Computer Networks Robin Sharp Informatics and Mathematical Modelling Technical University of Denmark Phone: (+45)

Similar documents
Chapter 4. The Medium Access Control Sublayer. Points and Questions to Consider. Multiple Access Protocols. The Channel Allocation Problem.

EITF25 Internet Techniques and Applications L4: Network Access. Stefan Höst

CCNA Exploration1 Chapter 7: OSI Data Link Layer

Local Area Networks. Ethernet LAN

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College

Guide to Networking Essentials, 6 th Edition. Chapter 6: Network Reference Models and Standards

Introduction. High Speed LANs. Emergence of High-Speed LANs. Characteristics of High Speed LANS. Text ch. 6, High-Speed Networks and

Data Link Layer, Part 5. Medium Access Control

RAJIV GANDHI COLLEGE OF ENGINEERING AND TECHNOLOGY

CSE 461: Multiple Access Networks. This Lecture

Data Communication. Introduction of Communication. Data Communication. Elements of Data Communication (Communication Model)

NETWORK SECURITY ITEC 435

Data and Computer Communications

Overview of Networks

ET4254 Communications and Networking 1

LAN PROTOCOLS. Beulah A AP/CSE

Raj Jain. The Ohio State University Columbus, OH

COMPUTER AND DATA NETWORKS

Computer Networks (Introduction to TCP/IP Protocols)

1: Review Of Semester Provide an overview of encapsulation.

Internetwork Basic. Possible causes of LAN traffic congestion are

A LAN is a high-speed data network that covers a relatively small geographic area. It typically connects workstations, personal computers, printers,

COS 140: Foundations of Computer Science

COMP476 Networked Computer Systems. Polling. Sharing the Wire. LAN Technologies. COMP476 Networked Computer Systems 1

Data Link Layer, Part 3 Medium Access Control. Preface

Wireless Communications

Data Link Layer -2- Network Access

COS 140: Foundations of Computer Science

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

Principles behind data link layer services

IT 4504 Section 4.0. Network Architectures. 2008, University of Colombo School of Computing 1

Module 1. Introduction. Version 2, CSE IIT, Kharagpur

ELC 537 Communication Networks

Link Layer: Retransmissions

Data Link Layer -2- Network Access

Network.... communication system for connecting end- systems. End-systems a.k.a. hosts PCs, workstations dedicated computers network components

Summary of MAC protocols

Introductions. Computer Networking Lecture 01. January 16, HKU SPACE Community College. HKU SPACE CC CN Lecture 01 1/36

Chapter Topics Part 1. Network Definitions. Behind the Scenes: Networking and Security

QUESTION BANK EVEN SEMESTER

OSI Data Link Layer. Network Fundamentals Chapter 7. Version Cisco Systems, Inc. All rights reserved. Cisco Public 1

CS3600 SYSTEMS AND NETWORKS

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Data Communication and Network. Introducing Networks

CSE/EE 461 Wireless and Contention-Free Protocols

Lecture 05 Chapter 16 High Speed LANs

Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands

Chapter 4: Network Access

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061/1110. Lecture 8. Medium Access Control Methods & LAN

2.1 CHANNEL ALLOCATION 2.2 MULTIPLE ACCESS PROTOCOLS Collision Free Protocols 2.3 FDDI 2.4 DATA LINK LAYER DESIGN ISSUES 2.5 FRAMING & STUFFING

M242 COMPUTER NETWORS AND SECURITY

COMPUTER NETWORKS - Local area networks

Local area networks. Copyright

Networking interview questions

The random access methods we study in this chapter have evolved from a very interesting protocol known as ALOHA, which used a very simple procedure

BABU MADHAV INSTITUTE OF INFORMATION TECHNOLOGY, UTU 2017

Local Area Networks (LANs) SMU CSE 5344 /

Introductory to Computer Networks Local Area Networks. Lecture 16 Fall Isfahan University of technology Dr.

