Unmanned Aerial Vehicles

Similar documents
Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Unmanned Aerial Vehicles

Real-Time Embedded Control System for VTOL Aircrafts: Application to stabilize a quad-rotor helicopter

IMPROVING QUADROTOR 3-AXES STABILIZATION RESULTS USING EMPIRICAL RESULTS AND SYSTEM IDENTIFICATION

UAV Autonomous Navigation in a GPS-limited Urban Environment

Introduction to Autonomous Mobile Robots

Optic flow-based vision system for autonomous 3D localization and control of small aerial vehicles

Design and Development of Unmanned Tilt T-Tri Rotor Aerial Vehicle

UNIVERSAL CONTROL METHODOLOGY DESIGN AND IMPLEMENTATION FOR UNMANNED VEHICLES. 8 th April 2010 Phang Swee King

Dynamical Modeling and Controlof Quadrotor

Dynamic IBVS Control of an Underactuated UAV

Design and Analysis of Quadcopter Classical Controller Ahmed H. Ahmed*, Ahmed N. Ouda*, Ahmed M.Kamel*, Y. Z. Elhalwagy*

Modeling, Parameter Estimation, and Navigation of Indoor Quadrotor Robots

Marker Based Localization of a Quadrotor. Akshat Agarwal & Siddharth Tanwar

Control of a quadrotor manipulating a beam (2 projects available)

Autonomous Navigation for Flying Robots

Three-dimensional Position and Velocity Regulation of a Quad-Rotorcraft Using Optical Flow

State Estimation for Continuous-Time Systems with Perspective Outputs from Discrete Noisy Time-Delayed Measurements

Unscented Kalman Filter for Vision Based Target Localisation with a Quadrotor

A Reactive Bearing Angle Only Obstacle Avoidance Technique for Unmanned Ground Vehicles

Motion estimation of unmanned marine vehicles Massimo Caccia

Estimation of Altitude and Vertical Velocity for Multirotor Aerial Vehicle using Kalman Filter

Development of a Ground Based Cooperating Spacecraft Testbed for Research and Education

Autonomous Landing of an Unmanned Aerial Vehicle

Elective in Robotics. Quadrotor Modeling (Marilena Vendittelli)

Navigational Aids 1 st Semester/2007/TF 7:30 PM -9:00 PM

POTENTIAL ACTIVE-VISION CONTROL SYSTEMS FOR UNMANNED AIRCRAFT

Visual Servoing for Tracking Features in Urban Areas Using an Autonomous Helicopter

Construction, Modeling and Automatic Control of a UAV Helicopter

State Space System Modeling of a Quad Copter UAV

CAMERA GIMBAL PERFORMANCE IMPROVEMENT WITH SPINNING-MASS MECHANICAL GYROSCOPES

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Dynamic Modelling and Simulation of a Vectored Thrust Quad-Rotor

Mobile Robotics. Mathematics, Models, and Methods

A Control System for an Unmanned Micro Aerial Vehicle

Non-symmetric membership function for Fuzzy-based visual servoing onboard a UAV

ROBOT TEAMS CH 12. Experiments with Cooperative Aerial-Ground Robots

EE4001: Final Year Project Continuous Assessment 1

Comparison of PID and LQR controllers on a quadrotor helicopter

Strapdown Inertial Navigation Technology

Quadrotor Control Using Dual Camera Visual Feedback

Low Cost solution for Pose Estimation of Quadrotor

FUZZY LOGIC BASED QUADROTOR FLIGHT CONTROLLER

Autonomous Mobile Robot Design

Lecture: Autonomous micro aerial vehicles

A novel approach to motion tracking with wearable sensors based on Probabilistic Graphical Models

Table of Contents Introduction Historical Review of Robotic Orienting Devices Kinematic Position Analysis Instantaneous Kinematic Analysis

EE5110/6110 Special Topics in Automation and Control. Autonomous Systems: Unmanned Aerial Vehicles. UAV Platform Design

Three Nested Kalman Filters-Based Algorithm for Real-Time Estimation of Optical Flow, UAV Motion and Obstacles Detection

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Survey on Computer Vision for UAVs: Current Developments and Trends

