Algebraic Graph Theory- Adjacency Matrix and Spectrum

Similar documents
The Matrix-Tree Theorem and Its Applications to Complete and Complete Bipartite Graphs

REGULAR GRAPHS OF GIVEN GIRTH. Contents

Math 170- Graph Theory Notes

MC 302 GRAPH THEORY 10/1/13 Solutions to HW #2 50 points + 6 XC points

Lecture 5: Graphs. Rajat Mittal. IIT Kanpur

CHAPTER 2. Graphs. 1. Introduction to Graphs and Graph Isomorphism

2. CONNECTIVITY Connectivity

ON THE STRONGLY REGULAR GRAPH OF PARAMETERS

CS7540 Spectral Algorithms, Spring 2017 Lecture #2. Matrix Tree Theorem. Presenter: Richard Peng Jan 12, 2017

Math 778S Spectral Graph Theory Handout #2: Basic graph theory

Chapter 18 out of 37 from Discrete Mathematics for Neophytes: Number Theory, Probability, Algorithms, and Other Stuff by J. M. Cargal.

Ma/CS 6b Class 13: Counting Spanning Trees

Introduction aux Systèmes Collaboratifs Multi-Agents

An Introduction to Graph Theory

c 2004 Society for Industrial and Applied Mathematics

Counting the number of spanning tree. Pied Piper Department of Computer Science and Engineering Shanghai Jiao Tong University

Ma/CS 6b Class 26: Art Galleries and Politicians

Lecture 9 - Matrix Multiplication Equivalences and Spectral Graph Theory 1

Kirchhoff's theorem. Contents. An example using the matrix-tree theorem

2 Eulerian digraphs and oriented trees.

On the null space of a Colin de Verdière matrix

Basics of Graph Theory

Assignment 4 Solutions of graph problems

Many situations may be graphically summarized by marking down a finite set of points

CS388C: Combinatorics and Graph Theory

Lecture 22 Tuesday, April 10

5 Graphs

On Rainbow Cycles in Edge Colored Complete Graphs. S. Akbari, O. Etesami, H. Mahini, M. Mahmoody. Abstract

Graphs (MTAT , 6 EAP) Lectures: Mon 14-16, hall 404 Exercises: Wed 14-16, hall 402

Structured System Theory

Mathematics and Statistics, Part A: Graph Theory Problem Sheet 1, lectures 1-4

CMSC Honors Discrete Mathematics

K 4 C 5. Figure 4.5: Some well known family of graphs

Math.3336: Discrete Mathematics. Chapter 10 Graph Theory

Chapter 11: Graphs and Trees. March 23, 2008

Varying Applications (examples)

Elements of Graph Theory

Cyclic base orders of matroids

GRAPH THEORY: AN INTRODUCTION

Bipartite Roots of Graphs

On Fiedler s characterization of tridiagonal matrices over arbitrary fields

A Construction of Cospectral Graphs

A Reduction of Conway s Thrackle Conjecture

Scheduling, Map Coloring, and Graph Coloring

Introduction III. Graphs. Motivations I. Introduction IV

Trees. Arash Rafiey. 20 October, 2015

Induction Review. Graphs. EECS 310: Discrete Math Lecture 5 Graph Theory, Matching. Common Graphs. a set of edges or collection of two-elt subsets

CPS 102: Discrete Mathematics. Quiz 3 Date: Wednesday November 30, Instructor: Bruce Maggs NAME: Prob # Score. Total 60

SCHOOL OF ENGINEERING & BUILT ENVIRONMENT. Mathematics. An Introduction to Graph Theory

γ(ɛ) (a, b) (a, d) (d, a) (a, b) (c, d) (d, d) (e, e) (e, a) (e, e) (a) Draw a picture of G.

Characterizing Graphs (3) Characterizing Graphs (1) Characterizing Graphs (2) Characterizing Graphs (4)

Spectral Graph Sparsification: overview of theory and practical methods. Yiannis Koutis. University of Puerto Rico - Rio Piedras

v V Question: How many edges are there in a graph with 10 vertices each of degree 6?