Networking Technologies and Applications

Chapter 10: Local Area Networks

The MAC Address Format

Outline: Connecting Many Computers

Lecture 9: Bridging. CSE 123: Computer Networks Alex C. Snoeren

Local Area Network Overview

CSE 461 Multiple Access. David Wetherall

ITP 140 Mobile Applications Technologies. Networks

Local Area Network(LAN)

Computer Network : Lecture Notes Nepal Engineering College Compiled by: Junior Professor: Daya Ram Budhathoki Nepal Engineering college, Changunarayan

Introduction to Open System Interconnection Reference Model

Data and Computer Communications. Chapter 13 Wireless LANs

CS 416: Operating Systems Design April 11, 2011

ET4254 Communications and Networking 1

CARRIER SENSE MULTIPLE ACCESS (CSMA):

Monash University SAMPLE EXAM. Faculty Of Information Technology. Computer Facilities and Network Management

Introduction to Networks

Chapter 15 Local Area Network Overview

Principles behind data link layer services:

Principles behind data link layer services:

IEEE standards for local area networks

Outline / Wireless Networks and Applications Lecture 9: Wireless LANs Aloha and 802 Wireless. Regular Ethernet CSMA/CD

ITEC 3800 Data Communication and Network. Introducing Networks

Medium Access Control Sublayer Chapter 4

Computer Networks Question Bank

Local Area Networks. Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring

Distributed Queue Dual Bus

ก ก Information Technology II

Chapter 4. The Medium Access Control Sublayer

Internetworking Concepts Overview. 2000, Cisco Systems, Inc. 2-1

Computer Networks Principles LAN - Ethernet

Layer 2 functionality bridging and switching

Computer Networks รศ.ดร.อน นต ผลเพ ม. Assoc. Prof. Anan Phonphoem, Ph.D. Kasetsart University, Bangkok, Thailand

Revision of Previous Lectures

Contention Protocols and Networks

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Peer entities. Protocol Layering. Protocols. Example

Computer Networks. Andrew S. Tanenbaum

Data and Computer Communications. Chapter 11 Local Area Network

Local Area Networks NETW 901

The Medium Access Control Sublayer

Redes de Computadores. Medium Access Control

Transcription:

Computer Networks Robin Sharp Informatics and Mathematical Modelling Technical University of Denmark Phone: (+45) 4525 3749 e-mail: robin@imm.dtu.dk

Basic Network Concepts A computer network is a set of nodes connected by communication links. Nodes may be: End systems, on which applications can run Communication nodes, which just pass data Autumn 2008 Computer Networks Robin Sharp 2

Types of Computer Network Computer networks are often classified into: Local Area Networks (LAN): Size up to a few kilometers, typically covering a building, company or institution. Wide Area Networks (WAN): Large geographical coverage, perhaps world-wide. Metropolitan Area Networks (MAN): Covering a town or other relatively large area. Classification is partly: Historical: Before liberalisation of telecommunication services, only tele-monopolies could set up large networks. Technological: Small networks can use cheaper technology to give high-speed access. Autumn 2008 Computer Networks Robin Sharp 3

Concepts of Layering Layer N offers a service (a set of facilities) to its users in the layer above, layer (N+1). The service offered by layer N builds on the facilities offered by the layer below, layer (N-1). Added value offered by layer N is achieved by exchange of messages following a set of rules characteristic for that layer: the (N)-protocol. Example: Layer (N-1) offers an insecure service where data may be overheard by intruders. (N)-protocol specifies that messages sent via the (N-1)- service must be encrypted using secret key encryption. Layer N offers a secure, confidential service. Autumn 2008 Computer Networks Robin Sharp 4

Layered Architectures (2) System A System B (N+1)- Layer (N+1)- entity (N)-layer offers (N)-service (N+1)- entity (N)- Layer (N)- entity Exchange controlled by (N)-protocol (N)- entity (N-1)- Layer (N)-layer uses (N-1)-service Autumn 2008 Computer Networks Robin Sharp 5

OSI Reference Model Application Presentation Session Transport Network Data Link Physical Direct support to application processes (File transfer, e-mail, transactions, ) Transformation to suitable syntactic form (Character sets, data structures, ) Organisation of dialogues (Synchronisation points, token control) End-to-end transfer of data (End-to-end error, sequence & flow control) Transfer of data between arbitrary systems (Routing, multiple subnets, flow control) Transfer of data between directly connected systems (Error, sequence & flow control) Signalling on physical medium MEDIUM (cable, fibre, wireless, ) Autumn 2008 Computer Networks Robin Sharp 6