Pose Estimation and Control of Micro-Air Vehicles

Design & Optimization Fuzzy Logic Controller for General Helicopter Model

Parallel Robots. Mechanics and Control H AMID D. TAG HI RAD. CRC Press. Taylor & Francis Group. Taylor & Francis Croup, Boca Raton London NewYoric

Visual SLAM for small Unmanned Aerial Vehicles

Feed Forward Parameter Identification for Precise Periodic Quadrocopter Motions

Strapdown inertial navigation technology

Disturbance Rejection in Multi-Rotor Unmanned Aerial Vehicles Using a Novel Rotor Geometry

Anibal Ollero Professor and head of GRVC University of Seville (Spain)

Perspective Sensing for Inertial Stabilization

EE6102 Multivariable Control Systems

An Experimental Study of the Autonomous Helicopter Landing Problem

Adaptive back-stepping control applied on octocopter under recoil disturbance

Lecture 13 Visual Inertial Fusion

LibrePilot GCS Tutorial

Autonomous Indoor Hovering with a Quadrotor

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor

QBALL-X4 QUICK START GUIDE

Autonomous Control of Tilt Tri-Rotor Unmanned Aerial Vehicle

Optic Flow-Based Control and Navigation of Mini Aerial Vehicles

Implementation of Decentralized Formation Control on Multi-Quadrotor Systems

Live Metric 3D Reconstruction on Mobile Phones ICCV 2013

Chapter 13. Vision Based Guidance. Beard & McLain, Small Unmanned Aircraft, Princeton University Press, 2012,

PPGEE Robot Dynamics I

Chapters 1 9: Overview

Presentation Outline

Tightly-Integrated Visual and Inertial Navigation for Pinpoint Landing on Rugged Terrains

Designing Simple Indoor Navigation System for UAVs

The AZUR project. Development of autonomous navigation software for urban operation of VTOL-type UAV. Yoko Watanabe

Servosila Robotic Heads

Vision-Aided Inertial Navigation for Flight Control

Vision-Aided Inertial Navigation for Flight Control

N. Gachadoit 1, A. El Hadri 2, A. Benallegue 2, A. Seba 3, B.Vidalie 1

UAV Position and Attitude Sensoring in Indoor Environment Using Cameras

Vision-based GNC and Decision Making for an Unmanned Helicopter. presented by Frank Thielecke

Autonomous navigation in industrial cluttered environments using embedded stereo-vision

Guidance and Trajectory Following of an Autonomous Vision-Guided Micro QuadRotor

Analysis of Extended Movement Models for Autonomous Quadrocopters

Principles of Robot Motion

Methods for Localization and Mapping Using Vision and Inertial Sensors

Attitude Control of Multicopter R. Baranek 1, F. Solc 1 1

An Experimental Exploration of Low-Cost Solutions for Precision Ground Vehicle Navigation

Line of Sight Stabilization Primer Table of Contents

Autonomous Mini-UAV for Indoor Flight with Embedded On-board Vision Processing as Navigation System

GPS denied Navigation Solutions

Toward Real-Time Visually Augmented Navigation for Autonomous Search and Inspection of Ship Hulls and Port Facilities

arxiv: v3 [cs.ro] 14 Mar 2017

Quadrotor Autonomous Approaching and Landing on a Vessel Deck

Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

A Vision-Guided Autonomous Quadrotor in An Air-Ground Multi-Robot System

Transcription:

Unmanned Aerial Vehicles Embedded Control Edited by Rogelio Lozano WILEY

Table of Contents Chapter 1. Aerodynamic Configurations and Dynamic Models 1 Pedro CASTILLO and Alejandro DZUL 1.1. Aerodynamic configurations 1 1.2. Dynamic models 6 1.2.1. Newton-Euler approach 7 1.2.2. Euler-Lagrange approach 9 1.2.3. Quaternion approach 10 1.2.4. Example: dynamic model of a quad-rotor rotorcraft 13 1.3. Bibliography 20 Chapter 2. Nested Saturation Control for Stabilizing the PVTOL Aircraft 21 Isabelle FANTONI and Amparo PALOMINO 2.1. Introduction 21 2.2. Bibliographical study 22 2.3. The PVTOL aircraft model 24 2.4. Control strategy 25 2.4.1. Control of the vertical displacement у 26 2.4.2. Control of the roll angle 9 and the horizontal displacement x... 27 2.4.2.1. Boundedness of 9 27 2.4.2.2. Boundedness of 9 28 2.4.2.3. Boundedness of x 29 2.4.2.4. Boundedness of ж 30 2.4.2.5. Convergence of 9, 9, x and x to zero 32 2.5. Other control strategies for the stabilization of the PVTOL aircraft... 33 2.6. Experimental results 33 2.7. Conclusions 38 2.8. Bibliography 38