Math 776 Graph Theory Lecture Note 1 Basic concepts

Cospectral graphs. Presented by: Steve Butler. 21 April 2011

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

CME 305: Discrete Mathematics and Algorithms Instructor: Reza Zadeh HW#3 Due at the beginning of class Thursday 03/02/17

Introduction to Graph Theory

Definition: A graph G = (V, E) is called a tree if G is connected and acyclic. The following theorem captures many important facts about trees.

EDGE-COLOURED GRAPHS AND SWITCHING WITH S m, A m AND D m

Graph Adjacency Matrix Automata Joshua Abbott, Phyllis Z. Chinn, Tyler Evans, Allen J. Stewart Humboldt State University, Arcata, California

Graphs. Pseudograph: multiple edges and loops allowed

Graphs, Zeta Functions, Diameters, and Cospectrality

1 Variations of the Traveling Salesman Problem

Theorem 2.9: nearest addition algorithm

GRAPHS, GRAPH MODELS, GRAPH TERMINOLOGY, AND SPECIAL TYPES OF GRAPHS

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

Vertex Magic Total Labelings of Complete Graphs 1

The University of Sydney MATH2969/2069. Graph Theory Tutorial 2 (Week 9) 2008

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

On the Partial Sum of the Laplacian Eigenvalues of Abstract Simplicial Complexes

Problem Set 1. Solution. CS4234: Optimization Algorithms. Solution Sketches

Chapter 3 Trees. Theorem A graph T is a tree if, and only if, every two distinct vertices of T are joined by a unique path.

Treewidth and graph minors

Introduction to Graphs

Edge-minimal graphs of exponent 2

MAS 341: GRAPH THEORY 2016 EXAM SOLUTIONS

by conservation of flow, hence the cancelation. Similarly, we have

Lecture 1: An Introduction to Graph Theory

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Planar Graphs 2, the Colin de Verdière Number

Graphs. Introduction To Graphs: Exercises. Definitions:

Trees. 3. (Minimally Connected) G is connected and deleting any of its edges gives rise to a disconnected graph.

Title Edge-minimal graphs of exponent 2

1 Undirected Vertex Geography UVG

THE GROUP OF SYMMETRIES OF THE TOWER OF HANOI GRAPH

31.6 Powers of an element

On the positive semidenite polytope rank

Lecture 10,11: General Matching Polytope, Maximum Flow. 1 Perfect Matching and Matching Polytope on General Graphs

LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS

Assignment 1 Introduction to Graph Theory CO342

Two-graphs revisited. Peter J. Cameron University of St Andrews Modern Trends in Algebraic Graph Theory Villanova, June 2014

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

Testing Isomorphism of Strongly Regular Graphs

Solutions to In-Class Problems Week 4, Fri

UNCLASSIFIED , DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFC,;MATION STATION. ALEXANDRIA. VIRGINIA UNCLASSIFIED

Graph Theory: Starting Out

Vesa Halava Tero Harju. Walks on Borders of Polygons

2010 SMT Power Round

The Graphs of Triangulations of Polygons

Transcription:

Algebraic Graph Theory- Adjacency Matrix and Spectrum Michael Levet December 24, 2013 Introduction This tutorial will introduce the adjacency matrix, as well as spectral graph theory. For those familiar with Linear Algebra, the spectrum of a matrix denotes its eigenvalues and their algebraic multiplicities. Spectral Graph Theory deals with the eigenvalues and eigenvectors associated with the Adjacency and Laplacian matrices. Note that the Laplacian matrix will not be discussed in this tutorial. Adjacency Matrix The Adjacency Matrix describes the adjacency relation between two vertices; that is, whether or not there exists an edge that is incident to the two vertices. Let A be used to denote the adjacency matrix of a graph. If A describes a simple graph, then A ij = 1 if vertices v i and v j are adjacent. Otherwise, A ij = 0. If the simple graph is undirected, then the matrix is symmetric. That is, if v[sub]i[/sub] is adjacent to v j, then v j is adjacent to v i. This is, in fact, the statement of the Handshake Lemma. If the graph is directed, then the matrix is only symmetric if, for each vertex v i, the in-degree of v i and the out-degree of v i are the same. Weighted graphs can also be described more precisely using cost matrices. The cost matrix is defined the same way as an adjacency matrix. Rather than an indication of an adjacency, a numeric value is included in the cell to indicate the weight. If a cell has a 0, that means there is no edge connecting two vertices. Let s now consider some examples. 1

