Introduction to Networks and the Internet

Similar documents
Summary of MAC protocols

Internet Architecture and Protocol

Medium Access Protocols

Local Area Networks. Aloha Slotted Aloha CSMA (non-persistent, 1-persistent, p-persistent) CSMA/CD Ethernet Token Ring

Goals. Fundamentals of Network Media. More topics. Topics. Multiple access communication. Multiple access solutions

COMP476 Networked Computer Systems. Polling. Sharing the Wire. LAN Technologies. COMP476 Networked Computer Systems 1

Data Link Layer, Part 3 Medium Access Control. Preface

High Level View. EE 122: Ethernet and Random Access protocols. Medium Access Protocols

More on LANS. LAN Wiring, Interface

Data Link Layer, Part 5. Medium Access Control

Introductory to Computer Networks Local Area Networks. Lecture 16 Fall Isfahan University of technology Dr.

Media Access Control (MAC) Sub-layer and Ethernet

Ethernet. Networks: Ethernet 1

EE 122: Ethernet and

Local Area Networks. Ethernet LAN

LAN. CS 4/55231 Internet Engineering. Kent State University Dept. of Computer Science

CSE 461: Multiple Access Networks. This Lecture

IEEE 802 LANs SECTION C

Lecture 9: Bridging. CSE 123: Computer Networks Alex C. Snoeren

The Network Access Layer. In This Lecture. Network Access Layer. Hour 3

Review For Exam 2. Internetworking. Summary Questions. School of Business Eastern Illinois University. School of Business Eastern Illinois University

CARRIER SENSE MULTIPLE ACCESS (CSMA):

Networking Technologies and Applications

CMPE 257: Wireless and Mobile Networking

Computer Networks Medium Access Control. Mostafa Salehi Fall 2008

Introduction to LAN Topologies Cabling. 2000, Cisco Systems, Inc. 3-1

Redes de Computadores. Medium Access Control

Review. Error Detection: CRC Multiple access protocols. LAN addresses and ARP Ethernet. Slotted ALOHA CSMA/CD

Reminder: Datalink Functions Computer Networking. Datalink Architectures

Token Ring and. Fiber Distributed Data Interface (FDDI) Networks: Token Ring and FDDI 1

Local Area Networks (LANs) SMU CSE 5344 /

CHAPTER 8: LAN Standards

Lecture 4b. Local Area Networks and Bridges

CSE/EE 461 Wireless and Contention-Free Protocols

Topics. Link Layer Services (more) Link Layer Services LECTURE 5 MULTIPLE ACCESS AND LOCAL AREA NETWORKS. flow control: error detection:

CCNA Exploration1 Chapter 7: OSI Data Link Layer

ET4254 Communications and Networking 1

Local Area Networks transmission system private speedy and secure kilometres shared transmission medium hardware & software

Contention Protocols and Networks

Chapter Seven. Local Area Networks: Part 1. Data Communications and Computer Networks: A Business User s Approach Seventh Edition

Access Technologies! Fabio Martignon

Link Layer and Ethernet

ELEC / COMP 177 Fall Some slides from Kurose and Ross, Computer Networking, 5 th Edition

The NIC is the main interface between the computer and the network cable.

Local Area Network Overview

Chapter 15 Local Area Network Overview

Lecture 5 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

10- and 100-Mbps Ethernet

Link Layer and Ethernet

Part3. Local Area Networks (LAN)

CMPE 257: Wireless and Mobile Networking

Goal and Outline. Computer Networking. What Do We Need? Today s Story Lecture 3: Packet Switched Networks Peter Steenkiste

Principles behind data link layer services

Chapter 4: Network Access

RMIT University. Data Communication and Net-Centric Computing COSC 1111/2061/1110. Lecture 8. Medium Access Control Methods & LAN

Computer Network Fundamentals Spring Week 3 MAC Layer Andreas Terzis

Ethernet Basics. based on Chapter 4 of CompTIA Network+ Exam Guide, 4 th ed., Mike Meyers

ECE 333: Introduction to Communication Networks Fall Lecture 19: Medium Access Control VII

Fundamentals of Networking Introduction to Networking Devices

6th Slide Set Computer Networks

Getting Connected (Chapter 2 Part 4) Networking CS 3470, Section 1 Sarah Diesburg