vi Unmanned Aerial Vehicles Chapter 3. Two-Rotor VTOL Mini UAV: Design, Modeling and Control. 41 Juan ESCARENO, Sergio SALAZAR and Eduardo RONDON 3.1. Introduction 41 3.2. Dynamic model 43 3.2.1. Kinematics 44 3.2.2. Dynamics 44 3.2.2.1. Forces acting on the vehicle 45 3.2.2.2. Torques acting on the vehicle 47 3.2.3. Model for control analysis 48 3.3. Control strategy 48 3.3.1. Altitude control 49 3.3.2. Horizontal motion control 49 3.3.3. Attitude control 50 3.4. Experimental setup 51 3.4.1. Onboard flight system (OFS) 52 3.4.2. Outboard visual system 53 3.4.2.1. Position 54 3.4.2.2. Optical flow 54 3.4.3. Experimental results 55 3.5. Concluding remarks 56 3.6. Bibliography 56 Chapter 4. Autonomous Hovering of a Two-Rotor UAV 59 Anand SANCHEZ, Juan ESCARENO and Octavio GARCIA 4.1. Introduction 59 4.2. Two-rotor UAV 60 4.2.1. Description 61 4.2.2. Dynamic model 61 4.2.2.1. Translational motion 64 4.2.2.2. Rotational motion 64 4.2.2.3. Reduced model 66 4.3. Control algorithm design 67 4.4. Experimental platform 73 4.4.1. Real-time PC-control system (PCCS) 73 4.4.1.1. Sensors and communication hardware 73 4.4.2. Experimental results 74 4.5. Conclusion 76 4.6. Bibliography 77 Chapter 5. Modeling and Control of a Convertible Plane UAV 79 Octavio GARCIA, Juan ESCARENO and Victor ROSAS 5.1. Introduction 79

Contents vii 5.2. Convertible plane UAV 80 5.2.1. Vertical mode 80 5.2.2. Transition maneuver 81 5.2.3. Horizontal mode 81 5.3. Mathematical model 81 5.3.1. Translation of the vehicle 82 5.3.2. Orientation of the vehicle 83 5.3.2.1. Euler angles 83 5.3.2.2. Aerodynamic axes 83 5.3.2.3. Torques 84 5.3.3. Equations of motion 85 5.4. Controller design 86 5.4.1. Hover control 86 5.4.1.1. Axial system 88 5.4.1.2. Longitudinal system 89 5.4.1.3. Lateral system 93 5.4.1.4. Simulation and experimental results 94 5.4.2. Transition maneuver control 96 5.4.3. Horizontal flight control 102 5.5. Embedded system 106 5.5.1. Experimental platform 106 5.5.2. Microcontroller 108 5.5.3. Inertial measurement unit (IMU) 109 5.5.4. Sensor fusion 109 5.6. Conclusions and future works Ill 5.6.1. Conclusions Ill 5.6.2. Future works 112 5.7. Bibliography 112 Chapter 6. Control of Different UAVs with Tilting Rotors 115 Juan ESCARENO, Anand SANCHEZ and Octavio GARCIA 6.1. Introduction 115 6.2. Dynamic model of a flying VTOL vehicle 116 6.2.1. Kinematics 117 6.2.2. Dynamics 118 6.3. Attitude control of a flying VTOL vehicle 119 6.4. Triple tilting rotor rotorcraft: Delta 119 6.4.1. Kinetics of Delta 120 6.4.2. Torques acting on the Delta 121 6.4.3. Experimental setup 123 6.4.3.1. Avionics 124 6.4.3.2. Sensor module (SM) 124 6.4.3.3. On-board microcontroller (OBM) 125

