Fitting and Alignment

Similar documents
Multi-stable Perception. Necker Cube

Fitting & Matching. Lecture 4 Prof. Bregler. Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros.

Image Alignment CSC 767

LEAST SQUARES. RANSAC. HOUGH TRANSFORM.

Alignment and Object Instance Recognition

CS 534: Computer Vision Model Fitting

Outline. Discriminative classifiers for image recognition. Where in the World? A nearest neighbor recognition example 4/14/2011. CS 376 Lecture 22 1

Fitting: Voting and the Hough Transform

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem

Lecture 9 Fitting and Matching

Feature Matching and Robust Fitting

Structure from Motion

Image warping and stitching May 5 th, 2015

Model Fitting מבוסס על שיעור שנבנה ע"י טל הסנר

Active Contours/Snakes

Range images. Range image registration. Examples of sampling patterns. Range images and range surfaces

A Fast Visual Tracking Algorithm Based on Circle Pixels Matching

An efficient method to build panoramic image mosaics

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Unsupervised Learning

Prof. Feng Liu. Spring /24/2017

Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Fitting: Deformable contours April 26 th, 2018

SIGGRAPH Interactive Image Cutout. Interactive Graph Cut. Interactive Graph Cut. Interactive Graph Cut. Hard Constraints. Lazy Snapping.

Discriminative classifiers for object classification. Last time

Ecient Computation of the Most Probable Motion from Fuzzy. Moshe Ben-Ezra Shmuel Peleg Michael Werman. The Hebrew University of Jerusalem

AIMS Computer vision. AIMS Computer Vision. Outline. Outline.

Shape Representation Robust to the Sketching Order Using Distance Map and Direction Histogram

Machine Learning. Topic 6: Clustering

Programming in Fortran 90 : 2017/2018

Collaboratively Regularized Nearest Points for Set Based Recognition

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Unsupervised Learning and Clustering

EECS 442 Computer vision. Fitting methods

A B-Snake Model Using Statistical and Geometric Information - Applications to Medical Images

Radial Basis Functions

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 15

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration

An Image Fusion Approach Based on Segmentation Region

Recognizing Faces. Outline

Geometric Transformations and Multiple Views

Lecture 9 Fitting and Matching

Biostatistics 615/815

LECTURE : MANIFOLD LEARNING

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

Hough Transform and RANSAC

12/2/2009. Announcements. Parametric / Non-parametric. Case-Based Reasoning. Nearest-Neighbor on Images. Nearest-Neighbor Classification

A Robust Method for Estimating the Fundamental Matrix

IMAGE MATCHING WITH SIFT FEATURES A PROBABILISTIC APPROACH

Support Vector Machines

Lecture 8 Fitting and Matching

Computer Animation and Visualisation. Lecture 4. Rigging / Skinning

What are the camera parameters? Where are the light sources? What is the mapping from radiance to pixel color? Want to solve for 3D geometry

6.1 2D and 3D feature-based alignment 275. similarity. Euclidean

Skew Angle Estimation and Correction of Hand Written, Textual and Large areas of Non-Textual Document Images: A Novel Approach

Deterministic Hypothesis Generation for Robust Fitting of Multiple Structures

Improved SIFT-Features Matching for Object Recognition

Machine Learning: Algorithms and Applications

Learning Ensemble of Local PDM-based Regressions. Yen Le Computational Biomedicine Lab Advisor: Prof. Ioannis A. Kakadiaris

Face Recognition University at Buffalo CSE666 Lecture Slides Resources:

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Wishing you all a Total Quality New Year!

