Low-cost virtual instrumentation system of an energy-dispersive X-ray spectrometer for a scanning electron microscope

Similar documents
QUANTAX EDS SYSTEM SOP

CHARACTERISATION OF MATERIALS THROUGH X-RAY MAPPING

X-Ray fluorescence and Raman spectroscopy

NSS Spectral Analysis System Handbook Version 3.0

Evex NanoAnalysis EDS Acquisition

Using the Bruker Tracer III-SD Handheld X-Ray Fluorescence Spectrometer using PC Software for Data Collection

MAESTRO 7. Multichannel Analyzer (MCA) Application Software

JSM-7900F. Scientific / Metrology Instruments. Schottky Field Emission Scanning Electron Microscope. Ultimate Analytical tool

Advanced materials research using the Real-Time 3D Analytical FIB-SEM 'NX9000'

INCAGSR. Gun Shot Residue

XRF MAPPING: NEW TOOLS FOR DISTRIBUTION ANALYSIS

Cornell Spectrum Imager (CSI) Open Source Spectrum Analysis with ImageJ Tutorial

A Simple 2-D Microfluorescence

CHAPTER 1 MICROCOMPUTER SYSTEMS. 1.1 Introduction. 1.2 Microcontroller Evolution

Supporting Information. Highly Selective and Reversible Chemosensor for Pd 2+ Detected by Fluorescence, Colorimetry and Test Paper.

CT Reconstruction with Good-Orientation and Layer Separation for Multilayer Objects

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

Digital X-ray Pulse Signal Processor XBDPP60300

ORTEC MAESTRO -32 v6.08

PiSpec Software & Digital Pulse Processors

ENHANCEMENT OF DIFFUSERS BRDF ACCURACY

Axiomatic design of exible manufacturing systems B. BABIC²

High-Accuracy LIBS with Nanosecond and Picosecond Time Resolution Enabled by Ultrasensitive emiccd Technology

Research and Design of Universal Proportional Valve Controller

Optics for nonlinear microscopy

Research on function and design of virtual instrument based on LabVIEW Technology

Hardware and Installation

NORAN System 7. Spectral Imaging X-ray Microanalysis System. Spectral Analysis. Point & Shoot. Spectral Imaging

Confocal Raman Imaging with WITec Sensitivity - Resolution - Speed. Always - Provable - Routinely

Thermo Scientific Spectronic 200 Visible Spectrophotometer. The perfect tool. for routine measurements

UNIFIT - Spectrum Processing, Peak Fitting, Analysis and Presentation Software for XPS, AES, XAS and RAMAN Spectroscopy Based on WINDOWS

Scanned by CamScanner

Hyperspectral Microscope based on Imaging Fourier transform Spectrometry. Dr. Li Jianping, Claude. Copyright: Claude.

Probe for EPMA: Software for Electron Probe MicroAnalysis

KT-10 Plus Magnetic Susceptibility Meter

ORTEC MAESTRO -32 v6.08

Validation of aspects of BeamTool

Refraction and Polarization of Light

JSM-IT100 Series. InTouchScope. Scientific/Metrology Instruments. Scanning Electron Microscope

ION BEAM MILLING SYSTEM FOR TEM, SEM AND LM PREPARATION. Leica EM RES102

NDT OF SPECIMEN OF COMPLEX GEOMETRY USING ULTRASONIC ADAPTIVE

Closeout Action: v/w Date n=f-«submitted

Onyx. XwinSys. In-line Non-Destructive Inspection and Metrology for the Semiconductor and Micro-Electronic Industries

Exam Microscopic Measurement Techniques 4T th of April, 2008

1

Formula for the asymmetric diffraction peak profiles based on double Soller slit geometry

Optics Vac Work MT 2008

3D Energy Dispersive Spectroscopy Elemental Tomography in the Scanning Transmission Electron Microscope

The use of spreadsheets with analytical

Proton dose calculation algorithms and configuration data

Satellite Image Processing with the PDICalc System

Refraction and Polarization of Light

Introduction to Raman spectroscopy measurement data processing using Igor Pro

Comparison between 3D Digital and Optical Microscopes for the Surface Measurement using Image Processing Techniques

New Generation Explorer Handheld XRF. EXPLORER 7000 Mineral Ore Analyzer

ZEISS Software Module Catalog Extend the Functionality and Performance of Your Microscope

Optical Topography Measurement of Patterned Wafers

specular diffuse reflection.

