Probabilistic Model for Dynamic Signature Verification System

Similar documents
A Combined Method for On-Line Signature Verification

Off-line Signature Verification Using Neural Network

Online Signature Verification Technique

Histogram-based matching of GMM encoded features for online signature verification

Enhanced Online Signature Verification System

NOVATEUR PUBLICATIONS INTERNATIONAL JOURNAL OF INNOVATIONS IN ENGINEERING RESEARCH AND TECHNOLOGY [IJIERT] ISSN: VOLUME 2, ISSUE 1 JAN-2015

A Study on the Consistency of Features for On-line Signature Verification

OFFLINE SIGNATURE VERIFICATION USING SUPPORT LOCAL BINARY PATTERN

On-line Signature Verification on a Mobile Platform

Evaluation of Brute-Force Attack to Dynamic Signature Verification Using Synthetic Samples

Repositorio Institucional de la Universidad Autónoma de Madrid.

Offline Signature Verification & Recognition Using Angle Based Feature Extraction & Neural Network Classifier

An Application of the 2D Gaussian Filter for Enhancing Feature Extraction in Off-line Signature Verification

arxiv: v1 [cs.cv] 19 Jan 2019

Off-line Signature Verification Using Writer-Independent Approach

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 1.852

On the effects of sampling rate and interpolation in HMM-based dynamic signature verification

User Signature Identification and Image Pixel Pattern Verification

Retrieval of Offline Handwritten Signatures

Finger or Stylus: Their Impact on the Performance of Online Signature Verification Systems

Signature Recognition by Pixel Variance Analysis Using Multiple Morphological Dilations

ONLINE SIGNATURE VERIFICATION TECHNIQUES

Invarianceness for Character Recognition Using Geo-Discretization Features

OFFLINE SIGNATURE VERIFICATION

IMPLEMENTATION OF ONLINE SIGNATURE VERIFICATION USING MATLAB AND GSM

Offline Handwritten Signatures Classification Using Wavelet Packets and Level Similarity Based Scoring

Off-line signature verification: a comparison between human and machine performance

Off-line Signature Verification Using Contour Features

Biometric Online Signature Verification with added Security of unique ID

Feature Selection by User Specific Feature Mask on a Biometric Hash Algorithm for Dynamic Handwriting

Offline Signature Verification using Grid based and Centroid based Approach

RULE BASED SIGNATURE VERIFICATION AND FORGERY DETECTION

LEKHAK [MAL]: A System for Online Recognition of Handwritten Malayalam Characters

Design of Digital Signature Verification Algorithm using Relative Slopemethod

Automatic Static Signature Verification Systems: A Review

Offline Signature Recognition & Verification using Neural Network

HANDWRITTEN SIGNATURE VERIFICATION USING NEURAL NETWORK & ECLUDEAN APPROACH

STUDY OF POSSIBILITY OF ON-PEN MATCHING FOR BIOMETRIC HANDWRITING VERIFICATION

Spatial Topology of Equitemporal Points on Signatures for Retrieval

Incorporating Touch Biometrics to Mobile One-Time Passwords: Exploration of Digits

Security Evaluation of Online Signature Verification System using Webcams

Online Handwritten Signature Verification System

SVM-DSmT Combination for Off-Line Signature Verification

Hand-based biometrics and Signature Verification

Online Text-Independent Writer Identification Based on Stroke s Probability Distribution Function

Multimodal Fusion Vulnerability to Non-Zero Effort (Spoof) Imposters

Offline Signature Verification Using Local Interest Points and Descriptors*

Shape Feature Extraction for On-line Signature Evaluation

Robust line segmentation for handwritten documents

HANDWRITTEN SIGNATURE VERIFICATION BASED ON THE USE OF GRAY LEVEL VALUES

A semi-incremental recognition method for on-line handwritten Japanese text

An Efficient on-line Signature Verification System Using Histogram Features

A study of the Graphical User Interfaces for Biometric Authentication System

Biometrics Technology: Hand Geometry

COPY-MOVE FORGERY DETECTION USING DYADIC WAVELET TRANSFORM. College of Computer and Information Sciences, Prince Norah Bint Abdul Rahman University

A Signature Comparing Android Mobile Application Utilizing Feature Extracting Algorithms

Writer Authentication Based on the Analysis of Strokes

Signature Identification using Dynamic and HMM Features and KNN Classifier

A Fast Personal Palm print Authentication based on 3D-Multi Wavelet Transformation