3D Modeling Using Multi-View Images. Jinjin Li. A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science

Robust Inlier Feature Tracking Method for Multiple Pedestrian Tracking

The Research of Ellipse Parameter Fitting Algorithm of Ultrasonic Imaging Logging in the Casing Hole

Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Scale Selective Extended Local Binary Pattern For Texture Classification

Photo by Carl Warner

The Greedy Method. Outline and Reading. Change Money Problem. Greedy Algorithms. Applications of the Greedy Strategy. The Greedy Method Technique

Range Data Registration Using Photometric Features

Image Representation & Visualization Basic Imaging Algorithms Shape Representation and Analysis. outline

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

Edge Detection in Noisy Images Using the Support Vector Machines

CS 231A Computer Vision Midterm

Outline. Seamless Image Stitching in the Gradient Domain. Related Approaches. Image Stitching. Introduction Related Work

Feature Extractions for Iris Recognition

CS 231A Computer Vision Midterm

METRIC ALIGNMENT OF LASER RANGE SCANS AND CALIBRATED IMAGES USING LINEAR STRUCTURES

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data

Computer Vision I. Xbox Kinnect: Rectification. The Fundamental matrix. Stereo III. CSE252A Lecture 16. Example: forward motion

Lobachevsky State University of Nizhni Novgorod. Polyhedron. Quick Start Guide

Support Vector Machines

Learning the Kernel Parameters in Kernel Minimum Distance Classifier

A Comparison and Evaluation of Three Different Pose Estimation Algorithms In Detecting Low Texture Manufactured Objects

Feature Reduction and Selection

Lecture #15 Lecture Notes

SIMULTANEOUS REGISTRATION OF MULTIPLE VIEWS OF A 3D OBJECT

Corner-Based Image Alignment using Pyramid Structure with Gradient Vector Similarity

Determining the Optimal Bandwidth Based on Multi-criterion Fusion

MOTION PANORAMA CONSTRUCTION FROM STREAMING VIDEO FOR POWER- CONSTRAINED MOBILE MULTIMEDIA ENVIRONMENTS XUNYU PAN

Discriminative Dictionary Learning with Pairwise Constraints

Feature-based image registration using the shape context

Articulated Motion Capture from Visual Hulls in High Dimensional Configuration Spaces

Takahiro ISHIKAWA Takahiro Ishikawa Takahiro Ishikawa Takeo KANADE

Multi-view 3D Position Estimation of Sports Players

Histogram of Template for Pedestrian Detection

K-means and Hierarchical Clustering

Accounting for the Use of Different Length Scale Factors in x, y and z Directions

Detection of hand grasping an object from complex background based on machine learning co-occurrence of local image feature

Line-based Camera Movement Estimation by Using Parallel Lines in Omnidirectional Video

Transcription:

Fttng and Algnment Computer Vson Ja-Bn Huang, Vrgna Tech Many sldes from S. Lazebnk and D. Hoem

Admnstratve Stuffs HW 1 Competton: Edge Detecton Submsson lnk HW 2 wll be posted tonght Due Oct 09 (Mon) 23:59 PM

Anonymous feedback HW s too hard I wll adjust accordngly. Please come to offce hours and see TA/me after classes Gong over starter code used n HWs n class. Great dea! Wll do ths startng HW2. Not a lot of correlaton between class content and HW. Hybrd mage: spatal and frequency vews of flters Image pyramd: Gaussan/Laplacan pyramd Edge detecton: Gradent flter

Where are we? Interest ponts Fnd dstnct and repeatable ponts n mages Harrs-> corners, DoG -> blobs SIFT -> feature descrptor Feature trackng and optcal flow Fnd moton of a keypont/pxel over tme Lucas-Kanade: brghtness consstency, small moton, spatal coherence Handle large moton: teratve update + pyramd search Fttng and algnment (ths class) fnd the transformaton parameters that best algn matched ponts Object nstance recognton (next class) Keypont-based object nstance recognton and search

Revew: Harrs Corner Detector Second moment matrx 2 I x ( D ) I xi y ( D) ( I, D) g( ) 2 1. Image I I xi y ( D ) I y ( D ) dervatves (optonally, blur frst) I x I y det M trace M 1 2 1 2 2. Square of dervatves 3. Gaussan flter g( I ) I x 2 I y 2 I x I y g(i x2 ) g(i y2 ) g(i x I y ) 4. Cornerness functon both egenvalues are strong 2 har det[ (, )] [trace( (, )) ] g I D 2 2 2 2 2 ( I x ) g( I y ) [ g( I xi y )] [ g( I x ) g( I y I D )] 2 5. 5 Non-maxma suppresson har