The Adjacency Matrix has application in counting the number of walks between two vertices of a given length. A walk is a sequence alternating between vertices and edges, starting and ending with vertices. The two vertices on either side of an edge are incident to that edge. Consider some examples based on the graph K 5 : Some examples of walks in K 5 include: v 1 v 2 v 5, which is a walk of length 2. v 2 v 4 v 2, which is also a walk of length 2. Now let s explore how the adjacency matrix can be used to count the number of walks of length n in a graph. This is done through matrix exponentiation. That is, let G be a graph and let A be the corresponding adjacency matrix. Then A n ij counts the number of walks of length n between vertices v i and v j. Consider again the example of K 5, counting the 2-walks. Let A be the adjacency matrix of K 5, with A 2 shown below. From A 2, it can be seen that for all walks that are not closed, there are three walks of length 2 in K 5. There are four closed walks of length 2 for each vertex in K 5. Let s examine what exactly is happening. Consider the case when the 2-walk is not closed. For the purpose of illustrating the concept, consider the 2-walks between vertices v 1 and v 2. Since K 5 is a simple graph, there are no loops or multiple edges between two vertices. Thus, there are only three vertices that can connect v 1 and v 2, without violating the length requirement. Proof that A n describes the number of n-walks in a graph The proof is by induction on n N. Consider the base case of n = 1. So A 1 = A. By definition, if vertices v i and v j are adjacent, then A ij = 1. Otherwise, A ij = 0. Thus, A counts the number of walks of length 1 in the graph. The theorem will be assumed true up to an arbitrary integer k, and proven true for the k + 1 case. By definition of matrix multiplication, A k+1 = A k A. By the inductive hypothesis, A k counts the number of k-walks in the graph, and A counts the number of walks of length 1 in the graph. Consider A k+1 ij = k x=1 Ak ix A xj. Thus, for each x, if A k ix has a non-zero value, then there exists at least one walk 2

of length k from vertex v i to v x. Similarly, if A xj = 1, then there exists an edge connecting vertices v x to v j. If both values are non-zero, there exists A k ix walks of length k + 1 from v i to v j with vertex x at as the kth vertex in the walk. Adding A ix for each x produces the total number of walks of length k + 1 from v i to v j. Thus, the k+1 case has been shown. Thus, by the principle of mathematical induction, A n describes the number of n-walks between two vertices in a graph. Spectral Graph Theory This section will briefly introduce the topic of Spectral Graph Theory. At this point, it is assumed that the reader is familiar with Eigentheory and Matrix Diagonalization. The spectrum of the graph provides numerous insights into graph properties, that are otherwise difficult to ascertain and prove. This section will discuss some of those properties. Trace of a Graph The first property to explore deals with the trace of the adjacency matrix. The trace of the matrix, denoted tr(m), is defined as the sum of the diagonal entries of a matrix. Consider an adjacency matrix shown above, all of which are simply graphs. It is easy to see that their traces are 0, as the diagonal entries are 0. So tr(a(k 5 )) = 0 since the diagonal entries are 0. The trace of a matrix can also be written as the sum of the eigenvalues for the matrix. Consider a diagonalizable matrix A, written as A = QDQ 1 (through diagonalization). The trace has the property that given a product of matrices, their cyclic permutations do not change the result. So tr(a) = tr(qdq 1 ) = tr(q 1 QD) = tr(dq 1 Q). It follows that since QQ 1 = Q 1 Q = I, that tr(a) = tr(d), which means that tr(a) is equal to the sum of the eigenvalues of A. This property that tr(a) = n i=1 λ i, where λ i is an eigenvalue of A, is useful in counting edges and triangles in a graph. Consider the Handshake Lemma, which states that the sum of the vertex degrees is equal to twice the number of edges ( i deg(v i) = 2E). The trace-eigenvalue property provides a combinatorial proof for the Handshake Lemma. Consider A 2, the square of the adjacency matrix of the given simple graph. The diagonal entries of A 2 are the closed 2-walks of the graph. The only way for a 2-walk on a simple graph to be closed is, starting at v i, go to an adjacent vertex v j, then return to v i. Thus, v i is adjacent to v j if and only if v j is adjacent to v i. So a closed 2-walk on v j counts the number of edges incident to v i (ie., the degree of v i ). Consequently, the diagonal entry of A 2 corresponding to the closed 2-walks of v j also counts the same edge incident to v j and v i, so the edge is counted twice. Thus, tr(a 2 ) = tr(d D) = n i=1 λ2 i = 2E. In other words, if λ i is an eigenvalue for A, then λ 2 i is an eigenvalue for A 2 and the sum of all the λ 2 i counts the number of edges in the graph. Through a similar argument, it is possible to count the number of triangles in a graph. Consider A 3, the cube of the adjacency matrix. Its diagonal entries describe the closed 3-walks of the graph. On a simple graph, these are restricted to triangles (C 3 ). Thus, tr(a 3 ) = n i=1 λ3 i = 6C 3. Here, each edge in a given triangle is double counted, in a similar manner as the edges. Thus, double counting three edges returns 6C 3. It should be noted that the trace-eigenvalue property does scale, but with a nuance. Certainly tr(a n ) for n > 3 counts the number of closed n-walks in the graph. However, there are multiple ways to achieve closed n-walks; whereas with closed walks of length 1-3, there is exactly one way to accomplish each on a simple graph. Characteristic Polynomial Just as the trace of the adjacency matrix provides tools for examining properties of the graph, the 3

