UCB CS61C : Machine Structures

Similar documents
CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures

UCB CS61C : Machine Structures

! CS61C : Machine Structures. Lecture 22 Caches I. !!Instructor Paul Pearce! ITʼS NOW LEGAL TO JAILBREAK YOUR PHONE!

CS61C : Machine Structures

CS61C : Machine Structures

Review : Pipelining. Memory Hierarchy

CS61C : Machine Structures

CS61C : Machine Structures

CS61C - Machine Structures. Lecture 17 - Caches, Part I. October 25, 2000 David Patterson

Direct-Mapped Cache Terminology. Caching Terminology. TIO Dan s great cache mnemonic. Accessing data in a direct mapped cache

Lctures 33: Cache Memory - I. Some of the slides are adopted from David Patterson (UCB)

CS61C : Machine Structures

CS 61C: Great Ideas in Computer Architecture. Direct Mapped Caches

Review: Performance Latency vs. Throughput. Time (seconds/program) is performance measure Instructions Clock cycles Seconds.

CS61C : Machine Structures

UCB CS61C : Machine Structures

Memory Hierarchy, Fully Associative Caches. Instructor: Nick Riasanovsky

CS61C : Machine Structures

CS 61C: Great Ideas in Computer Architecture. The Memory Hierarchy, Fully Associative Caches

CS61C : Machine Structures

Review: New-School Machine Structures. Review: Direct-Mapped Cache. TIO Dan s great cache mnemonic. Memory Access without Cache

14:332:331. Week 13 Basics of Cache

CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures

UCB CS61C : Machine Structures

CS61C : Machine Structures

Clever Signed Adder/Subtractor. Five Components of a Computer. The CPU. Stages of the Datapath (1/5) Stages of the Datapath : Overview

Lecture 33 Caches III What to do on a write hit? Block Size Tradeoff (1/3) Benefits of Larger Block Size

ECE468 Computer Organization and Architecture. Memory Hierarchy

CS61C : Machine Structures

UC Berkeley CS61C : Machine Structures

CS61C : Machine Structures

CMPT 300 Introduction to Operating Systems

Cache Memory - II. Some of the slides are adopted from David Patterson (UCB)

Memory Hierarchy. Mehran Rezaei

Block Size Tradeoff (1/3) Benefits of Larger Block Size. Lecture #22 Caches II Block Size Tradeoff (3/3) Block Size Tradeoff (2/3)

CS61C : Machine Structures

www-inst.eecs.berkeley.edu/~cs61c/

ECE232: Hardware Organization and Design

CSE 431 Computer Architecture Fall Chapter 5A: Exploiting the Memory Hierarchy, Part 1

CSC Memory System. A. A Hierarchy and Driving Forces

Recap: Machine Organization

Course Administration

Chapter 2: Memory Hierarchy Design, part 1 - Introducation. Advanced Computer Architecture Mehran Rezaei

EE 4683/5683: COMPUTER ARCHITECTURE

14:332:331. Week 13 Basics of Cache

I-Format Instructions (3/4) Define fields of the following number of bits each: = 32 bits

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 1

Textbook: Burdea and Coiffet, Virtual Reality Technology, 2 nd Edition, Wiley, Textbook web site:

Another View of the Memory Hierarchy. Lecture #25 Virtual Memory I Memory Hierarchy Requirements. Memory Hierarchy Requirements

Memory Hierarchy. ENG3380 Computer Organization and Architecture Cache Memory Part II. Topics. References. Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Lecture 17 Introduction to Memory Hierarchies" Why it s important " Fundamental lesson(s)" Suggested reading:" (HP Chapter

UCB CS61C : Machine Structures

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1

Memory Hierarchy. Maurizio Palesi. Maurizio Palesi 1

Levels in memory hierarchy

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

CS 61C: Great Ideas in Computer Architecture Direct- Mapped Caches. Increasing distance from processor, decreasing speed.

Memory Hierarchy Technology. The Big Picture: Where are We Now? The Five Classic Components of a Computer

CISC 662 Graduate Computer Architecture Lecture 16 - Cache and virtual memory review

CENG 3420 Computer Organization and Design. Lecture 08: Memory - I. Bei Yu

Question?! Processor comparison!