Revew: Fnd local maxma n postonscale space of Dfference-of-Gaussan 5 4 L xx ( ) L ( ) yy 3 2 Lst of (x, y, s) K. Grauman, B. Lebe

Revew: SIFT Descrptor [Lowe, ICCV 1999] K. Grauman, B. Lebe Hstogram of orented gradents Captures mportant texture nformaton Robust to small translatons / affne deformatons

Revew: Lucas-Kanade Tracker Brghtness consstency I(x,y,t) I(x,y,t+1) ), ( ),, ( 1, t v y u x I t y x I t y x I v I u I t y x I t v y u x I ),, ( 1),, ( Small moton 0 t y x I v I u I Spatal coherence

Dealng wth larger movements: Iteratve refnement Orgnal (x,y) poston 1. Intalze (x,y ) = (x,y) 2. Compute (u,v) by I t = I(x, y, t+1) - I(x, y, t) 2 nd moment matrx for feature patch n frst mage dsplacement 3. Shft wndow by (u, v): x =x +u; y =y +v; 4. Recalculate I t 5. Repeat steps 2-4 untl small change Use nterpolaton for subpxel values

Dealng wth larger movements: coarse-to-fne regstraton run teratve L-K upsample run teratve L-K... mage J1 mage I2 Gaussan pyramd of mage 1 (t) Gaussan pyramd of mage 2 (t+1)

Fttng [ˈfdNG]: fnd the parameters of a model that best ft the data Algnment [əˈlīnmənt]: fnd the parameters of the transformaton that best algn matched ponts

Fttng and algnment Choose a parametrc model to represent a set of features smple model: lnes smple model: crcles complcated model: face shape complcated model: car Source: K. Grauman

Fttng and Algnment -Desgn challenges Desgn a sutable goodness of ft measure Smlarty should reflect applcaton goals Encode robustness to outlers and nose Desgn an optmzaton method Avod local optma Fnd best parameters quckly

Fttng and Algnment: Methods Global optmzaton / Search for parameters Least squares ft Robust least squares Iteratve closest pont (ICP) Hypothesze and test Generalzed Hough transform RANSAC

Smple example: Fttng a lne

Least squares lne fttng Data: (x 1, y 1 ),, (x n, y n ) Lne equaton: y = m x + b Fnd (m, b) to mnmze 0 2 2 y A Ap A T T dp de ) ( ) ( ) 2( 1 1 1 2 2 1 1 1 2 Ap Ap y Ap y y y Ap T T T n n n y y b m x x y b m x E n b mx y E 1 2 ) ( (x, y ) y=mx+b y A A A p y A Ap A T T T T 1 Matlab: p = A \ y; Modfed from S. Lazebnk

Problem wth vertcal least squares Not rotaton-nvarant Fals completely for vertcal lnes Slde from S. Lazebnk

Total least squares If (a 2 +b 2 =1) then Dstance between pont (x, y ) and lne ax+by+c=0 s ax + by + c E n 1 Slde modfed from S. Lazebnk 2 ( ax(x by, y d ) ax+by+c=0 Unt normal: N=(a, b) proof: http://mathworld.wolfram.com/pont- LneDstance2-Dmensonal.html

Total least squares If (a 2 +b 2 =1) then Dstance between pont (x, y ) and lne ax+by+c=0 s ax + by + c E n 1 Slde modfed from S. Lazebnk 2 ( ax(x by, y d ) ax+by+c=0 Unt normal: N=(a, b) Fnd (a, b, c) to mnmze the sum of squared perpendcular dstances E n 1 ( ax b y c) 2

Total least squares Fnd (a, b, c) to mnmze the sum of squared perpendcular dstances E n 1 ( ax b y c) 2 E n 1 Slde modfed from S. Lazebnk 2 ( ax(x by, y d ) ax+by+c=0 Unt normal: N=(a, b) E n a 2( ) 0 1 ax b y c c c n 2 x1 x y1 y n a E 2 a x p x b y y ( ( ) ( )) 1 b xn x yn y T T T T T p A Ap mnmze p A Ap s.t. p p 1 mnmze T p p n b n x y ax b y 1 1 n Soluton s egenvector correspondng to smallest egenvalue of A T A T A T Ap See detals on Ralegh Quotent: http://en.wkpeda.org/wk/raylegh_quotent