GENESIS SPECTRUM USER S MANUAL. COPYRIGHT EDAX INC. ALL RIGHTS RESERVED EDAX INC. 91 McKEE DRIVE MAHWAH, NJ USA

MCA8000D OPTION PA INFORMATION AND INSTRUCTIONS FOR USE I. Option PA Information

diffraction patterns obtained with convergent electron beams yield more information than patterns obtained with parallel electron beams:

MICHELSON S INTERFEROMETER

Chemical Characterization of Diverse Pharmaceutical Samples by Confocal Raman Microscopy

TR Series Surface Roughness Tester for workshop and laboratory

Coupling of surface roughness to the performance of computer-generated holograms

C101-E137 TALK LETTER. Vol. 14

THE EFFECT OF THE FREE SURFACE ON THE SINGULAR STRESS FIELD AT THE FATIGUE CRACK FRONT

Condenser Optics for Dark Field X-Ray Microscopy

Design and Implementation of Remote Medical Monitoring System for. Homecare

DEMONSTRATION OF THE EVOLUTION OF SPECTRAL RESOLVING POWER AS A SUPERPOSITION OF HIGHER ORDER DELAYED BEAMS

A Matlab/Simulink-based method for modelling and simulation of split Hopkinson bar test

EDX Spectra. Used to set the amount of time for which the spectrum will be acquired (dwell), and to perform the following functions:

DICOM. Supplement 188 Multi-Energy CT Imaging. DICOM Working Group 21 Computed Tomography

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips

KT-10 Magnetic Susceptibility Meter

Silicon Avalanche Photodiodes in Dynamic Light Scattering

Automatic Test And Diagnosis System for Amplitude And Phase Calibration Circuit Board Based on VXI Bus

Probe for EPMA Purchase Justification

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Sample Sizes: up to 1 X1 X 1/4. Scanners: 50 X 50 X 17 microns and 15 X 15 X 7 microns

HIGH-PERFORMANCE TOMOGRAPHIC IMAGING AND APPLICATIONS

Project Report on. De novo Peptide Sequencing. Course: Math 574 Gaurav Kulkarni Washington State University

Enhanced material contrast by dual-energy microct imaging

ChromQuest 5.0 Quick Reference Guide

Supporting Information

If you have written custom software for the MCA8000A, it will not be compatible with the MCA8000D.

QUARTZ PCI. SLOW-SCAN for ANALOG SEMs THE MEASURING, ANNOTATING, PROCESSING, REPORTING, ARCHIVING, DO EVERYTHING SOLUTION FOR MICROSCOPY

Open Access A New Optical Design of Worm Precision Detection Based on FPGA

Adaptive Focusing Technology for the Inspection of Variable Geometry. Composite Material

Introduction of Hitachi SU1510

Component Level Prediction Versus System Level Measurement of SABER Relative Spectral Response

Application of a neural network for improving the quality of ve-axis machining

Throughput of an Optical Instrument II: Physical measurements, Source, Optics. Q4- Number of 500 nm photons per second generated at source

Serial Communication Based on LabVIEW for the Development of an ECG Monitor

SEM topography. Live quantitative surface topography in SEM

Hydrocarbon Index an algorithm for hyperspectral detection of hydrocarbons

3. Image formation, Fourier analysis and CTF theory. Paula da Fonseca

Annexure: 1 SPECIFICATION FOR HPGE DETECTOR AND ACCESSORIES

The star of the new desktop spektrometer class: BELEC LAB 3000s:

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Transcription:

Journal of Automated Methods & Management in Chemistry Vol. 24, No. 4 (July August 2002) pp. 121 125 Low-cost virtual instrumentation system of an energy-dispersive X-ray spectrometer for a scanning electron microscope Junfeng Lei 1, Libo Zeng 2 *, Ronggui Liu 2, Juntang Liu 2, Zelan Zhang 2 and Jiming Hu 1 * 1 Department of Analysis-Measurement Science, Wuhan University, Wuhan 430072, PR China 2 College of Electronics Information, Wuhan University, Wuhan 430072, PR China The paper describes an energy-dispersive X-ray spectrometer for a scanning electron microscope (SEM-EDXS). It was constructed using the new architecture of a virtual instrument (VI), which is low-cost, space-saving, fast and exible way to develop the instrument. Computer-aided teaching (CAT) was used to develop the instrument and operation rather than a traditional instrument technique. The VI was designed using the object-oriented program language C and compact programmable logical devices (CPLD). These include spectra collection and processing, quantitative analysis and X-ray-intensity distribution analysis. The procedure is described in detail. The VI system gives an e ective and user-friendly human interface for the whole analytical task. Some examples are described. Introduction Energy dispersive X-ray spectrometry (EDXS) is a fast, non-destructive and multi-elemental analysis technique. When it is connected to a scanning electron microscope (SEM), it can conveniently obtain the information of compositions with the surface characteristic of the sample. It is widely applied in research and in industry analysis, such as in material, interface and surface, mineralogy, etc. [1] Although the analytical technique is mature, the quantitative analysis technique can be improved especially for light elemental analysis, biological specimens and rough surfaces [2± 4]. New computerized commercial instruments are expensive and lack the exibility of a purpose-built function. The analysis speed of the traditional instrument is slow and the data processing is limited. It is diæ cult to link these with new methods of data processing because the installed computer cannot link to newer systems. The compromise between the cost and convenience is presented here. The applications of virtual instrument (VI) have become more popular in modern instrument development and may play a role in avoiding this con ict. A VI in principle is a computer-based, software-driven instrument for testing, measuring and process control purposes. By incorporating standard computer hardware interfaces (such as plug-in board, RS-232 and IEEE 488) and using the computationa l power of a generic central processing * To whom correspondence should be addressed. e-mail: jmhu@whu. edu.cn unit (CPU), a VI de nes its speci c functions through software programming [5]. Compared with hardware-based instruments, the advantage of a VI is its exibility. This is of particular value in open-ended research studies. The functionality and user± machine interface of conventional test instruments are manufacturer-de ned. Consequently, end-users have limited options to expand or modify the exiting functions. In contrast, the functionality of a VI can be explicitly de ned, modi ed and expanded by its users through software programming. In this work, the method is adopted with an eye to the future. VIs were written in C, which performs all the analytical functionalities of SEM-EDXS. A complex programmable logical device (CPLD) was used to develop the hardware. Type of analysis [1] The main functions of instrument include X-ray point analysis (XRPA); X-ray line scans (XRLS) and X-ray distribution images (XRDI). XRPA is the basic functionality of SEM-EDXS, which can give the qualitative and quantitative analysis for a point (microregion) on the surface of the sample. Data collection includes manual, timing, counting and dead time correction. In general, the last three modes are mainly used for quantitative analysis with a standard sample while all the modes can be used for non-standard analysis. The second analysis is XRLS. In this case, the electron beam is scanned slowly along a single line in the electron image of sample. The intensity for the element being investigated is plotted directly to the SEM or PC monitor. The X-ray line scans in the SEM can only show the relating variations of one elemental concentration, but it can give more information on PC. The third mode is XRDI, which can calculate the approximate composition distribution of the surface of the sample. This analysis also can be ful lled on the SEM or the PC using similar line scans. The analysis on the SEM will give the result of one element, while the PC can show the distribution of many elements. Hardware description Figure 1 shows the EDXS hardware system con guration developed. This hardware includes the following modules: signal preprocessing, spectra pulse processing, line- Journal of Automated Methods & Management in Chemistry ISSN 1463± 9246 print/issn 1464± 5068 online # 2002 Taylor & Francis Ltd http://www.tandf.co.uk/journals 121

