Preparing for a 5G Future

Similar documents
Planning the Internet of Things - New Technologies, New Challenges

5G Technology update. Dr. David Hammarwall Head of Product Line 5G, Ericsson

version 3.4 Wireless Network Engineering Software Prediction and Measurement-based Planning and Optimisation High Performance GIS

Making Mobile 5G a Commercial Reality. Peter Carson Senior Director Product Marketing Qualcomm Technologies, Inc.

5G systems. meeting the expectations of the Networked Society. Dr Magnus Frodigh Director Wireless Access Networks GSM. Wi-Fi. New technologies 5G

The promise of higher spectrum bands for 5G. Rasmus Hellberg PhD Senior Director, Technical Marketing Qualcomm Technologies, Inc.

5G in Reality. Mikael Höök, Director Radio Research Ericsson Research

Preparing for the 5G Future

LPWA vs LTE: What should Mobile Operators Do?

version 3.3 Wireless Network Engineering Software Prediction and Measurement-based Planning and Optimisation Advanced 5G Capabilities

5G Priorities. Luke Ibbetson, R&D Director Vodafone Group. C1: Public

Towards 5G Commercial Deployment. Janne Peisa, Ericsson Research

5G From Fixed Wireless Today to Mobility & Transformative Improvements by 2019

Dr. Evaldas Stankevičius, Regulatory and Security Expert.

Towards 5G NR Commercialization

5G NR to high capacity and

What s 5G? Dr Dean Economou Chief Transport Strategist, Telstra

wi4 Fixed Point-to-Multipoint Canopy Solutions

E vo lu t io n T ech n o lo g y:

Global Tier 1 5G Deployments and X-Hauling

Une vision d opérateur sur les usages et déploiements de la 5G. Eric Hardouin, Orange Labs 26 September 2017


Transform your bottom line: 5G Fixed Wireless Access

Massive MIMO. Nokia Massive MIMO enables 5G-like user experiences. Executive Summary.

The challenges, opportunities and setting the framework for 5G EMF and Health

5G Three UK s View. Prof Dr Erol Hepsaydir Head of RAN and Device Strategy & Architecture Three UK

Ericsson networked society. 27 th of September 2017, Espoo

CHALLENGES TO LTE PROGRESS. The Evolution of Mobile Broadband and Regulatory Policy

Leading the world to 5G

Evolution to 5G from a 4G/LTE World

BROWSING Feature phones and mobile broadband introduction. VIDEO Smartphone popularization and mobile data traffic exponentially increase

The Networked Society

5G a Network Operator s Point of View. Tilemachos Doukoglou, Ph.D. Cosmote / OTE S.A. Labs

From heterogeneous wireless networks to sustainable efficient ICT infrastructures: How antenna and propagation simulation tools can help?

Mobilising the outdoor small cells market. White paper

Roadmap for 5G Enhancements to Communication Technology

Mobile and Wide-Area IoT: LPWA and LTE connectivity

SMALL CELLS: AN INTRODUCTION Strategic White Paper

802.11n in the Outdoor Environment

Global 5G spectrum update

3G Technical Evolution as an evolving broadband solution

Making 5G a commercial reality

ZTE All rights reserved. Leading 5G Innovations

Sanjeev Athalye, Sr. Director, Product Management Qualcomm Technologies, Inc.

Enhanced Mobile Broadband, more capacity and higher data rates to each user.

5G in Cable. The Future of Broadband Access. Mar 29, Nokia 2017

VOICE TO DATA : 5G FOR INCLUSIVE GROWTH A PARADIGM SHIFT. Tilak Raj Dua

Flexible networks for Beyond 4G Lauri Oksanen Head of Research Nokia Siemens Networks

How do we plan for 5G NR. coming in 2019? network deployments. Manish Tripathi. Vice President, ESG Qualcomm Technologies, Inc.

Making 5G a reality: Addressing the strong mobile broadband demand in 2019 & beyond

The 5G consumer business case. An economic study of enhanced mobile broadband

5G for people and things Key to the programmable world

5G in reality technology Workshop

Keysight Technologies PROPSIM F64 5G Channel Emulation Solution - F8800A

5G enabling the 4th industrial revolution

The Living Network: Leading the Path to 5G. Robert Olesen Director, InterDigital Inc InterDigital, Inc. All rights reserved.