Recap: Two Common Optmzaton Problems Problem statement mnmze least squares soluton to Ax b 2 Soluton Ax b T 1 T x A A A b x A \ b (matlab) Problem statement T T mnmze x A Ax s.t. T T x A Ax mnmze T x x x T x 1 non - trval lsq soluton to Ax 0 Soluton [ v, ] 1 2.. n : eg( A x T A) v 1

Least squares (global) optmzaton Good Clearly specfed objectve Optmzaton s easy Bad May not be what you want to optmze Senstve to outlers Bad matches, extra ponts Doesn t allow you to get multple good fts Detectng multple objects, lnes, etc.

Robust least squares (to deal wth outlers) General approach: mnmze u (x, θ) resdual of th pont w.r.t. model parameters θ ρ robust functon wth scale parameter σ u x, ; u 2 n 1 ( y mx b) 2 The robust functon ρ Favors a confguraton wth small resduals Constant penalty for large resduals Slde from S. Savarese

Robust Estmator 1.5 medan error 1. Intalze: e.g., choose θ by least squares ft and 2. Choose params to mnmze: E.g., numercal optmzaton 2 error(, data error(, data ) 2 ) 2 3. Compute new 1.5 medan error 4. Repeat (2) and (3) untl convergence

Other ways to search for parameters (for when no closed form soluton exsts) Lne search 1. For each parameter, step through values and choose value that gves best ft 2. Repeat (1) untl no parameter changes Grd search 1. Propose several sets of parameters, evenly sampled n the jont set 2. Choose best (or top few) and sample jont parameters around the current best; repeat Gradent descent 1. Provde ntal poston (e.g., random) 2. Locally search for better parameters by followng gradent

Hypothesze and test 1. Propose parameters Try all possble Each pont votes for all consstent parameters Repeatedly sample enough ponts to solve for parameters 2. Score the gven parameters Number of consstent ponts, possbly weghted by dstance 3. Choose from among the set of parameters Global or local maxmum of scores 4. Possbly refne parameters usng nlers

Hough Transform: Outlne 1. Create a grd of parameter values 2. Each pont votes for a set of parameters, ncrementng those values n grd 3. Fnd maxmum or local maxma n grd

Hough transform P.V.C. Hough, Machne Analyss of Bubble Chamber Pctures, Proc. Int. Conf. Hgh Energy Accelerators and Instrumentaton, 1959 Gven a set of ponts, fnd the curve or lne that explans the data ponts best y m x y = m x + b Hough space b Slde from S. Savarese

Hough transform y m x b y m 3 5 3 3 2 2 3 7 11 10 4 3 2 3 1 4 5 2 2 1 0 1 3 3 Slde from S. Savarese x b

Hough transform P.V.C. Hough, Machne Analyss of Bubble Chamber Pctures, Proc. Int. Conf. Hgh Energy Accelerators and Instrumentaton, 1959 Issue : parameter space [m,b] s unbounded Use a polar representaton for the parameter space y x Hough space x cos ysn Slde from S. Savarese

Hough transform - experments features votes Slde from S. Savarese

Hough transform - experments Nosy data features votes Need to adjust grd sze or smooth Slde from S. Savarese

Hough transform - experments features Issue: spurous peaks due to unform nose votes Slde from S. Savarese

1. Image Canny

2. Canny Hough votes

3. Hough votes Edges Fnd peaks and post-process

Hough transform example http://ostatc.com/fles/mages/ss_hough.jpg

Hough transform for crcles Crcle: center (a,b) and radus r For a fxed radus r 2 2 2 ( x a) ( y b) r b Equaton of crcle? Equaton of set of crcles that all pass through a pont? Image space Hough space a Adapted by Dev Parkh from: Krsten Grauman 38

Hough transform for crcles Crcle: center (a,b) and radus r For a fxed radus r 2 2 2 ( x a) ( y b) r Intersecton: most votes for center occur here. Image space Hough space 39 Krsten Grauman