Chapter 5. Large and Fast: Exploiting Memory Hierarchy

Caches. Han Wang CS 3410, Spring 2012 Computer Science Cornell University. See P&H 5.1, 5.2 (except writes)

Caches and Memory Hierarchy: Review. UCSB CS240A, Winter 2016

CENG 3420 Computer Organization and Design. Lecture 08: Cache Review. Bei Yu

Chapter Seven. Memories: Review. Exploiting Memory Hierarchy CACHE MEMORY AND VIRTUAL MEMORY

Let!s go back to a course goal... Let!s go back to a course goal... Question? Lecture 22 Introduction to Memory Hierarchies

ECE7995 (4) Basics of Memory Hierarchy. [Adapted from Mary Jane Irwin s slides (PSU)]


Donn Morrison Department of Computer Science. TDT4255 Memory hierarchies

LECTURE 11. Memory Hierarchy

Caches and Memory Hierarchy: Review. UCSB CS240A, Fall 2017

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Lecture 36: IO Basics

Memory Hierarchy Y. K. Malaiya

CS61C : Machine Structures

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Caches Part 2

CS3350B Computer Architecture

UCB CS61C : Machine Structures

Speicherarchitektur. Who Cares About the Memory Hierarchy? Technologie-Trends. Speicher-Hierarchie. Referenz-Lokalität. Caches

CS 61C: Great Ideas in Computer Architecture. Virtual Memory

Welcome to Part 3: Memory Systems and I/O

Review. Motivation for Input/Output. What do we need to make I/O work?

Caches Part 1. Instructor: Sören Schwertfeger. School of Information Science and Technology SIST

Chapter 7 Large and Fast: Exploiting Memory Hierarchy. Memory Hierarchy. Locality. Memories: Review

Memory Hierarchy. Memory Flavors Principle of Locality Program Traces Memory Hierarchies Associativity. (Study Chapter 5)

Administrivia. Expect new HW out today (functions in assembly!)

CSF Cache Introduction. [Adapted from Computer Organization and Design, Patterson & Hennessy, 2005]

Basic Memory Hierarchy Principles. Appendix C (Not all will be covered by the lecture; studying the textbook is recommended!)

COSC 6385 Computer Architecture. - Memory Hierarchies (I)

UC Berkeley CS61C : Machine Structures

10/16/17. Outline. Outline. Typical Memory Hierarchy. Adding Cache to Computer. Key Cache Concepts

CPS101 Computer Organization and Programming Lecture 13: The Memory System. Outline of Today s Lecture. The Big Picture: Where are We Now?

Advanced Memory Organizations

CS61C : Machine Structures

Transcription:

inst.eecs.berkeley.edu/~cs61c UCB CS61C : Machine Structures Lecture 12 Caches I Lecturer SOE Dan Garcia Midterm exam in 3 weeks! A Mountain View startup promises to do Dropbox one better. 10GB free storage, and (pause for effect) they are offering INFINITE storage for only $10/month ($99/yr, $69/yr if you sign up before March). Data available anytime, everywhere. Game changer? bitcasa.com!

Review Register Conventions: Each register has a purpose and limits to its usage. Learn these and follow them, even if you re writing all the code yourself. Logical and Shift Instructions ú Operate on bits individually, unlike arithmetic, which operate on entire word. ú Use to isolate fields, either by masking or by shifting back and forth. ú Use shift left logical, sll,for multiplication by powers of 2 ú Use shift right logical, srl,for division by powers of 2 of unsigned numbers (unsigned int) ú Use shift right arithmetic, sra,for division by powers of 2 of signed numbers (int) New Instructions: and, andi, or, ori, sll, srl, sra! CS61C L12 Caches I (2)

6 Great Ideas in Computer Architecture 1. Layers of Representation/Interpretation 2. Moore s Law 3. Principle of Locality/Memory Hierarchy 4. Parallelism 5. Performance Measurement & Improvement 6. Dependability via Redundancy CS61C L12 Caches I (3)

The Big Picture Computer# Processor# (active)# Control# ( brain )# Datapath# ( brawn )# Memory# (passive)# (where " programs, " data live " when" running)# Devices# Input# Output# Keyboard, Mouse" Disk,# Network " Display, Printer" CS61C L12 Caches I (4)

Memory Hierarchy I.e., storage in computer systems Processor ú holds data in register file (~100 Bytes) ú Registers accessed on nanosecond timescale Memory (we ll call main memory ) ú More capacity than registers (~Gbytes) ú Access time ~50-100 ns ú Hundreds of clock cycles per memory access?! Disk ú HUGE capacity (virtually limitless) ú VERY slow: runs ~milliseconds CS61C L12 Caches I (5)

Performance Motivation : Processor-Memory Gap 10000 1000 100 10 1 1989 first Intel CPU with cache on chip" 1998 Pentium III has two cache levels on chip" Moore s Law " µproc" 55%/year" (2X/1.5yr)" Processor-Memory" Performance Gap (grows 50%/year)" DRAM" 7%/year" (2X/10yrs)" Year CS61C L12 Caches I (6)