viii Unmanned Aerial Vehicles 6.4.3.4. Data acquisition module (DAQ) 125 6.4.4. Experimental results 125 6.5. Single tilting rotor rotorcraft: T-Plane 127 6.5.1. Forces and torques acting on the vehicle 127 6.5.2. Experimental results 129 6.5.2.1. Experimental platform 129 6.5.2.2. Experimental test 130 6.6. Concluding remarks 131 6.7. Bibliography 132 Chapter 7. Improving Attitude Stabilization of a Quad-Rotor Using Motor Current Feedback 133 Anand SANCHEZ, Luis GARCIA-CARRILLO, Eduardo RONDON and Octavio GARCIA 7.1. Introduction 133 7.2. Brushless DC motor and speed controller 134 7.3. Quad-rotor 138 7.3.1. Dynamic model 139 7.4. Control strategy 140 7.4.1. Attitude control 140 7.4.2. Armature current control 142 7.5. System configuration 144 7.5.1. Aerial vehicle 145 7.5.2. Ground station 146 7.5.3. Vision system 147 7.6. Experimental results 148 7.7. Concluding remarks 150 7.8. Bibliography 151 Chapter 8. Robust Control Design Techniques Applied to Mini-Rotorcraft UAV: Simulation and Experimental Results 153 Jose Alfredo GUERRERO, Gerardo ROMERO, Rogelio LOZANO and Efrain ALCORTA 8.1. Introduction 153 8.2. Dynamic model 155 8.3. Problem statement 156 8.4. Robust control design 158 8.5. Simulation and experimental results 160 8.5.1. Simulations 160 8.5.2. Experimental platform 162 8.6. Conclusions 164 8.7. Bibliography 164

Contents ix Chapter 9. Hover Stabilization of a Quad-Rotor Using a Single Camera 167 Hugo ROMERO and Sergio SALAZAR 9.1. Introduction 167 9.2. Visual servoing 168 9.2.1. Direct visual servoing 169 9.2.2. Indirect visual servoing 169 9.2.3. Position based visual servoing 170 9.2.4. Image-based visual servoing 171 9.2.5. Position-image visual servoing 172 9.3. Camera calibration 173 9.3.1. Two-plane calibration approach 173 9.3.2. Homogenous transformation approach 175 9.4. Pose estimation 177 9.4.1. Perspective of n-points approach 177 9.4.2. Plane-pose-based approach 179 9.5. Dynamic model and control strategy 181 9.6. Platform architecture 183 9.7. Experimental results 184 9.7.1. Camera calibration results 185 9.7.2. Testing phase 185 9.7.3. Real-time results 185 9.8. Discussion and conclusions 186 9.9. Bibliography 188 Chapter 10. Vision-Based Position Control of a Two-Rotor VTOL Mini UAV 191 Eduardo RONDON, Sergio SALAZAR, Juan ESCARENO and Rogelio LOZANO 10.1. Introduction 191 10.2. Position and velocity estimation 193 10.2.1. Inertial sensors 193 10.2.2. Visual sensors 193 10.2.2.1. Position 193 10.2.2.2. Optical flow (OF) 195 10.2.3. Kalman-based sensor fusion 198 10.3. Dynamic model 200 10.4. Control strategy 203 10.4.1. Frontal subsystem (S camy ) 203 10.4.2. Lateral subsystem (S cam J 204 10.4.3. Heading subsystem (S^) 204 10.5. Experimental testbed and results 204 10.5.1. Experimental results 206 10.6. Concluding remarks 207