Hough transform for crcles Crcle: center (a,b) and radus r For an unknown radus r 2 2 2 ( x a) ( y b) r r? Image space a Hough space b 40 Krsten Grauman

Hough transform for crcles Crcle: center (a,b) and radus r For an unknown radus r 2 2 2 ( x a) ( y b) r r b Image space a Hough space 41 Krsten Grauman

Hough transform for crcles Crcle: center (a,b) and radus r 2 2 2 ( x a) ( y b) r For an unknown radus r, known gradent drecton x θ Image space Hough space 42 Krsten Grauman

Example: detectng crcles wth Hough Orgnal Edges Votes: Penny Note: a dfferent Hough transform (wth separate accumulators) was used for each crcle radus (quarters vs. penny). Slde credt: Krsten Grauman 43

Example: detectng crcles wth Hough Combned Orgnal detectons Edges Votes: Quarter Slde credt: Krsten Grauman 44 Con fndng sample mages from: Vvek Kwatra

Generalzed Hough for object detecton Instead of ndexng dsplacements by gradent orentaton, ndex by matched local patterns. tranng mage vsual codeword wth dsplacement vectors B. Lebe, A. Leonards, and B. Schele, Combned Object Categorzaton and Segmentaton wth an Implct Shape Model, ECCV Workshop on Statstcal Learnng n Computer Vson 2004 45 Source: L. Lazebnk

Generalzed Hough for object detecton Instead of ndexng dsplacements by gradent orentaton, ndex by vsual codeword test mage B. Lebe, A. Leonards, and B. Schele, Combned Object Categorzaton and Segmentaton wth an Implct Shape Model, ECCV Workshop on Statstcal Learnng n Computer Vson 2004 46 Source: L. Lazebnk

Hough transform conclusons Good Robust to outlers: each pont votes separately Farly effcent (much faster than tryng all sets of parameters) Provdes multple good fts Bad Some senstvty to nose Bn sze trades off between nose tolerance, precson, and speed/memory Can be hard to fnd sweet spot Not sutable for more than a few parameters grd sze grows exponentally Common applcatons Lne fttng (also crcles, ellpses, etc.) Object nstance recognton (parameters are poston/scale/orentaton) Object category recognton (parameters are poston/scale)

RANSAC (RANdom SAmple Consensus) : Fschler & Bolles n 81. Algorthm: 1. Sample (randomly) the number of ponts requred to ft the model 2. Solve for model parameters usng samples 3. Score by the fracton of nlers wthn a preset threshold of the model Repeat 1-3 untl the best model s found wth hgh confdence

RANSAC Lne fttng example Algorthm: 1. Sample (randomly) the number of ponts requred to ft the model (#=2) 2. Solve for model parameters usng samples 3. Score by the fracton of nlers wthn a preset threshold of the model Repeat 1-3 untl the best model s found wth hgh confdence Illustraton by Savarese

RANSAC Lne fttng example Algorthm: 1. Sample (randomly) the number of ponts requred to ft the model (#=2) 2. Solve for model parameters usng samples 3. Score by the fracton of nlers wthn a preset threshold of the model Repeat 1-3 untl the best model s found wth hgh confdence

RANSAC Lne fttng example N I 6 Algorthm: 1. Sample (randomly) the number of ponts requred to ft the model (#=2) 2. Solve for model parameters usng samples 3. Score by the fracton of nlers wthn a preset threshold of the model Repeat 1-3 untl the best model s found wth hgh confdence

RANSAC Algorthm: 1. Sample (randomly) the number of ponts requred to ft the model (#=2) 2. Solve for model parameters usng samples 3. Score by the fracton of nlers wthn a preset threshold of the model Repeat 1-3 untl the best model s found wth hgh confdence N I 14

How to choose parameters? Number of samples N Choose N so that, wth probablty p, at least one random sample s free from outlers (e.g. p=0.99) (outler rato: e ) Number of sampled ponts s Mnmum number needed to ft the model Dstance threshold Choose so that a good pont wth nose s lkely (e.g., prob=0.95) wthn threshold Zero-mean Gaussan nose wth std. dev. σ: t 2 =3.84σ 2 N log 1 p/ log1 1 e s proporton of outlers e s 5% 10% 20% 25% 30% 40% 50% 2 2 3 5 6 7 11 17 3 3 4 7 9 11 19 35 4 3 5 9 13 17 34 72 5 4 6 12 17 26 57 146 6 4 7 16 24 37 97 293 7 4 8 20 33 54 163 588 8 5 9 26 44 78 272 1177 modfed from M. Pollefeys