Memory Caching Mismatch between processor and memory speeds leads us to add a new level: a memory cache Implemented with same IC processing technology as the CPU (usually integrated on same chip): faster but more expensive than DRAM memory. Cache is a copy of a subset of main memory. Most processors have separate caches for instructions and data. CS61C L12 Caches I (7)

Characteristics of the Memory Hierarchy Increasing distance from the processor in access time" Processor# L1$# L2$# 4-8 bytes (word)" 8-32 bytes (block)" 1 to 4 blocks" Main Memory# 1,024+ bytes (disk sector = page)" Secondary Memory# Inclusive what is in L1$ is a subset of what is in L2$ is a subset of what is in MM that is a subset of is in SM" (Relative) size of the memory at each level" CS61C L12 Caches I (8)

Typical Memory Hierarchy The Trick: present processor with as much memory as is available in the cheapes technology at the speed offered by the fastes technology On-Chip Components" Control" Datapath" RegFile" ITLB DTLB Instr Cache Data Cache Second Level Cache (SRAM) Main" Memory" (DRAM)" Secondary" Memory" (Disk" Or Flash)" Speed (#cycles): ½ s 1 s 10 s 100 s 10,000 s" Size (bytes): 100 s 10K s M s G s T s" Cost: highest lowest" CS61C L12 Caches I (9)

Memory Hierarchy If level closer to Processor, it is: ú Smaller ú Faster ú More expensive ú subset of lower levels (contains most recently used data) Lowest Level (usually disk) contains all available data (does it go beyond the disk?) Memory Hierarchy presents the processor with the illusion of a very large & fast memory CS61C L12 Caches I (10)

Memory Hierarchy Analogy: Library You re writing a term paper (Processor) at a table in Doe Doe Library is equivalent to disk ú essentially limitless capacity, very slow to retrieve a book Table is main memory ú ú smaller capacity: means you must return book when table fills up easier and faster to find a book there once you ve already retrieved it Open books on table are cache ú ú smaller capacity: can have very few open books fit on table; again, when table fills up, you must close a book much, much faster to retrieve data Illusion created: whole library open on the tabletop ú ú Keep as many recently used books open on table as possible since likely to use again Also keep as many books on table as possible, since faster than going to library CS61C L12 Caches I (11)

Memory Hierarchy Basis Cache contains copies of data in memory that are being used. Memory contains copies of data on disk that are being used. Caches work on the principles of temporal and spatial locality. ú Temporal Locality: if we use it now, chances are we ll want to use it again soon. ú Spatial Locality: if we use a piece of memory, chances are we ll use the neighboring pieces soon. CS61C L12 Caches I (12)

Two Types of Locality Temporal Locality (locality in time) ú If a memory location is referenced then it will tend to be referenced again soon Keep most recently accessed data items closer to the processor Spatial Locality (locality in space) ú If a memory location is referenced, the locations with nearby addresses will tend to be referenced soon Move blocks consisting of contiguous words closer to the processor CS61C L12 Caches I (13)

Cache Design (for ANY cache) How do we organize cache? Where does each memory address map to? ú (Remember that cache is subset of memory, so multiple memory addresses map to the same cache location.) How do we know which elements are in cache? How do we quickly locate them? CS61C L12 Caches I (14)

How is the Hierarchy Managed? registers memory ú By compiler (or assembly level programmer) cache main memory ú By the cache controller hardware main memory disks (secondary storage) ú By the operating system (virtual memory) ú Virtual to physical address mapping assisted by the hardware (TLB) ú By the programmer (files) CS61C L12 Caches I (15)

Administrivia How many hours h on Project 1 part a? ú A) 0 h < 5 ú B) 5 h < 10 ú C) 10 h < 15 ú D) 15 h < 20 ú E) 20 h Project part b due sunday! ú It s 75% of your grade. Midterm in 3 weeks CS61C L12 Caches I (16)

Direct-Mapped Cache (1/4) In a direct-mapped cache, each memory address is associated with one possible block within the cache ú Therefore, we only need to look in a single location in the cache for the data if it exists in the cache ú Block is the unit of transfer between cache and memory CS61C L12 Caches I (17)

Memory Address 0 1 2 3 4 5 6 7 8 9 A B C D E F Direct-Mapped Cache (2/4) Memory CS61C L12 Caches I (18) Cache Index 0 1 2 3 4 Byte Direct Mapped Cache Block size = 1 byte Cache Location 0 can be occupied by data from: ú Memory location 0, 4, 8,... ú 4 blocks any memory location that is multiple of 4 What if we wanted a block to be bigger than one byte?