Perspective from Industrial Associations. 5G Spectrum Requirements

5g for connected industries

20th GISFI Standardisation Series Meeting (GSSM) Dr. Navin Kumar Amrita Vishwa Vidyapeetham (University) Bangalore

Network. Gediz SEZGİN CAPITAL MARKETS DAY 2018

Why you need to accelerate the move to LTE. Ken Bednasz VP Application Engineering - Americas

Next-generation Mobile Communications System: 5G

Wireless systems overview

Network Vision: Preparing Telefónica for the next generation of services. Enrique Blanco Systems and Network Global Director

Delivering First 5G NR Device Technology for Volume Shipments

Real-World LTE Performance for Public Safety

New business opportunities for 5G NR

4G Americas The Voice of 5G for the Americas

Smart Energy for Smart Cities Webinar 28 March Andy Wood, Director, Business Development, Smart Energy & Home Security and Automation, Qualcomm

On the roads to 5G: theory and practice

5G First to Market. Nigel D Rozario Ericsson Australia. PA Commercial in confidence Page 1

Fiber in the backhaul : Powering mobile Broadband

Wireless Communication

Cambium Networks LTE Program. EMEA Partner Event Budapest, July 2018

Building the Business Case for Mobile Broadband The HSPA Evolution Path

The Internet of Things

Making 5G NR a reality

Status of KT s 5G trial service at PyeongChang Winter Olympic Games

# F N. 5G Glossary Alphabetical Index. 3GPP 3 5G 3 5G-NR 3 5GTF ax 3. FWA 7 Network Slicing 12. NSA Mode 12 NB IoT 12 Gigabit LTE 8

Public Consultation on the BEREC Work Programme 2018

The 5G business potential

INICTEL-UNI 15/11/2010. Tecnología de Banda Ancha Inalámbrica LTE

WHITE PAPER ULTRA LOW LATENCY MICROWAVE THE NEED FOR SPEED: BEST PRACTICES FOR BUILDING ULTRA-LOW LATENCY MICROWAVE NETWORKS

From 4G to 5G TDD Paves the Way for Future Mobile Broadband

4G Demystified: The Plain Truth About LTE and WiMAX. Business Planning Considerations

Asia pacific analyst forum. Beijing 15 september 2011

BII - Broadband for Industrial Internet

5G Update. Kai Sahala, Head of 5G E2E Sales APJ May 2018

LTE : The Future of Mobile Broadband Technology

Spectrum for 4G and 5G. Qualcomm Technologies, Inc. October, 2016

5G Techniques for Ultra Reliable Low Latency Communication. Dr. Janne Peisa Principal Researcher, Ericsson Research

The importance of RAN to Core validation as networks evolve to support 5G

Welcome to the 5G age

CBRS Presentation. Spectrum as a catalyst for innovation

5G spectrum in Europe and Latin America

5G Commercial realization: From standards to deployments

Mobile Broadband Comparison. CDMA Development Group March 2008

5G The next generation wireless connectivity for the Networked Society. Dr Sara Mazur Head of Ericsson Research

Support up to 1000 times more capacity

Hoover 5G Technology Dr. Kirti Gupta Vice President, Technology & Economic Strategy, Qualcomm Inc. January 10, 2019

Transcription:

Preparing for a 5G Future RF Planning of Millimeter Wave Frequencies for RAN Evolution SOLUTION BRIEF Orchestrating Network Performance

Expectations for 5G According to the Global mobile Supplier s Association (GSA) there are 651 LTE networks around the world serving 2.54 billion subscribers (Source: Evolution from LTE to 5G -January 2018 Update, 1/18). The initial goals for the LTE standard were improved spectral efficiency, a simpler architecture built on internet protocol (IP) and greatly reduced latency. In December 2017, the 3GPP ratified the Non-standalone mode (NSA) standard for 5G in Release 15, with Standalone mode (SA) scheduled for completion later in 2018. These 5G networks will benefit from an OFDM-unified air interface, the ability to utilize millimeter wave (mmwave) frequencies that support much higher data rates as well as flexible deployment options. Mobile PCs, tablets and routers 100 80 Smartphones 9x Between 2013 and 2023, there will be a 9x growth in smartphone traffic Monthly Exabytes 60 40 20 95 % Around 95% of mobile data traffic will be from smartphones by the end of 2023 0 2013 2018 2023 Figure 1. Market driver for 5G: around 95% of mobile data traffic will be from smartphones by the end of 2023, according to the Ericsson Mobility Report. The next generation of telecommunications will have to support greater data demanded by global wireless subscribers. Ericsson predicts by 2023 global smartphone traffic will be 9x the amount consumed in 2013. As of today, there is no single killer app that is driving development. Expectations for 5G include delivery of greater capacity, with improved latency and reliability to meet requirements of all users both human and machine-to-machine. 5G introduces a number of key technologies, including: Use of new mmwave frequencies up to 300 GHz (i.e., much higher than those used for 2-4G networks) Scalable OFDM based interface to address different spectrum and deployment requirements Flexible slot-based structure to support low latency and ultrareliable and low-latency communications (URLLC) requirements The World Radiocommunication Conference that is tasked with synchronizing global telecommunications bands meets only every 3-4 years. The next meeting is not scheduled until 2019. In the interim, various national regulatory bodies (e.g., the FCC in the United States) are releasing mmwave frequencies for test systems and assigning spectrum. Vendors and operators working on 5G scenarios need to assess and simulate equipment at various frequencies in their RF planning software. Adoption of Massive MIMO antenna techniques to deliver beamforming and MU-MIMO with massive antenna arrays 2