Gait Recognition using GEl and Pattern Trace Transform

Off-Line Signature Verification based on Ordered Grid Features: An Evaluation

A Study on Chinese Carbon-Signature Recognition

Face Detection and Recognition in an Image Sequence using Eigenedginess

Dynamic Signature Verification System Design Using Stroke Based Feature Extraction Algorithm

arxiv: v2 [cs.cv] 19 Aug 2015

Online Sign-mark Conformation using Electronic Sign-mark Application

HMM-Based Handwritten Amharic Word Recognition with Feature Concatenation

Learning-Based Candidate Segmentation Scoring for Real-Time Recognition of Online Overlaid Chinese Handwriting

Feature-level Fusion for Effective Palmprint Authentication

Online Handwritten Signature Verification 2

Offline Signature Verification using Feature Point Extraction

Online Signature Verification: A Review

Integrating Palmprint and Fingerprint for Identity Verification

Supriya M. H. Department of Electronics, Cochin University of Science and Technology, Cochin, India

Palmprint Recognition Using Transform Domain and Spatial Domain Techniques

5. Signature Recognition & Keystroke Dynamics

Performance Analysis of Fingerprint Identification Using Different Levels of DTCWT

Online Signature Verification Based on Biometric Features

Online Slant Signature Algorithm Analysis

Recognition of online captured, handwritten Tamil words on Android

Signature Verification using a "Siamese" Time Delay Neural Network

System Identification Approach in Signature verification

Event Based Offline Signature Modeling Using Grid Source Probabilistic Coding

Spotting Words in Latin, Devanagari and Arabic Scripts

6. Multimodal Biometrics

Face Alignment Under Various Poses and Expressions

Hybrid Biometric Person Authentication Using Face and Voice Features

Preprocessing and Feature Selection for Improved Sensor Interoperability in Online Biometric Signature Verification

Global Journal of Engineering Science and Research Management

ISSN: [Mukund* et al., 6(4): April, 2017] Impact Factor: 4.116

CHAPTER 1 INTRODUCTION

Enhanced Way of Biometric Signature Verification

Online Text-independent Writer Identification Based on Temporal Sequence and Shape Codes

DYNAMIC SIGNATURE VERIFICATION FOR PORTABLE DEVICES

Customized Data Filtering For Mobile Signature Verification

Gaussian Mixture Model Coupled with Independent Component Analysis for Palmprint Verification

Palm Vein Verification System Based on SIFT Matching

Rotation Invariant Finger Vein Recognition *

Embedded Palmprint Recognition System on Mobile Devices

Exploring Similarity Measures for Biometric Databases

Transcription:

Research Journal of Applied Sciences, Engineering and Technology 3(): 3-34, SSN: 4-7467 Maxwell Scientific Organization, Submitted: August 6, Accepted: September 7, Published: November 5, Probabilistic Model for Dynamic Signature Verification System Chai Tong Yuen, Wai Loon Lim, ChingSeong Tan, Bok-Min Goi, Xin Wang and 3 Jee-Hou Ho University Tunku Abdul Rahman (UTAR), 533 Malaysia Multimedia University, 63 Malaysia 3 The University of Nottingham, Malaysia Abstract: This study has proposed the algorithm for signature verification system using dynamic parameters of the signature: pen pressure, velocity and position. The system is proposed to read, analyze and verify the signatures from the SUSig online database. Firstly, the testing and reference samples will have to be normalized, re-sampled and smoothed through pre-processing stage. n verification stage, the difference between reference and testing signatures will be calculated based on the proposed thresholded standard deviation method. A probabilistic acceptance model has been designed to enhance the performance of the verification system. The proposed algorithm has reported False Rejection Rate () of 4.8% and False Acceptance Rate (FAR) of.64%. Meanwhile, the classification rate of the system is around 97%. Key words: Dynamic, signature verification, standard deviation, threshold and probabilistic model, velocity NTRODUCTON Signatures are composed of special character and flourishes and therefore most of the time they can be unreadable. Also, intrapersonal variations and interpersonal differences make it necessary to analyze them as complete images but not as letters and words put together. Signatures have been the primary mechanism both for authentication and authorization in legal documentation in recent years. Based on different applications, signature verification system can be operated in two different modes (Plamondon and Srihari,, Seiler et al., 996); online and offline mode. n the online mode, the signature verification is dealing with the instant inputs from the system such as credit card verifier. For offline mode, the verification is done on the recorded signatures such as bank s document verification (Dimauro et al., 997, Generally, signature verification system can be categorised into two types: dynamic and static. The dynamic signature verification system is dealing with signal processing while the static signature verification system is more on image processing. Some techniques applied in static signature verification systems are neural networks (Bajaj and Chaudhury, 997; Huang and Yan, 997; Karouni et al., ), model based approaches (Huang and Yan, ; Wen et al., 9) and wavelets transform (Deng et al., 997). Meanwhile, Dynamic Time Warping (DTW) (Fenton et al., 6) and Gaussian Mixture Modelling (GMM) methods (Miguel-Hurtado et al., 7, 8) have been introduced for dynamic automated signature verification system. Basically, DTW is used in pre-processing to remove the intrinsic variability from user signature by aligning the acquired signal. GMM is used to model the probabilistic distribution of the set of pseudo-distances and to calculate the likelihood ratio between the sample and reference signature. There are other approaches which based on the concept of filters (Tanaka and Bargiela, 5). Firstly, global features of the signature, such as average velocity are considered through Euclidian distance. n the second filter, local features are considered. Strokes are segmented using the minima of the velocity and encoded before comparing them using DTW (Miguel-Hurtado et al., 7, 8) and signer-specific thresholds. On the other hand, Linear Prediction Coding (LPC) cestrum and Neural Networks (Wu et al., 997) are proposed in the dynamic signature verification system. LPC is used in the preprocessing stage and its coefficients are used as the input to the neural networks. The neural networks (Mailah and Han, 8) mostly used in the verification process. Besides that, performance could be improved by fusing static and dynamic signature verification techniques (Alonso-Fernandez et al., 9). n this research, the signatures will be pre-processed through normalization and re-sampling. A simple and efficient method, standard deviation has been proposed for the verification stage with estimated threshold as the condition. Finally, a probabilistic based signature acceptance criterion has been designed to refine the verification results. Corresponding Author: Chai Tong Yuen, University Tunku Abdul Rahman (UTAR), 533 Malaysia 3

MATERALS AND METHODS The overview of the system is shown in Fig.. The SUSig Online Databasem (Sabanci University, 4) consists of two parts, namely visual and blind sub-corpus. Visual sub-corpus was collected using nterlink Elec. epad nk signature tablet with built-in LCD screen while blind sub-corpus was collected using Wacom Graphire pressure sensitive tablet. For each subject there are genuine and forgery signatures. Genuine signatures were collected in two different sessions. The proposed system database contains 5 genuine signers and 5 forgery signers from the SUSig database. Each signer will produce samples of signature. Thus, there are 5 signatures in total for this experiment. For each signature, the information from three dynamic features such as x- coordinate, y-coordinate, and pressure, p have been used in this study. Meanwhile, the velocity, v is derived by using differentiation. The training samples are shown in Fig.. Samples for reference signature Sample (S): x, y, p, v Sample (S): x, y, p, v Sample 3 (S3): x3, y3, p3, v3 Sample 4 (S4): x4, y4, p4, v4 Sample 5 (S5): x5, y5, p5, v5 Res. J. Appl. Sci. Eng. Technol., 3(): 3-34, Sample for testing signature Sample T (S6): xt, yt, pt, vt Pre-processing: During the pre-processing stage, the input signature will undergo normalisation and resampling. The main purpose of normalization is to scale all the values into the range of zero to one as shown in Fig. 3. Linear scaling is used for the normalization of the vector (S) which represents signature parameters such as x-coordinate (x), y-coordinate (y), pressure (p) and velocity (v). S = S min( S) max( S) min( S) () The Maximum (max) and minimum (min) values in the vector S are the global maximum and minimum points for the normalized signal. The main reason for re-sampling is to sample the wavelength of the signature into the desired wavelength further processing. The wavelength of the signature is directly affected by the number of recorded data during the signing process. The more data is recorded, the longer the wavelength is. Thus, each signature might have different wavelengths. n order to compare them equally, both data needs to be re-sampled and smoothen as shown in Fig. 4. Fig.: System overview.4..8.6.4.. 4 6 8 4 6 8 Fig. : Training samples X 4.9.8.7.6.5.4.3.. 4 6 8 4 6 8 Fig. 3: Normalized signatures 3