CSCD 433 Network Programming Fall Lecture 7 Ethernet and Wireless

IEEE standards for local area networks

2. LAN Topologies Gilbert Ndjatou Page 1

Unit II. Part A (2 Marks)

Internetworking is connecting two or more computer networks with some sort of routing device to exchange traffic back and forth, and guide traffic on

CHAPTER 7 MAC LAYER PROTOCOLS. Dr. Bhargavi Goswami Associate Professor & Head Department of Computer Science Garden City College

The random access methods we study in this chapter have evolved from a very interesting protocol known as ALOHA, which used a very simple procedure

Data and Computer Communications. Chapter 11 Local Area Network

Multiple Access Channels

Lecture 6 The Data Link Layer. Antonio Cianfrani DIET Department Networking Group netlab.uniroma1.it

Unit 10. Networks. Copyright 2005 Heathkit Company, Inc. All rights reserved.

CS 43: Computer Networks. 27: Media Access Contd. December 3, 2018

Integrating Information Systems: Technology, Strategy, and Organizational Factors

CSE 461: Wireless Networks

Lecture 8: Switched Ethernet and Collision Domains

Campus Network Design

ECE 4450:427/527 - Computer Networks Spring 2017

ECS 15; Lectures 17 and 18. The Internet. What is the internet, and how does it work? TA feedback

Chapter 4 NETWORK HARDWARE

Content. Deterministic Access Polling(1) Master-Slave principles: Introduction Layer 2: Media Access Control

Network Media and Layer 1 Functionality

Module 5 Local Area Networks

Wireless LANs. ITS 413 Internet Technologies and Applications

! High Data Rates (0.1 to 1000 Mbps)! Short Distances (0.1 to 25 km) ! Low Error Rate (10 to 10 ) Local Area Networks

Page 1. Outline : Wireless Networks Lecture 11: MAC. Standardization of Wireless Networks. History. Frequency Bands

Principles behind data link layer services:

LAN PROTOCOLS. Beulah A AP/CSE

Principles behind data link layer services:

Module 5. Broadcast Communication Networks. Version 2 CSE IIT, Kharagpur

CS 43: Computer Networks Media Access. Kevin Webb Swarthmore College November 30, 2017

Applied Networks & Security

The Link Layer and LANs. Chapter 6: Link layer and LANs

Token Bus. Message Exchange in Token Bus. Example. Problems with Token Bus

Lecture (07) Media & Switching III Ethernet Protocol & Network Hardware Components

Dr./ Ahmed Mohamed Rabie Sayed

Token Ring/IEEE 802.5

CSMA/CD (Collision Detection)

Computer Networks. Week 04 Media and Devices. College of Information Science and Engineering Ritsumeikan University

Objectives. Hexadecimal Numbering and Addressing. Ethernet / IEEE LAN Technology. Ethernet

Transcription:

Introduction to Networks and the Internet HTML tutorial today. Announcements CMPE 80N Spring 2003 Week 5 1 2 MAC Protocols MAC Protocols Round-robin. Scheduled-access. Contention-based. Contention-based ALOHA and Slotted ALOHA. CSMA. CSMA/CD. Round-robin Centralized: polling (e.g., 802.11 PCF) Distributed: token-based protocols. Token bus. Token ring. Scheduled-access: DQDB. 3 4

Round-Robin MAC Scheduled Access MAC Each station is allowed to transmit; station may decline or transmit (bounded by some maximum transmit time). Centralized (e.g., polling) or distributed (e.g., token ring) control of who is next to transmit. When done, station relinquishes and right to transmit goes to next station. Efficient when many stations have data to transmit over extended period (stream). Time divided into slots. Station reserves slots in the future. Multiple slots for extended transmissions. Suited to stream traffic. 5 6 Contention-Based MAC Contention-Based MACs No control. Stations try to acquire the medium. Distributed in nature. Perform well for bursty traffic. Can get very inefficient under heavy load. Aloha and Slotted Aloha. CSMA. CSMA/CD. NOTE: round-robin and contention are the most common. 7 8