characteristic polynomial in and of itself also provides the same information. Consider the characteristic polynomial of a graph, χ(λ) = det(a λi) = λ n + n 1 i=1 c iλ n i. From the calculation on the determinant, the c i coefficients are the sum of the ith principal minors of the matrix A. More exactingly, c i = ( 1) i j p j, where p j is the jth principal minor of A, whose corresponding principal matrix is of dimension i i. A principal minor is the determinant of a principal matrix, which is a square submatrix whose top-left element is on the diagonal of the parent matrix. Additional rows and columns are removed from the parent matrix in the formation of a principal matrix. Let s explore exactly how the principal minors behave with respect to adjacency matrices (of simple graphs). On the surface, it looks like a lot of linear algebra without a lot of graph theory. While the linear algebra is definitely there, the graph theory is underneath the surface. Consider an example with the graph C 4. Below is C 4, along with its adjacency matrix and distinct 2 2 principal matrices. It is easy to see the 1 1 principal minors are all 0 s, as the diagonal entries are 0 s. So clearly c 1 = tr(a) = 0 for simple graphs. Now consider the 2 2 principal minors of C 4. There are six 2x2 principal matrices, with the distinct ones listed above. The first 2 2 principal matrix above is noted to indicate an adjacency. Let s examine why this is. The first time this principal matrix appear is with A 11, keeping the second column. Thus, from the image, it is easy to see that there is an edge between vertices v 1 and v 2. The given principal matrix is also the adjacency matrix of P 2, the Path graph on two vertices, or an edge with two vertices. Thus, clearly, if there is no path of length one between two vertices, then there is no adjacency. Hence, the other two 2 2 principal matrices clearly cannot indicate an adjacency, or an edge, between the two selected vertices. Thus, the sum of the 2 2 principal minors counts the edges in the graph, with c 2 = E(G). Using C 4 as an example, there are four edges, indicated by the principal matrices starting at A 11 keeping the second row and second and third columns; A 22 keeping the fourth row and fourth column; and A 33 keeping the fourth row and fourth column. The idea is the same in looking for triangles in a graph. Simply look for the 3 3 principal matrices which are the same as the adjacency matrix for C 3, which is shown below. The determinant of the adjacency matrix of C 3 is 2. All other 3 3 principal matrices have a determinant of 0. Thus, adding 4

up all the 3 3 principal minors produces the twice the count for the number of triangles in the graph. More exactingly, c 3 = 2C 3. There are no triangles in C 4, so c 3 = 0 in the characteristic polynomial of C 4. Adjacency Matrix of C 3 : Conclusion This tutorial served as a brief introduction into the broad topic of spectral graph theory. Hopefully it has provided a better appreciation and understanding of the various graph properties that can be explored through use of the graph s spectrum. 5