Memory Address 0 2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E Direct-Mapped Cache (3/4) Memory 1 3 5 7 9 CS61C L12 Caches I (19) 0 2 4 6 8 etc Cache Index 0 1 2 3 8 Byte Direct Mapped Cache Block size = 2 bytes When we ask for a byte, the system finds out the right block, and loads it all! ú How does it know right block? ú How do we select the byte? E.g., Mem address 11101? How does it know WHICH colored block it originated from? ú What do you do at baggage claim?

Direct-Mapped Cache (4/4) 0 2 4 6 8 A C E 10 12 14 16 18 1A 1C 1E Memory Address Memory (addresses shown) 1 3 5 7 9 CS61C L12 Caches I (20) 0 2 4 6 8 etc 0 1 2 3 Cache# Cache Index 0 1 2 3 8 Byte Direct Mapped Cache w/tag! 8 1 2 0 14 2 1E 3 Tag Data (Block size = 2 bytes) What should go in the tag? ú Do we need the entire address? What do all these tags have in common? ú What did we do with the immediate when we were branch addressing, always count by bytes? Why not count by cache #? ú It s useful to draw memory with the same width as the block size

Issues with Direct-Mapped Since multiple memory addresses map to same cache index, how do we tell which one is in there? What if we have a block size > 1 byte? Answer: divide memory address into three fields ttttttttttttttttt iiiiiiiiii oooo! tag index byte to check to offset if have select within correct block block block CS61C L12 Caches I (21)

Direct-Mapped Cache Terminology All fields are read as unsigned integers. Index ú specifies the cache index (which row /block of the cache we should look in) Offset ú once we ve found correct block, specifies which byte within the block we want Tag ú the remaining bits after offset and index are determined; these are used to distinguish between all the memory addresses that map to the same location CS61C L12 Caches I (22)

TIO Dan s great cache mnemonic AREA (cache size, B) 2 = HEIGHT (# of blocks) (H+W) = 2 H * 2 W * WIDTH (size of one block, B/block) Tag Index Offset WIDTH (size of one block, B/block) HEIGHT (# of blocks) AREA (cache size, B) CS61C L12 Caches I (23)

Direct-Mapped Cache Example (1/3) Suppose we have a 8B of data in a directmapped cache with 2 byte blocks ú Sound familiar? Determine the size of the tag, index and offset fields if we re using a 32-bit architecture Offset ú need to specify correct byte within a block ú block contains 2 bytes = 2 1 bytes ú need 1 bit to specify correct byte CS61C L12 Caches I (24)

Direct-Mapped Cache Example (2/3) Index: (~index into an array of blocks ) ú need to specify correct block in cache ú cache contains 8 B = 2 3 bytes ú block contains 2 B = 2 1 bytes ú # blocks/cache = bytes/cache bytes/block = 2 3 bytes/cache 2 1 bytes/block = 2 2 blocks/cache ú need 2 bits to specify this many blocks CS61C L12 Caches I (25)

Direct-Mapped Cache Example (3/3) Tag: use remaining bits as tag ú tag length = addr length offset - index = 32-1 - 2 bits = 29 bits ú so tag is leftmost 29 bits of memory address ú Tag can be thought of as cache number Why not full 32 bit address as tag? ú All bytes within block need same address (4b) ú Index must be same for every address within a block, so it s redundant in tag check, thus can leave off to save memory (here 10 bits) CS61C L12 Caches I (26)

Peer Instruction A. For a given cache size: a larger block size can cause a lower hit rate than a smaller one. B. If you know your computer s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. CS61C L12 Caches I (27) ABC! 1: FFF! 1: FFT! 2: FTF! 2: FTT! 3: TFF! 3: TFT! 4: TTF! 5: TTT!

Peer Instruction Answer A. Yes if the block size gets too big, fetches become more expensive and the big blocks force out more useful data.# B. Certainly! That s call tuning # C. Most Recent items Temporal locality# A. For a given cache size: a larger block size can cause a lower hit rate than a smaller one. B. If you know your computer s cache size, you can often make your code run faster. C. Memory hierarchies take advantage of spatial locality by keeping the most recent data items closer to the processor. CS61C L12 Caches I (28) ABC! 1: FFF! 1: FFT! 2: FTF! 2: FTT! 3: TFF! 3: TFT! 4: TTF! 5: TTT!

And in Conclusion We would like to have the capacity of disk at the speed of the processor: unfortunately this is not feasible. So we create a memory hierarchy: ú each successively lower level contains most used data from next higher level ú exploits temporal & spatial locality ú do the common case fast, worry less about the exceptions (design principle of MIPS) Locality of reference is a Big Idea CS61C L12 Caches I (29)