control, and functions can integrate together into a single board, even into a single chip. It also decreases the space taken by the instrument. In addition, the integrated realization may reduce the faulty ratio of the instrument. The multichannel analyser (MCA) is implemented by software. A fast AD method is used for the digitalized pulse peak. Because the width of the pulse time is larger than the sum of the AD convert time and the computer IO operation time, the computer memory becomes the memory of the MCA. This method of implementation provides a exible way for data handling and displaying the data and it reduces the complexity of the hardware implementation. A more in-depth description of the section is included in Junfeng Lei et al. [6]. Figure 1. Hardware modules diagram. (1) Si(Li) detector; (2) detector control and signal preprocessing module; (3) SEM; (4) A/D covert and sample/hold section; (5) baseline monitor; (6) control signal bu er; module (7) is the line-scanning and areascanning drivers; (8) spectra data bu er; (9) analytical functionality; (10) line-scanning and area-scanning data bu er; (11) PC interface; (12) personal computer. scanning feedback and area-scanning feedback. The detector collects X-ray photons, and the photon is converted to an electric charge, which is proportional to the energy of the incident X-ray photon. An EDAX9100 is used (EDAX Inc., 91 McKee Drive, Mahwah, NJ 07430, USA). The signal-processing circuit and the detector-controllin g circuits for signal processing were designed in-house. The output signals of module 2 are a composite of the spectra pulse, the inhibited signal and the signal of the X-photon number. The spectra pulse is similar to a Gaussian function, and the band width of the pulse is about 80 ms. The peak-to-peak value is in the range 10 to 10 V. The inhibited signal comes from the detector discharges. When the signal is active, the whole system must stop working. The width of this signal is about 200 ms and the amplitude is 5 V. The third signal represents the number of X-photons, which is a 0.5-ms-wide digital pulse. One pulse represents an X- photon and the amplitude is 5 V. In gure 1 the two control signals are represented by the box arrow pointed to module 6, and the spectral pulse signal is the arrows directed to the modules 4 and 5. The long dashes box represents the on-chip functionalities, which mainly include some control facilities and the computer interface. These are implemented in two electrically reprogrammable logic devices, the EPM7128S (Altera Digital Library; Altera Corp., 1998, 101 Innovation Drive, San Jose, CA 95134, USA) with an in-system programmability (ISP) technique that provides a exible means of upgrading the instrument or changing its functionality. The short dashes box represents on-board realization, mainly including some interface such as A/D, S/H and D/ A. The AD IC is a 12-bit and 10-ms device. For the 80-ms pulse width, it is fast enough to data transform and transmit to computer without the loss of the pulse. The main advantage of the development is the instrument Software architecture The whole programme, which can run under win9x on any IBM-compatible personal computer, was written in C. The instrument s operation interface uses a combination of menus and toolbars. The hardware control and operation was encapsulated in a Virtual Device Driver (VxD) programme developed only for win9x. The programme for the work modules of the whole system are described below. The work ow of the analytical modules is shown in gure 2. A more detailed description of the section is included in Libo Zeng et al. [7]. Figure 2. Flow diagram of the X-ray energy-dispersiv e analytical instrument. 122

Figure 3. Interface of a quantitative analysis of a standard sample (Zn/Cu alloy: GBW02104). Calibration Because of the drift of the instrument circuit, the instrument often needs to correct the energy gauge. The instrument supplies hardware and software calibration for this task. The hardware method is applied only when the instrument is initially installed or the change of the energy gauge is large, while the software method adopts an algorithm such that the energy gauge is dilated and shrunk and translated linearly. This method is often used for user scaling for a small change of energy gauge and it is enough to handle the majority of cases. Spectra collection and identi cation The spectra collection adopted a soft MCA. The spectra pulse discrimination was ful lled by the hardware, but the classi cation of the spectra pulses in terms of the pulse height and run-time display were provided by a computer program. The element identi cation often used is the look-up table. Because of the diversity of the sample and the complexity of the spectra, the complete automatio n of the identi cation is completely reliable. In this system, identi cation is provided by a semi-automated identi cation assisted by user intervention. X-ray point analysis To obtain the composition information of a sample, the system supplies quantitative or semiquantitative analysis using the ZAF correction algorithm similar to Frame C. There are three methods for background subtraction available to user in the program: interpolation, background simulation and background lter. For each different spectrum character of the diå erent samples, these methods supply diå erent selection criteria for background subtraction in individual analytical cases. Spectra stripping can be ful lled by peak tting of computer-generate d peaks whose pro le is a modi ed Gaussian function or by library spectra if the spectra overlap is acceptable. In addition, miscellaneous peaks are automatically removed from the spectrum by a menu command for all identi ed elements. As mentioned above, there are many kinds of algorithms for quantitative analysis that are applicable for all cases. It is important that the original spectra data are open for users. In this system, the data are stored in an ASCII le. The spectra data are 4096 double-word arrays at the front of the le as well as data for display of the spectra. Intensity distribution analysis This mode can only supply qualitative information of sample compositions in the analytical region because the topograph of the sample seriously in uences the accuracy of analytical mode. It includes four approaches to get the intensity distribution: XRLS on the SEM and computer, and XRDI on the SEM and computer. The key implementation of the function is the corresponding relation between electrons image and the intensity of the X-ray along the analytical line or the whole 123