According to the GSA, 113 operators in 56 countries are investing in 5G technology in the form of demos, lab trials or field tests that are either under way or planned as of January 2018. With different spectrum being utilized around the world, operators and vendors are performing trials on traditional mobile frequencies, as well as sub 6 GHz and mmwave frequencies. Now that the 5G New Radio (5G NR) standard has been agreed (at least for those with existing 4G networks), the work can begin for RF engineers tasked with planning upgrades. There are many variables to be analyzed: frequencies to employ, channel structures to utilize, where and how to use Massive MIMO antennas, etc. An accurate 5G RF planning application allows for the unique considerations of the new technologies to be simulated and the dramatic propagation characteristics of mmwave frequencies to be factored in at the earliest stages of planning. 35 30 25 20 15 10 5 0 3400-3600 MHz 3600-3800 MHz 24.25-29.5 GHz Source: GSA, January 2018 700 MHz 1400-1500 MHz 600 MHz 64-86 * GHz 37-43.5 GHz 3800-4200 MHz 3300-3400 MHz 2300 MHz 2600 MHz 800 MHz 900 MHz 4400-4900 MHz 2000 MHz 2100 MHz 2500 MHz 31.3-31.8 GHz Figure 2. RF planning software is critical for assessing traditional mobile system frequencies (i.e., 600 MHz to 2.1 GHz) vs. mmwave options. 3GPP Roadmap 2017 2018 2019 2020 Standards Rel. 15 Rel. 16 Rel. 17 Standalone Mode (SA) Deployments Non-standalone Mode (NSA) Rel. 15 NR Figure 3. With Non-standalone Mode 5G NR finalized in late 2017, operators with existing networks can start planning for 5G. Standalone Mode new networks based solely on 5G will be standardized later in 2018. Challenges for mmwave Frequency Planning Engineers have planned networks using RF design software since the first digital networks in the 1990 s. Typical 4G networks and earlier technologies have been designed with propagation models that are adapted to sub-6 GHz spectrum bands. Advanced propagation models that support diffraction, reflection and refraction based on ray tracing or ray launching technologies have been utilized in dense urban areas (e.g., cities) for the last five years. These models have evolved to a point where they can be used in everyday planning and optimization but not all are capable of working with mmwave frequencies. Propagation distances will be dramatically less at mmwave frequency ranges. Recent studies, however, have shown that non-line-of-sight (NLOS) signals can contribute to propagation distances and potential related interference. 5G 4G Large millimeter wave bandwidth opportunity 6 GHz 24 GHz Figure 4. The untapped potential of mmwave frequencies will support the global deployment of 5G. 100 GHz 3