CSMA/CD Protocol Ethernet 1. If medium idle, transmit; otherwise 2. 2. If medium busy, wait until idle, then transmit. 3. If collision detected, abort transmission. 4. After aborting, wait random time, try again. 9 10 Ethernet Most popular CSMA/CD protocol. What if a computer transmits a very long message? It keeps the line busy for very long time, while all other computers in the LAN must wait for the long message to end Rule #1 of resource sharing: All messages must be small, to allow other computers to access the line For Ethernet, the maximum size of the payload is 1,500 bytes Ethernet (cont d) What is expected performance? When only one computer needs to transmit: it can immediately access the line. When many computers want access (high traffic): Average waiting time is high. There is high probability of collision. For every collision, Xmission must start agan Fairness?. Conclusion: expected delay depends on the traffic on the LAN! 11 12

Ethernet Frame Format 8 6 6 2 4 1 Preamble DA SA Type Data CRC Postamble Polling. Token passing. Round-Robin MACs Type: identifies upper layer protocol (for demux ing) Data: 0-1500 bytes (min. is 46 bytes). DA and SA: destination and source addresses. 13 14 Token Passing Token Passing (cont d) Consider the following game: A group of friends sitting in a circle A ball is passed from friend to friend When somebody receives the ball, it passes to the friend to his/her left A person is allowed to talk only when s/he has the ball in his/her hands This guarantees that only one person talks at a time! Let s make the game more difficult: A person that receives the ball and has something to say, rather than saying it, s/he writes it on a letter Including the name of the addressee Before passing along the ball, s/he passes along the letter Everyone who receives the paper passes it to the person to his/her left If s/he is the recipient of the letter, s/he signs it after reading it Once the letter arrives back to the sender, s/he throws it away The ball is still circulating in the circle 15 16

Token Ring A Token Ring MAC works similarly: A special pattern (3-bytes word) of bits called token moves from one computer to the next. If a computer does not have a message to send, it just passes the token along. Otherwise, it seizes the token and transmits its message (including the address) instead. The message is passed from one computer to the next, until it arrives back to the sender, which destroys it (does not pass it along anymore). The addressee may write something on the message so that the sender knows it has been received correctly. Once the computer is done transmitting the message, it releases (transmits) the token. 17 Token Ring (cont d) When station wants to transmit: Waits for token. Seizes it. Transmits frame. When station seizes token and begins transmission, there s no token on the ring; so nobody else can transmit. 18 Token Ring (cont d) What is expected performance of Token Passing? It is fair. Each computer is given in turn an opportunity to transmit, even when the traffic is high. However, even if only one computer needs to transmit a message, it has to wait that it receives the token. Again, long messages should not be allowed, because otherwise one computer may hold the token for too long. 19 Token Ring Frame Format 1 1 1 2 or 6 2 or 6 4 SD AC FC DA SA Data FCS SD AC FC Token frame SD: starting delimiter; indicates starting of frame. AC: access control; PPPTMRRR; PPP and RRR priority and reservation; M monitor bit; T token or data frame. FC: frame control; if LLC data or control. DA and SA: destination and source addresses. FCS: frame check sequence. ED: ending delimiter; contains the error detection bit E; contains frame continuation bit I (multiple frame transmissions). FS: frame status. 1 1 ED FS 20

Ethernet versus Token Ring Token ring: Efficient at heavy traffic. Guaranteed delay. Fair. But, ring/token maintenance overhead. But, under light traffic? Ethernet is simple! MAC for Wireless Networks IEEE 802.11. Distributed access control mechanism (DCF) based on CSMA with optional centralized control (PCF). MAC layer PCF DCF Physical Layer Contention-free Service (polling) Contention Service (CSMA) 21 22 802.11 Local Area Networks Distributed coordination function (DCF) uses CSMA-based protocol (e.g., ad hoc networks). CD does not make sense in wireless. Hard for transmitter to distinguish its own transmission from incoming weak signals and noise. Special radios that can Xmit/receive at the same time: expensive! Point coordination function (PCF) uses polling to grant stations their turn to transmit (e.g., cellular networks). 23 24