x Unmanned Aerial Vehicles 10.7. Bibliography 207 Chapter 11. Optic Flow-Based Vision System for Autonomous 3D Localization and Control of Small Aerial Vehicles 209 Farid KENDOUL, Isabelle FANTONI and Kenzo NONAMi 11.1. Introduction 209 11.2. Related work and the proposed 3NKF framework 210 11.2.1. Optic flow computation 210 11.2.2. Structure from motion problem 212 11.2.3. Bioinspired vision-based aerial navigation 213 11.2.4. Brief description of the proposed framework 213 11.3. Prediction-based algorithm with adaptive patch for accurate and efficient optic flow calculation 215 11.3.1. Search center prediction 215 11.3.2. Combined block-matching and differential algorithm 216 11.3.2.1. Nominal OF computation using a block-matching algorithm (BMA) 216 11.3.2.2. Subpixel OF computation using a differential algorithm (DA) 217 11.4. Optic flow interpretation for UAV 3D motion estimation and obstacles detection (SFM problem) 219 11.4.1. Imaging model 219 11.4.2. Fusion of OF and angular rate data 220 11.4.3. EKF-based algorithm for motion and structure estimation... 221 11.5. Aerial platform description and real-time implementation 223 11.5.1. Quadrotor-based aerial platform 223 11.5.2. Real-time software 225 11.6. 3D flight tests and experimental results 227 11.6.1. Experimental methodology and safety procedures 227 11.6.2. Optic flow-based velocity control 227 11.6.3. Optic flow-based position control 229 11.6.4. Fully autonomous indoor flight using optic flow 231 11.7. Conclusion and future work 233 11.8. Bibliography 234 Chapter 12. Real-Time Stabilization of an Eight-Rotor UAV Using Stereo Vision and Optical Flow 237 Hugo ROMERO, Sergio SALAZAR and Jose GOMEZ 12.1. Stereo vision 238 12.2. 3D reconstruction 242 12.3. Keypoints matching algorithm 245 12.4. Optical flow-based control 245 12.4.1. Lucas-Kanade approach 247

Contents xi 12.5. Eight-rotor UAV 249 12.5.1. Dynamic model 249 12.5.1.1. Translational subsystem model 251 12.5.1.2. Rotational subsystem model 255 12.5.2. Control strategy 257 12.5.2.1. Attitude control 257 12.5.2.2. Horizontal displacements and altitude control 258 12.6. System concept 259 12.7. Real-time experiments 260 12.8. Bibliography 263 Chapter 13. Three-Dimensional Localization 265 Juan Gerardo CASTREJON-LOZANO and Alejandro DZUL 13.1. Kaiman filters 266 13.1.1. Linear Kaiman filter 266 13.1.2. Extended Kaiman filter 269 13.1.3. Unseen ted Kaiman filter 270 13.1.3.1. UKF algorithm 271 13.1.3.2. Additive UKF algorithm 274 13.1.3.3. Square-root UKF algorithm 275 13.1.3.4. Additive square-root UKF algorithm 277 13.1.4. Spherical simplex sigma-point Kaiman filters 278 13.1.4.1. Spherical simplex sigma-point approach 278 13.1.4.2. Spherical simplex UKF algorithm 280 13.1.4.3. Additive SS-UKF Algorithm 282 13.1.4.4. Square-root SS-UKF algorithm 283 13.1.4.5. Square-root additive SS-UKF algorithm 284 13.2. Robot localization 285 13.2.1. Types of localization 285 13.2.1.1. Dead reckoning (navigation systems) 285 13.2.1.2. A priori map-based localization 285 13.2.1.3. Simultaneous localization and mapping (SLAM) 286 13.2.2. Inertial navigation theoretical framework 286 13.2.2.1. Navigation equations in the navigation frame 287 13.3. Simulations 289 13.3.1. Quad-rotor helicopter 289 13.3.2. Inertial navigation simulations 290 13.3.3. Conclusions 296 13.4. Bibliography 297 Chapter 14. Updated Flight Plan for an Autonomous Aircraft in a Windy Environment 301 Yasmina BESTAOUI and Fouzia LAKHLEF 14.1. Introduction. 301

xii Unmanned Aerial Vehicles 14.2. Modeling 304 14.2.1. Down-draft modeling 304 14.2.2. Translational dynamics 305 14.3. Updated flight planning 308 14.3.1. Basic problem statement 310 14.3.2. Hierarchical planning structure 311 14.4. Updates of the reference trajectories: time optimal problem 312 14.5. Analysis of the first set of solutions SI 315 14.6. Conclusions 323 14.7. Bibliography 323 List of Authors 327 Index 331