OSI Lower Layers Data Link: transfers data between directly connected systems (via direct cable or shared medium) Network: permits data transfer to arbitrary systems ( nodes ). Transport: provides illusion of direct end-to-end connection between processes in arbitrary systems. Autumn 2008 Computer Networks Robin Sharp 7

Internet Layered Architecture A simplified model, with OSI Upper Layers reduced to a single layer: Application Transport Network Data Link Physical Direct support to application processes End-to-end transfer of data Transfer of data between arbitrary systems Transfer of data between directly connected systems Signalling on physical medium Autumn 2008 Computer Networks Robin Sharp 8

Services and Protocols Autumn 2008 Computer Networks Robin Sharp 9

Services Service describes what facilities are offered by a layer viewed as a black box, for example: Sequence preservation Data unit synchronisation Freedom from error Connection-orientation N-peer operation Simplex/duplex/multiplex operation Expedited data Security Service does not tell us how these features are achieved. Autumn 2008 Computer Networks Robin Sharp 10

Data unit synchronisation Are the data units received by the receiver(s) the same size as those sent by the sender? Message(/block-) oriented services: Service Stream-oriented services: Service Clip anywhere Autumn 2008 Computer Networks Robin Sharp 11

Errors in communication Three basic error types: Message loss: Receiver fails to receive a message sent by the sender. Message corruption: Receiver receives a message different from the one sent by the sender. Spurious message: Receiver receives a message not sent by the (apparent) sender. Measures of error rate: Bit Error Rate (BER): Fraction of received bits in error. Residual Error Rate (RER): Fraction of erroneous blocks. RER = N l + N s Nc + N + N u u N s = Blocks sent N c = Corrupt blocks N l = Lost blocks N u = Spurious blocks Autumn 2008 Computer Networks Robin Sharp 12

Connection-mode services Users have to establish a logical channel between one another before they can exchange actual data. Simple example: Telephone service. Advantages: Administrative info. such as full address of destination, security parameters etc etc only needs to be exchanged when connection is being set up. Gives a context for the subsequent exchange of messages, making it possible to keep track of lost or misordered messages during a conversation. Disadvantages: Inefficient if only a small amount of data to be exchanged. Autumn 2008 Computer Networks Robin Sharp 13

Connectionless-mode services No connection set up before exchange of data. Each message is sent independently of the others. Simple example: Postal service. Advantages: Less administration if small amount of data. May be faster: No need to wait for delivery of predecessors. Disadvantages: All administrative info. has to be carried round in all messages, as the service has no memory of previous messages (stateless service). No guarantee of delivery in right order. No guarantee of delivery at all ( send-and-pray ). Autumn 2008 Computer Networks Robin Sharp 14

N-peer operation Point-to-point service: Offers point-to-point communication between two parties. Simple case: Two parties with equal status (Two-peer service). Multi-peer service: Several users can communicate with one another at one time. Often classified into: Broadcast service: All available users of service receive a message sent by one of them. Multicast service: A selected subset of users receive a message sent by one of them. Inverse broadcast: A single receiver can receive simultaneously from all the other service users. Autumn 2008 Computer Networks Robin Sharp 15

N-plex services Simplex service: Transfers messages in one direction only through logical or physical channel. Duplex service: Messages can pass between two parties in both directions. Half-duplex: Only one direction at a time. Full duplex: Both directions at once. Multiplex service: Many users can use the logical or physical channel, via some sharing mechanism. E.g.: Frequency-division multiplexing: Use different frequencies (radio, TV, optical, ) Time-division multiplexing: Share the available time between the users. Autumn 2008 Computer Networks Robin Sharp 16