LANs LAN (cont d) Technology for connecting multiple computers across short distances ( within a building - up to a few KM) Inexpensive Highly reliable Easy to install and manage LANs are usually privately owned/operated. Available bit-rates: up to 1 Gb/s with low delay (~10 µs) and low error rate. Topology: linear, ring or star. Typical technologies for LAN: Ethernet Token Ring 25 26 LAN Topologies Network Interface Card (NIC) Bus topology (e.g.: Ethernet) 1 2 3 Ring topology (e.g.: Token Ring) 1 5 2 3 4 2 1 Each computer is connected to the network through a special Network Interface Card (NIC) LAN transfers data independently of types of computers attached to it. The interface board shields the LAN from the characteristics of each device (e.g., speed). 4 Star topology (e.g.: Switched Ethernet) 3 4 27 28

NIC (cont d) A.k.a. LAN adapter. Acts as the interface between the computer and the network It separates the CPU from electrical and low-level networking issues. Can directly access the computer s memory independently of the CPU Direct Memory Access or DMA. Accesses memory through the data bus within the computer (typically PCI bus) PCI: parallel communication. NIC converts from parallel to serial and vice-versa. 29 30 NIC: Data Transmission To transmit a data on the network: CPU forms the data item in memory and instructs NIC to begin transmission. After this, CPU can go back to its other tasks. NIC grabs the packet in memory and handles the details of accessing the medium and transmitting bits. When it is done transmitting the data packet, NIC informs the CPU. Uses the interrupt mechanism 31 32

NIC: Data Reception PC Cards To receive an incoming data packet: CPU allocates buffer space in memory and instructs the NIC to read the next incoming packet into the buffer. NIC waits for a packet to cross the network, reads it and checks the destination address. If the destination s address matches the computer s address, NIC reads into the buffer memory and informs the CPU. Otherwise, it just discards the packet. Laptop and handheld PDAs often use creditcard-like NIC that fit into a special slot PCMCIA: overall standard for expansion slots in laptops (not only for NIC!) Two types of PCMCIA cards: PC Cards: older technology - ~ 8 MB/s Cardbus: up to 133 MB/s 33 34 Network Cables Network Cables (cont d) General rule: Available bitrate on a cable depends on type and length of the cable If you increase the cable length, the maximum bitrate will decrease Twisted pair Coax cable Fiber optic Speed Fast Fast Very fast Length Short Medium Very long Cost Cheap Medium Expensive Coaxial cables A.k.a. Thin Ethernet Wiring Used for bus topology (Ethernet) Less prone to interference than twisted pairs Can transmit hundreds of Mb/s over distances of ~1Km Uses BNC connectors (thick) Requires a terminator More expensive and bulky than twisted pairs 35 36

Network Cables (cont d) 37 Unshielded Twisted Pairs More than one twisted pair in the cable Used in the 10BaseT and 100BaseT scheme for Ethernet It is a bus topology but uses a wiring hub Uses RJ-45 connectors Wires are twisted in pairs to reduce interference Economical, but can t be longer than ~100 meters Supports bitrates of up to Gb/s 38 Cabling a Building Thin Ethernet Twisted pairs 39 40

Network Cables (cont d) Fiber Optic Cables Data is transmitted in the form of pulses of light Very high bitrate (up to 1 Gb/s) over many miles Rather expensive Connections and splices are difficult to make (-> very expensive) Often used to interconnect different LANs Remember that LANs have a maximum length specification! Wireless LANs Wireless LANs use radio bridges to transmit data Example: 802.11 (up to 11 Mb/s) An Access Point (a.k.a. base station) is connected to the wired LAN and communicates with the wireless card of nearby computers For 802.11: each Access Point only covers a radius of no more than 200 feet (and less if there are walls or obstacles) Therefore, to allow for LAN access within a building, several Access Points need to be installed in the different rooms/corridors 41 42 LAN Interconnection Switched Ethernet Extend LAN coverage. Interconnect different types of LAN. Connect to an internetwork. Reliability and security. Point-to-point connections to multi-port hub acting like switch; no collisions. More efficient under high traffic load: break large shared Ethernet into smaller segments. Hub Switch 43 44

Interconnection Schemes Hubs or repeaters: physical-level interconnection. Devices repeat/amplify signal. No buffering/routing capability. Switches: network-layer interconnection. Switching capability. Interconnect different types of networks. 45