavelength of an unknown light source, to measure extremely small distance and for investigating optical media. Construction: Construction of Michelson interferometer is shown in Fig. 1. It consists of two highly polished mirrors M 1 and M 2. Two glass plates beam splitter (BS) and compensatory glass plate (CP), are placed parallel to each other between the mirrors at an angle of 45 0. The rear side of glass plate BS is semi-silvered such that the light from a source is equally reflected and Fig. 1 : Construction of Michelson s Interferometer Last updated in Dec 2017 NISER Page 1

transmitted by it. In this way division of amplitude takes place. From a broad source, let a monochromatic light of wavelength λ fall on BS. Half of light falling on BS is reflected towards the mirror M 1 and the other half is transmitted towards mirror M 2. Hence BS is known as a beam splitter. In case of sources which are not monochromatic, the glass plate CP is inserted between BS and M 2. The role of CP is explained further in the following paragraph. After splitting, the two rays are reflected back by the mirrors M 1 and M 2 and return to the plate BS. The ray reflected from M 1 is transmitted through BS and the ray reflected from M 2 is reflected again by BS. The two rays coming from the two mirrors interfere and fringes are observed on a screen (for laser) or by naked eye (Na lamp) at E. Usually one of the mirrors is mounted on a translation stage so that it can be moved back and forth to observe the change in fringes. Optical path The rays falling on mirrors M 1 and M 2 are derived from the same source originally incident on plate BS (see Fig. 1). The wave reflected from M 1 and entering the eye crosses BS twice. However the path of the other wave falling on the mirror M 2, in the absence of compensating plate CP, travels totally in air. Thus an extra optical path 2(μ -1)t is introduced where, 't' is the thickness of the plate and μ is the refractive index of the BS plate for the monochromatic light used. Presence of CP is not essential if fringes are produced with monochromatic light. But it produces a serious problem when white light is used. Thus, it becomes necessary to compensate for the extra optical path 2(μ -1)t for all wavelengths. This is done by introducing another glass plate CP of same thickness as that of BS parallel to it. Thus, the two waves will interfere constructively or destructively as per the following conditions of path difference, Δ: Δ = 2nλ/2 = n λ Δ = (2n+1)λ/2 (for maxima, n is an integer) (for minima, n is an integer) Types of fringes: Path difference between the two rays can be varied by moving M 1. Mirror M 1 and the virtual image of mirror M 2 act as the two surfaces of an air film. The fringes formed in Michelson interferometer may be circular, curved or straight depending upon the nature of the air film. Last updated in Dec 2017 NISER Page 2

Concentric circular fringes (fringes of equal inclination): Concentric circular fringes are obtained when the air film is parallel as shown in Fig. 2. M 2 ' is the virtual image of M 2 and it is parallel to M 1. For simplicity, light source L is at the observer's position. L 1 and L 2 are the virtual images of L formed by M 1 and M 2 ', and are coherent. Let d be the distance between M 1 and M 2 ', therefore the distance between L 1 and L 2 is 2d. Let θ be the angle between the incident beam originated at P and the reflected beams from M 1 and M 2 '. Then path difference between light beams from points P and P" is 2d cosθ. A maximum (bright fringe) will be formed when 2dcosθ = n λ. For a fixed value of n, λ and d, the value of θ is a constant, and the contour of the maximum point becomes a ring. The centre of the ring is in line with the observer and perpendicular to the mirror plane. Each circular ring corresponds to a particular value of θ. Hence the fringes are known as fringes of equal inclination. P 2d θ 2d cos θ P L 2 L 1 P P P Fig. 2: Formation of circular fringes Curved fringes (fringes of equal thickness): When M 1 and virtual image M 2 ' are inclined to each other, the film enclosed is wedge shaped. Then curved fringes can be observed as shown in Fig. 3. These are also known as fringes of equal thickness. Straight line fringes: When M 1 and virtual image M 2 ' intersect, straight line fringes are obtained around the point of intersection (see Fig. 4). The path Fig. 3: Formation of curved fringes Fig. 4: Formation of straight line fringes Last updated in Dec 2017 NISER Page 3

difference along the line of intersection is zero and therefore, is same for all the wavelengths. When a source of white light is used we get central achromatic bright fringe. On either side of central fringe, few coloured straight fringes are observed. Determination of λ from circular fringes: Circular fringes are used to determine the wavelength of the source of light. For a given separation of d between the mirrors M 1 and M 2 and normal incidence (θ=0), the path difference is given as 2d = nλ. If one mirror is moved by a distance Δd and N number of rings appear/disappear at the center, then the path difference after moving the mirror is given as 2(d+ Δd) = (n+n)λ Hence, λ = 2(Δd)/N Experimental set up: Set up with laser as source Set up with Na lamp as source Fig. 5 Last updated in Dec 2017 NISER Page 4