Security Typical aims of a secure service are to ensure: Confidentiality: Protection of information in transit from being picked up by unauthorised parties. Integrity: Protection of information in transit from being modified by alteration, deletion, replaying or insertion of new messages. Authentication: Correct identification of the origin of a message or electronic document. Non-repudiation: Protection against the sender or receiver denying that a message was transferred between them. Availability: Protection against service being denied to authorised users. Autumn 2008 Computer Networks Robin Sharp 17

Quality of Service (QoS) Summarises quantitative properties of a service: Throughput (bits/unit time) Delay (for connection setup, transfer, connection release) Reliability (in connection setup, transfer, connection release) Resilience (probability of unrequested disconnection) Error rate (BER, RER) Protection against intruders (passive, active, ) Priority (in delivery, in maintaining service quality) Parameters often given in terms of: Target value (mean or median). Permissible spread (max/min interval, variance, ). (Possibly) a list of acceptable discrete values. Autumn 2008 Computer Networks Robin Sharp 18

Protocols Specify rules for how to provide the desired service: Rules of procedure: Which messages to exchange in response to events occurring at the interface to the layer or internally (e.g. timeout). Message formats: Format and encoding of messages to be transferred between the parties involved. OSI notation: Service Data Unit (SDU): A message supplied by a user of a service. Protocol Data Unit (PDU): A message exchanged between two or more parties as part of a protocol. An initial is often used to indicate the relevant OSI layer. E.g. NPDU: A PDU exchanged in the Network layer. Autumn 2008 Computer Networks Robin Sharp 19

Protocol Control Information (PCI) Information used to control the exchange of PDUs according to the rules of the protocol, such as: Identification of source and destination of PDU. Sequence numbers used to detect lost or misordered PDUs. Checksums used to detect corrupted PDUs. Timestamps used to detect outdated PDUs. Security-related information. An administrative PDU (e.g. acknowledgement for receipt of data) may consist just of PCI. In a Data PDU, PCI is added as a header and/or trailer to (part of) an SDU supplied by the user. Autumn 2008 Computer Networks Robin Sharp 20

PCI in a PDU Simple example: PCI in header, data from whole SDU. (N)-SDU (N+1)-Layer (N)-SAP (N)-PCI (N)-Layer (N)-PCI (N)-PDU (N)-SDU Transmission via (N)-Protocol Autumn 2008 Computer Networks Robin Sharp 21

Embedding of layered PDUs In a layered architecture, PCI will be added in each layer. Simple case: Layer User Application data A APDU T TPDU N NPDU D DPDU Autumn 2008 Computer Networks Robin Sharp 22

Segmented embedded PDUs When PDUs get larger than a given layer permits, segmentation may be needed, giving many fragments: Effective data rate may drop due to sudden jumps in amount of PCI. Autumn 2008 Computer Networks Robin Sharp 23

Network Technology Autumn 2008 Computer Networks Robin Sharp 24

Communication nodes Communication nodes typically implement OSI layers up to and including the Network layer: Comm. nodes are responsible for accepting PDUs on incoming link, routing to an outgoing link and transmitting on outgoing link. Autumn 2008 Computer Networks Robin Sharp 25

Routers Implement layers up to (at least) Network layer. Can choose a suitable route for sending an incoming PDU on to its destination. May be able to filter off irrelevant or unsuitable traffic, for example: Traffic which has taken too long time to cross the network. Traffic from known unreliable sources. Traffic on incoming links not matching the claimed source address. Traffic to destinations or applications which do not want it. Traffic which misuses the protocols in some way. Autumn 2008 Computer Networks Robin Sharp 26

Bridges Implement layers up to Data Link layer. Are used to connect segments within a given network. MEDIUM Segment 1 D Ph Ph MEDIUM Segment 2 Typical functions: Adaptation between different conventions used for signalling in Physical layer in different segments. Filtering to remove traffic which does not need to cross the bridge to reach destination. (Note: not really routing!) Autumn 2008 Computer Networks Robin Sharp 27

LAN Technologies Differ from WAN technologies especially in the Data Link and Physical layers. Data Link layer divided into two sub-layers: Technology-dependent Medium Access Control sub-layer. Technology-independent Logical Link Control sub-layer, which can be based on various different MAC sub-layers. LLC MAC Physical 14243 Data Link layer MEDIUM Autumn 2008 Computer Networks Robin Sharp 28