Res. J. Appl. Sci. Eng. Technol., 3(): 3-34,.7.6.5.4.4..8.6.4.. 4 6 8 4 6 8 Fig. 4: Resampled samples.3.. 4 6 8 4 6 8 Fig. 5: Difference in magnitude between reference and sampled signals A total of five signatures have been re-sampled to the same wavelength. Let ref be the average wavelength of the reference signature, + + 3 + 4 + 5 ref = 5 () T(initial) be the wavelength of the testing signature and l T(final) is the wavelength of the re-sampled testing signature, T( final) = T( initial) T( initial) (3) After the re-sampling process, the reference signal, S ref can now be constructed as, S ref = ref S + S + S + S + S 3 4 5 5 ( T ref ) d = S S (4) (5) (a) 9 8 7 6 5 X- coordinate 4 3....3.4.5.6.7.8.9. (b) (d) (c) 9 8 7 6 5 y- coordinate 4 3....3.4.5.6.7.8.9. 9 8 7 6 5 Velocity 4 3....3.4.5.6.7.8.9. 9 8 7 6 5 (a) (b) (c) Pressure 4 3....3.4.5.6.7.8.9. (d) Fig. 6: & FAR for (a) X-coordinate, (b) Y-coordinate, (c) Velocity, and (d) Pressure 3

Res. J. Appl. Sci. Eng. Technol., 3(): 3-34, Table : False rejection rate TH X Y P V.......8.4.8....4.8 3..3 3..8.6 4..4 6.8.8.4 6.8.5.8 8. 8.4.8.6 3.6 7.6 8.8 6.4.7 44.4 3.8 37. 3.6.8 66.4 56.4 65. 8.4.9 88.4 84.8 94.8 58.4..... Table : False acceptance rate TH X Y P V. 5.94 88.99 95.98 78.6. 39.68 76.3 93.33 7.3. 8. 55. 89.8 66.9.3 8.98 3.3 8.44 6.36.4.43.43 68.6 56.98.5 5.69 3.5 48.34 53.65.6.98.84 5.96 48.78.7.5.7 8. 4.78.8.7.7.9 3.95.9...4...... Verification: n verification process, the difference between reference signature, S ref and testing signature, S T can be calculated by using standard deviation and compared it to the estimated threshold. f the difference between standard deviation, SD and estimated threshold is low, the signature will be accepted as the genuine signature. d = ( S S ) SD = T d ref ref (6) (7) where, d is the difference between reference and testing signatures as shown in Fig. 5. estimation: The purpose of doing this is to achieve lower FAR and. A good signature verification system should have a good balance on its sensitivity to the variation of the signature. First of all the standard deviation between the genuine reference signal and the genuine testing signals need to be collected for each parameter (x, y, p and v). Minimum and maximum standard deviation values are selected for threshold estimation, TH_ a where TH is the controlling threshold and a can be either x, y, p or v. TH_a = max - (max - min) TH (8) Next, the difference between reference and testing samples () is being compared to the estimated Table 3: Estimated threshold for X, Y, P &V Parameter, TH EER (%) X.4394 9.66 Y.466 6.35 P.697.43 V.7795 7.4 Table 4: FAR & for different combination of the parameters Selected Parameter (%) FAR (%) ERROR (%) X,P,V 48.8.45.4 X,P 6. 3.87 4.3 X,V 35. 4.97 5.58 Y,P,V 45.6.93.8 Y,V 3. 3. 3.78 Y,P.8.57.98 X,Y. 3.3 3.9 X,Y,V,P 4.8.64.89 threshold. f the value does not exceed the threshold, the signature will be accepted and via versa. Same steps are repeated for forgery samples to calculate FAR. As a result, the rate of false rejection and false acceptance can be obtained as in Table and : = (No. of false rejection sample / No. of geninune signature) % FAR = (No. of false acceptance sample / No. of forgery signature) % (9) By using the information found in Table and, and FAR graphs are plotted in Fig. 6. From Fig. 6, Equal Error Rate (EER) for each parameter can be obtained as shown in Table 3. Probabilistic acceptance criterion: Based on the EER obtained from the previous section, we found that the information of x-coordinate and y-coordinate are the most dependable followed by the pressure and velocity. A probabilistic acceptance criterion has been proposed in this section to accept a signature with condition: XY(PcV) = ACCEPT () To accept a signature, X and Y and either P or V must give a TRUE output. This means the system will accept a signature when X is accepted, Y is accepted, and either P or V or both is accepted. RESULTS AND DSCUSSON n order to verify the efficiency of the proposed probabilistic criterion in Dynamic Signature Verification System, an experiment using different combinations of the dynamic parameters had been conducted. The result obtained is shown in Table 4. From Table 4, the combination of x-coordinate, y- coordinate, pressure and velocity is the best combination as expected. Although the error rate is not the lowest, this 33