RANSAC conclusons Good Robust to outlers Applcable for larger number of objectve functon parameters than Hough transform Optmzaton parameters are easer to choose than Hough transform Bad Computatonal tme grows quckly wth fracton of outlers and number of parameters Not as good for gettng multple fts (though one soluton s to remove nlers after each ft and repeat) Common applcatons Computng a homography (e.g., mage sttchng) Estmatng fundamental matrx (relatng two vews)

RANSAC Song

What f you want to algn but have no pror matched pars? Hough transform and RANSAC not applcable Important applcatons Medcal magng: match bran scans or contours Robotcs: match pont clouds

Iteratve Closest Ponts (ICP) Algorthm Goal: estmate transform between two dense sets of ponts 1. Intalze transformaton (e.g., compute dfference n means and scale) 2. Assgn each pont n {Set 1} to ts nearest neghbor n {Set 2} 3. Estmate transformaton parameters e.g., least squares or robust least squares 4. Transform the ponts n {Set 1} usng estmated parameters 5. Repeat steps 2-4 untl change s very small

Example: solvng for translaton A 1 A 2 A 3 B 1 B 2 B 3 Gven matched ponts n {A} and {B}, estmate the translaton of the object x y B B x y A A t t x y

Example: solvng for translaton A 1 A 2 A B 1 3 (t x, t y ) B 2 B 3 Least squares soluton 1. Wrte down objectve functon 2. Derved soluton a) Compute dervatve b) Compute soluton 3. Computatonal soluton a) Wrte n form Ax=b b) Solve usng pseudo-nverse or egenvalue decomposton x y 1 0 1 0 B B x y 0 1 t t 0 1 x y A A x y x y B 1 B 1 B n B n t t x y x y A 1 A 1 A n A n x y

Example: solvng for translaton A 1 A 5 B 4 A 2 A B 1 3 (t x, t y ) A 4 B 2 B 3 B 5 Problem: outlers RANSAC soluton 1. Sample a set of matchng ponts (1 par) 2. Solve for transformaton parameters 3. Score parameters wth number of nlers 4. Repeat steps 1-3 N tmes x y B B x y A A t t x y

Example: solvng for translaton B 4 A 1 B 5 B 6 A 2 A B 1 3 (t x, t y ) A 4 B 2 B 3 A 5 A 6 Problem: outlers, multple objects, and/or many-to-one matches Hough transform soluton 1. Intalze a grd of parameter values 2. Each matched par casts a vote for consstent values 3. Fnd the parameters wth the most votes 4. Solve usng least squares wth nlers x y B B x y A A t t x y

Example: solvng for translaton (t x, t y ) Problem: no ntal guesses for correspondence ICP soluton 1. Fnd nearest neghbors for each pont 2. Compute transform usng matches 3. Move ponts usng transform 4. Repeat steps 1-3 untl convergence x y B B x y A A t t x y

HW 2 Feature tracker Keypont detecton Compute second moment matrx Harrs corner crteron Threshold Non-maxmum suppresson Trackng Kanade-Lucas-Tomas trackng Show keypont trajectores Show ponts have moved out of frames

HW 2 Shape Algnment Global transformaton (smlarty, affne, perspectve) Iteratve closest pont algorthm

HW 2 Local Feature Matchng Implement dstance rato test feature matchng algorthm

Thngs to remember Least Squares Ft closed form soluton robust to nose not robust to outlers Robust Least Squares mproves robustness to nose requres teratve optmzaton Hough transform robust to nose and outlers can ft multple models only works for a few parameters (1-4 typcally) RANSAC robust to nose and outlers works wth a moderate number of parameters (e.g, 1-8) Iteratve Closest Pont (ICP) For local algnment only: does not requre ntal correspondences

Next week Object nstance recognton