80 IEEE/ISO LAN MAC Standards IEEE ISO Technology 802.3 8802-3 CSMA/CD ( Ethernet ) 802.4 8802-4 Token Bus 802.5 8802-5 Token Ring 802.6 8802-6 Distributed Queue Dual Bus (DQDB) 802.9 8802-9 Integrated Services (IS) LAN 802.11 8802-11 Wireless LAN 802.12 8802-12 Demand-priority Access 802.15 8802-15 Wireless Personal Area Networks (WPAN) 802.16 8802-16 Fixed Broadband Wireless Access (FBWA) Autumn 2008 Computer Networks Robin Sharp 29

Contention protocols Simple principle for controlling access to medium: Senders compete for access. If medium is free, transmission is OK. Typically used on broadcast media (bus, cable, wireless). Basic feature of broadcast medium: Signals spread out from sender in all directions. If several systems send at same time, signals collide and messages gets lost. Autumn 2008 Computer Networks Robin Sharp 30

CSMA/CD Unrestricted contention, where systems just try to send when they want to, is inefficient: Many collisions ( many retransmissions) occur as traffic intensity rises. CSMA/CD uses two rules to increase efficiency: Carrier Sense Multiple Access: Listen before sending. If medium is occupied, wait a random time before trying again. Collision Detect: Listen while sending. If another system is sending at same time, stop transmitting and try again later. In IEEE/ISO standardised CSMA/CD, the random waiting time is doubled (on average ) on each retry (Binary Exponential Backoff). This ensures stability as traffic intensity rises. Autumn 2008 Computer Networks Robin Sharp 31

CSMA/CD (2) Operation of CSMA/CD when collision occurs: Collision occurs if several senders find medium free at same time. After detection of collision, all systems are informed (CE), and the senders wait a random time before trying again. Autumn 2008 Computer Networks Robin Sharp 32

CSMA/CD (3) For collisions to be detected, transmission of a PDU must last (significantly) longer than the time required for signals to reach the most distant systems. So: Min. PDU length (depending on data rate) Max. physical extent of medium CSMA/CD standards cover several technologies, media and data rates. Important examples: 10 Mbit/s thick coaxial cable (classic Ethernet). 10 Mbit/s thin coaxial cable (thinwire Ethernet). 10 Mbit/s unshielded twisted pair, UTP-5. 100 Mbit/s unshielded twisted pair, UTP-5 (fast Ethernet). 1000 Mbit/s coaxial cable (gigabit Ethernet). Autumn 2008 Computer Networks Robin Sharp 33

Switched Ethernet An alternative to cable-based Ethernet, in which path between sender and receiver is set up dynamically in a switch: If path can be set up, full bandwidth of medium is available between the two nodes. Contention only for simultaneous transmissions to same destination. Autumn 2008 Computer Networks Robin Sharp 34

Wireless LAN Important new technology, allowing mobility. Three basic setups: (a) Basic: single Access Point (AP) (b) Extended: multiple APs (c) Ad hoc (peer-to-peer): no AP Autumn 2008 Computer Networks Robin Sharp 35

Wireless LAN (2) A large number of standardised technologies, all part of IEEE 802.11 standard: Standard Physical Layer Technology 802.11 2.4 GHz radio band, 1 or 2Mbit/s data rate 802.11a 5 GHz radio band, up to 54 Mbit/s 802.11b 2.4 GHz radio band, 1, 2, 5.5 or 11 Mbit/s 802.11g 2.4 GHz radio band, 22 or 54 Mbit/s 802.11h Spectrum management to use 5GHz band in Europe. 802.11e describes enhancements to give QoS. 802.11i describes enhancements to give improved security. Autumn 2008 Computer Networks Robin Sharp 36

CSMA/CA Wireless MAC Protocol A contention protocol based on CSMA together with: Collision Avoidance via reservation slots. ACKnowledgments to check that contention really didn t occur. Autumn 2008 Computer Networks Robin Sharp 37

Thank you for your attention Course 02152, DTU, Autumn 2008 8