How are the propagation distances expected to be maximized between transmitter and receiver using mmwave frequencies? Part of the answer involves advanced antenna techniques such as Massive MIMO. Single User MIMO (SU-MIMO) and multi-user MIMO (MU-MIMO), as well as beamforming, that will be used to improve network coverage and capacity. Even so, 5G cells need to be closer to each other compared to 2G/3G/4G networks, to compensate for the fact that wireless signals attenuate very quickly in the mmwave spectrum. Atmospheric effects on millimeter frequencies include absorption by gases as well as rain attenuation (i.e., rain fade). Gas absorptions are typically caused by oxygen and water vapor, with a minimal attenuation effect. Rain fade is the largest contributing factor to signal loss at higher frequencies. Another key variable to be considered for mmwave propagation is vegetation. It is important to leverage geographical data that accurately depicts individual trees and forests, and to compute the associated propagation loss correctly. Attenuation - db/km 30 100 10 1 0.1 0.01 0.001 10 RH = 0% RH = 10% RH = 50% RH = 100% Wavelength - mm 35 GHz Frequency - GHz 77 GHz 3 94 GHz 100 RH = 100% + 200m visibility fog RH = 100% + 100m visibility fog RH = 100% + 50m visibility fog Figure 5. Signal attenuation caused by fog and rain at different frequencies. Planet 5G mmwave Modeling Capabilities Planet was the first RF planning platform to deliver support for 5G mmwave frequency modeling before the standard was finalized. With Planet 7 for 5G planning now available, it leads the way again with support for key new technologies including flexible numerology and Massive MIMO. Accessible through the Propagation module, the Planet 3D model supports frequencies up to 100 GHz. With Planet 7, it is possible today to run predictions in different frequencies to see the net effect on coverage. 2G TDMA-FDMA GSM / GPRS / EDGE 3G WCDMA / HSPA cdma2000 / EVDO lanet Technology Modules 4G 5G LTE 5G NR Wi-Fi IoT NB-IoT & Cat-M SIGFOX Public Safety P25 TETRA 4 Flexible Software Deployment Options Planet has multiple deployment models to fit users needs and budgets. New options include public and private cloud implementations with leased 3D building data and 2D DEMs and clutter that let customers add new user licenses and privileges in real time. Of course, traditional desktop, client-server and enterprise deployment models are still available. Advanced Simulation Capabilities The real value of any simulation software is its ability to reproduce the real world. The Planet 3D Model (P3M) supports NLOS predictions and atmospheric loss calculations including rain fade. Propagation Modeling at mmwave Frequencies In combination with the advanced simulation capabilities offered, Planet is able to provide a reliable simulation of mmwave propagation for frequencies up to 100 GHz. While assumptions can be made about the expected propagation attenuation from frequencies in use today (900 MHz, 1800 MHz, 2.1 GHz) to proposed mmwave frequencies, the impacts of MU-MIMO and SU-MIMO will also have a dramatic impact. For 5G to live up to its potential requires a great deal more spectrum to be made available around the world; this will be achieved by utilizing the mmwave spectrums above 30 GHz. Performing simulations in advance within Planet at these mmwave frequencies helps avoid disappointing results in the field. Live Data Propagation Optimization Automatic Cell Planning Configuration Management WiMAX Call Trace and Geolocation Engine Planet 3D Model Optional Modules Automatic Site Placement Drive Test Performance Management LoRa Universal Model Single Site Optimization Figure 6. The Planet Propagation module, including the Planet 3D Model and related 3D viewing capabilities, supports mmwave frequency modeling. Planet 5G Use Cases Evaluate mmwave cell coverage Assess Massive MIMO coverage and capacity gains Investigate cable/mso fiber vs. 5G fixed wireless access (FWA) Dimension new equipment requirements

Continuing Innovation Planet R&D and product management keep a close eye on the standards discussions for 5G. Working closely with innovating operators and vendors, the software continues to evolve and extended support for standalone mode will be added once that standard is finalized. Dense Urban Environments in 3D Planet offers an extensive small-cell planning capability. Small cells are expected to play an important growing role in getting capacity closer to the subscriber for 5G. Building on existing small-cell planning functionality in Planet, the mmwave capabilities will allow for nominal designs and CAPEX plans for HetNet designs. Summary Wireless operators and the vendor community that serves them have worked tirelessly to develop the technologies that make up the new 5G NR standard. The Planet team has been working as part of this ecosystem to improve their RF planning software and build on its leading 5G mmwave propagation modeling capabilities. To be clear: 5G is an RF planning challenge. The diverse spectrum options under consideration and their dramatically different propagation characteristics mean that simply overlaying existing 4G sites with 5G radios is not a viable option. Planet 7 for 5G is an RF planning application proven on pre-standard 5G networks that is ready for the challenge of planning 5G commercial networks. With simulation software, accuracy matters. There is no more accurate 5G planning software on the market today than Planet 7. 1.9 GHz 28 GHz 39 GHz 60 GHz Figure 7. Evaluate the propagation characteristics of different frequency bands with Planet. These plots compare mmwave frequencies against a traditional 1900 MHz frequency using the Planet 3D Model. Expert Customer Support 24x7 Our global support team is ready to help around the clock. As a provider of planning software with a leading research group for new wireless technologies, InfoVista is the ideal partner for your 5G technology investigations. Cable operators can do their business case assessments for 5G as a last mile alternative to fiber. 5

Orchestrating Network Performance ABOUT INFOVISTA InfoVista is the leading provider of cost-effective network performance orchestration solutions at the service of a better connected and collaborative world. Our award-winning solutions empower communications service providers and large enterprises to ensure a high-quality user experience by achieving optimal network performance and guaranteeing business-critical application performance. InfoVista s expertise and innovations provide a new level of actionable network, application and customer intelligence, visibility and control across all services, all technologies, and all domains of both the fixed and mobile networks. Using our solutions, eighty percent of the world s largest service providers and leading global enterprises deliver high-performing and differentiated services, plan and optimize networks to match application and service demands, and streamline network operations while keeping total cost of ownership as low as possible. www.infovista.com Copyright InfoVista - All rights reserved.