Fig. 6: Schematics of Michelson Interferometer Procedure: (I) Observation of circular fringes using He-Ne laser as the light source 1. Set the Michelson Interferometer on the table with coarse adjustable knob pointing towards you. 2. Set the lab jack in front of microscopic objective holder and set the height using lifting knob. 3. Place the He-Ne Laser source on lab jack, pointing the source towards the centre of fixed mirror. 4. Turn the laser on and adjust the laser beam height using lab jack lifting knob until the beam is approximately parallel with the top of the interferometer and strikes the mirror at the centre. 5. Set the viewing screen opposite of the adjustable mirror M 2. Note that the viewing screen should be placed at 1-2meter from the adjustable mirror to get better resolution. 6. To get circular fringes, M 1 should be exactly perpendicular to M 2. In this position, Michelson interferometer is said to be in normal adjustment. The setting needs that the plane of BS exactly bisects the angle (45 ) between the two mirrors. 7. Using coarse adjustment knob makes the distance of M 1 and M 2 from BS nearly equal. 8. When laser beam will be passing through beam splitter (BS) at 45 and observed in the direction M 2, four spots of the He-Ne Laser beam are seen on the viewing screen; two of which are faint and two are intense as shown in figure. The faint spots are due to reflection from un-silvered surface of BS and then from M 1 and M 2 respectively. The intense spots Last updated in Dec 2017 NISER Page 5

are due to reflection from silvered surface of BS and M 1, M 2. (Note: Two spots of He-Ne laser beam also been seen on the viewing screen other than four spots, which are ignorable because these two spots are formed by compensating plate). 9. The tilting screws at the back of M 1 and M 2 are adjusted to obtain only two images as shown in fig. This happens only when the mirrors M 1 and M 2 are exactly perpendicular to each other. 10. Now place the beam expander and adjust its height to get circular fringes. Make fine adjustments of mirrors M 1 and M 2 using top tilting screws to observe clear fringes on the viewing screen. (II) Determination of wavelength of He-Ne laser light source 1. Obtain the circular fringes are obtained as already explained. 2. Move the mirror M 2 using fine adjustment knob. The fringes appear or disappear in the field of view. (Always move the knob in one direction for precise measurement.) 3. Note down the reading of coarse adjustment knob. Let it be m. Multiply this reading with least count 0.01mm. Note the reading of fine adjustment knob. Let it be n. Multiply this reading with least count 0.0001mm. Now add the above two readings of coarse and fine adjustment knobs. Let it be d 1. 5. Rotate the fine adjustment knob to count the number of fringes appearing or disappearing. Let it be N. 6. Note the observations as already explained in step 3. Let it be d 2. 7. Subtract d 1 from d 2 to get the value of d for m fringes. 8. Use the formula to calculate the value of d. (III) Observation of circular fringes using He-Ne laser as the light source 1. Perform steps 1-10 from procedure I. 2. Replace the laser with Na lamp and switch it on. 3. Put a ground glass screen in front of the lamp. 4. A fringe pattern should appear on the screen and only fine adjustments of the movable mirror should be necessary. You can also view the pattern with naked eye or attaching a telescope near coarse adjustment knob. (IV) Determination of wavelength of Na lamp Follow the same procedure as described in (II). Last updated in Dec 2017 NISER Page 6

(V) Fringes of equal inclination Fig. 7 1. Using He-Ne laser as light source reproduce circular fringes similar to Fig. 7(a). Orientation of M 1 and M 2 ' is shown in the bottom panel corresponding to each set of fringes in Fig.7 (a-e). 2. Adjust the coarse micrometer such that images (a) to (e) are viewed in succession. 3. Set the fine micrometer to the middle of the scale. 4. Readjust the coarse micrometer as close as possible to image Fig. 7(c). 5. Use the fine micrometer to produce fringes of equal inclination. 6. Take pictures of the fringes in a similar way shown in Fig. 7. (VI) Fringes of equal thickness Fig.7 1. Using He-Ne laser as light source turn the fine micrometer to move the movable mirror in a direction such that only few interference circular fringes are visible. 2. Adjust the movable mirror a little such that M 1 and M 2 ' till you see curved fringes as shown in Fig. 7(f). Orientation of M 1 and M 2 ' is shown in the bottom panel corresponding Last updated in Dec 2017 NISER Page 7

to each set of fringes in Fig.7 (f-j). 3. Continue to turn the fine micrometer to make the curved fringes move toward their centre. Some straight fringes can be observed (if done very carefully) in succession as shown in Fig. 7 (h), when M 1 and M 2 ' will intersect each other. 4. Take pictures of the fringes in a similar way shown in Fig, 7 (f-j). Observations: (For He-Ne laser/ Na lamp) Initial position of gauge ( ) = mm Sl. No.. N m n (mm) Δd = ( ) (mm) Graph: Plot Δd vs. N and determine λ from slope. Results and Discussions λ for He-Ne laser = λ for Na lamp = Literature values: λ for He-Ne laser = 632.8 nm λ for Na lamp = 589.3 nm Precautions: 1. When turning the fine adjustment knob to count fringes, always turn it one complete revolution before you start counting. This will almost entirely eliminate errors due to backlash in fine adjustment knob. 2. Always turn the fine adjustment knob in one direction either clockwise or anti-clockwise. 3. Direct eye exposure to laser should be avoided. 4. Observing laser interference fringes by reflecting mirror is prohibited. 5. Avoid touching any of the optics with bare hand. Last updated in Dec 2017 NISER Page 8