Res. J. Appl. Sci. Eng. Technol., 3(): 3-34, combination provided a balance of performance between and FAR. CONCLUSON n conclusion, this study has presented a simple and efficient approach for dynamic signature verification system. A reliable signature verification system has been designed with the success classification rate of 97%. The algorithm has proven that, x-coordinate and y-coordinate and pressure and velocity are sufficient and effective for dynamic signature verification. n future, the aim will be to reduce the with more testing samples being added with the equality of genuine and forgery signatures. ACKNOWLEDGMENT The authors gratefully acknowledge the support from Universiti Tunku Abdul Rahman. REFERENCES Alonso-Fernandez, F., J. Fierrez, M. Martinez-Diaz and J. Ortega-Garcia, 9. Fusion of Static mage and Dynamic nformation for Signature Verification. EEE CP, pp: 75-78. Bajaj, R. and Chaudhury, S., 997. Signature verification using multiple neural classifiers. Pattern Recognition, 3(): -7. Deng, P.S., Liao, H.Y.M., Ho, C.W. and Tyan, H.R., 997. Wavelet-based off-line handwritten signature verification. Proceeding EEE. Dimauro, G., mpedovo, S., Pirlo, G. and Salzo, A, 997. A multi-expert signature verification system for bankcheck processing. nt. J. Pattern Recognition and Artificial ntelligence, (5): 87-844. Dimauro, G., mpedovo, S., Pirlo, G. and Salzo, A, 997. Automatic Bankcheck Processing: a New Engineered System. n: mpedovo, S., P.S.P. Wang and H. Bunke, (Eds.) Machine Perception and Artificial ntelligence. World Scientific, 8: 5-4. Fenton, D., M. Bouchard and T. H. Yeap, 6. Evaluation of features and normalization techniques for signature verification using dynamic time warping. EEE CASSP, (3): 3. Huang, K. and Yan, H., 997. Off-line signature verification based on geometric feature extraction and neural network classification. Pattern Recognition, 3(): 9-7. Huang, K. and Yan, H.,. Off-line signature verification using structural feature correspondence. Pattern Recognition, 35(): 467-477. Karouni, A., Daya, B. and Bahlak, S.,. Offline signature recognition using neural networks approach. Procedia Computer Science, 3: 55-6. Mailah, M. and L. B. Han, 8. Biometric signature verification using pen Position, time,velocity, and pressure parameters. J. Teknol. A., 48A: 35-54. Miguel-Hurtado, O., L. Mengibar-Pozo and A. Pacut, 8. A new algorithm for signatureverification system based on dynamic time warping and gaussian mixture models. EEE Trans. CCST, 6-3. Miguel-Hurtado, O., L. Mengibar-Pozo, M.G. Lorenz and J. Liu-Kimenez, 7. Online signature verification system by dynamic time warping and gaussian mixture models. EEE Trans. CCST, pp: 3-9. Plamondon, R. and S.N. Srihari,. On-line and offline handwriting recognition: a comprehensive survey. EEE Trans. PAM, (): 63-84. Sabanci University Biometrics Research Group, Online Signature Database, 4. Retrieved from: http:// biometrics.sabanciuniv.edu. Seiler, R., M. Schenkel and E. Eggimann, 996. Off-line cursive handwriting recognitioncompared with online recognition. EEE nt. Conf. on Pattern Recognition, pp. 55. Tanaka, M., and A. Bargiela, 5. Authentication model of dynamic signatures using global and local and features. EEE 7th Workshop on Multimedia Signal Processing, pp: -4. Wen, J., Fang, B., Tang, Y.Y. and Zhang, T., 9. Model-based signature verification with rotation invariant features. Pattern Recognition, 4(7): 458-466. Wu, Q.Z.,.C. Jou and S.Y. Lee, 997. On-line signature verification using LPC cepstrum and neural networks. EEE Trans. SMC, 7(): 48-53. 34