(a) (b) (c) (d) Figure 4. Quasidigital mapping of X-ray intensity on a personal computer. The specimen is a Cu net on a sample holder whose composition is Al. (a) Secondary electrons image of the specimen. (b) Line-scanning of two elementals (Cu/Al). The curve is the distribution of Cu and Al; the straight line in the image is the position of line-scanning on the specimen. (c) Area-scanning of Cu. (d) Area-scanning of Al. The white dots in (c) and (d) represent the intensity distribution of the character X-ray of Cu and Al on the surface of the specimen. SEM image. Two parameters are supplied for the XRLS to adjust the corresponding relationship between the intensity distribution curve and the scanning line. Two other parameters are used to enhance the eå ect of the display at the rst installation, while the adjustment of only one parameter is needed to enhance the display eå ect within general analysis. For XRDI, the expression of intensity distribution is simpler than XRLS, so the two parameters only need to adjust the corresponding relation between the intensity distribution and the image. A dialogue is supplied to set up the parameters, and an empirical expression is adopted to adjust the algorithm 124

Table 1. Results of the quantitative analysis of a standard sample (Zn/Cu alloy: GBW02104). Elemental Nominal (WT%) for the corresponding relationship between the intensity distribution and the image. The intensity distribution analysis is also for quasidigital mapping because it was not necessary to control the scanning mode of the electron beam and the digitalization of the electron image through image sampling. Results and examples This work (WT%) Relative err.% Cu 63.31 63.43 0.19 Ni 14.87 15.28 2.76 Zn 20.81 20.14 3.22 Mn 0.32 0.34 6.25 Fe 0.47 0.56 19.15 Si 0.146 0.25 6.67 Mg 0.038 Pt 0.019 As 0.0098 Sb 0.0020 Bi 0.0019 P 0.0048 Ð, Compositions cannot be detected in the analytical instrument. Experimental condition: accelerate voltage, 25 kev; tilt angle, 08; take-oå angle, 388. A typical analytical example is shown in gure 3. It is a graphical user interface (GUI) serving as a panel for control and display of the results of a VI in a quantitative analysis routine. The sample measured is a standard sample (National Standard GBW02104, Zn/Cu alloy). The spectra was collected and evaluated by the system. It is a test of the whole system including the spectrometer, the spectra processing and the quantitative methods. The specimen is a chip with a curve surface that is attened with a mechanical pressure about 800 kg. The results are given in table 1 and show that the accuracy is within 5% of the certi ed values for most of the elements. Larger diå erences are found only for the elements close to the detection limit. An example of quasidigital mapping on PC is given in gure 4, which includes line and image distribution. In the function, the mapping provides multi-elemental analysis once due to the power of computer. It can also ful l the colour multi-elemental mapping within an image. The above works use custom-designed distribution on a PC and requires an online SEM image-analysis system to carry out the image collection. Conclusion A virtual instrument of EDXS for SEM is described. All of the main components, with the exception of the Si (Li) detector and analogue signal-processing circuit, are built into a single circuit board. It was developed to replace the old EDXS in use in SEM. The system is inexpensive (total cost under $6000), and is smaller, faster and more exible than the old one. It can be used with the new Si (Li) detector expediently. The system was used for computer-aided teaching (CAT) to accomplish the instrument development and operation. The whole system has been running since 1999 in the SEM without any inner malfunction. Several new applications and developments based on the architecture are in development. Acknowledgements The work was supported by the Department of National Science & Technology. References 1. Goldstein, J. I. et al. (eds), Scanning Electron Microscopy and X-ray Microanalysis (New York: Plenum, 1981). 2. Szal O ki, I., Torok, S. B., Ro, C.-U., Injuk, J. and van Grieken, R. E., Anal. Chem., 72 (2000), 211R. 3. Torok, S. B., Labar, J., Injuk, J. and van Grieken, R. E., Anal. Chem., 70 (1998), 495R. 4. Torok, S. B., Labar, J., Schmeling, M. and van Grieken, R. E., Anal. Chem., 68 (1996), 467R. 5. Wang, C. and Gao, R. X., IEEE Trans. Instrum. Meas., 49 (2000), 325. 6. Junfeng Lei, Libo Zeng, Juntang Liu and Ronggui Liu, Development of Hardware of VI System for SEM-EDXS. Technical Report in Group of Instrument Development, August 1999. 7. Libo Zeng, Ronggui Liu, Junfeng Lei and Zelan Zhang, Development of Software of VI System for SEM-EDXS. Technical Report in Group of Instrument Development, January 2000. 125