Colour Reading: Chapter 6. Black body radiators

Similar documents
What is color? What do we mean by: Color of an object Color of a light Subjective color impression. Are all these notions the same?

Causes of color. Radiometry for color

Lecture 1 Image Formation.

Announcements. Lighting. Camera s sensor. HW1 has been posted See links on web page for readings on color. Intro Computer Vision.

Why does a visual system need color? Color. Why does a visual system need color? (an incomplete list ) Lecture outline. Reading: Optional reading:

Color. Reading: Optional reading: Chapter 6, Forsyth & Ponce. Chapter 4 of Wandell, Foundations of Vision, Sinauer, 1995 has a good treatment of this.

Announcements. Camera Calibration. Thin Lens: Image of Point. Limits for pinhole cameras. f O Z

Color and Shading. Color. Shapiro and Stockman, Chapter 6. Color and Machine Vision. Color and Perception

ECE-161C Color. Nuno Vasconcelos ECE Department, UCSD (with thanks to David Forsyth)

CSE 167: Lecture #7: Color and Shading. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

Introduction to color science

CSE 167: Introduction to Computer Graphics Lecture #6: Colors. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2013

Lighting. Camera s sensor. Lambertian Surface BRDF

(0, 1, 1) (0, 1, 1) (0, 1, 0) What is light? What is color? Terminology

Global Illumination. Frank Dellaert Some slides by Jim Rehg, Philip Dutre

Color. Phillip Otto Runge ( )

Light. Properties of light. What is light? Today What is light? How do we measure it? How does light propagate? How does light interact with matter?

CS6670: Computer Vision

1.1.1 Radiometry for Coloured Lights: Spectral Quantities

The Elements of Colour

Image Formation. Camera trial #1. Pinhole camera. What is an Image? Light and the EM spectrum The H.V.S. and Color Perception

Color Vision. Spectral Distributions Various Light Sources

Digital Image Processing COSC 6380/4393. Lecture 19 Mar 26 th, 2019 Pranav Mantini

CS5670: Computer Vision

Digital Image Processing

1. Final Projects 2. Radiometry 3. Color. Outline

CS6670: Computer Vision

Color. Computational Photography MIT Feb. 14, 2006 Bill Freeman and Fredo Durand

Color to Binary Vision. The assignment Irfanview: A good utility Two parts: More challenging (Extra Credit) Lighting.

Lecture #2: Color and Linear Algebra pt.1

Color and Light CSCI 4229/5229 Computer Graphics Fall 2016

Illumination and Shading

CS4670: Computer Vision

Lecture 24: More on Reflectance CAP 5415

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Announcements. Light. Properties of light. Light. Project status reports on Wednesday. Readings. Today. Readings Szeliski, 2.2, 2.3.

Reading. 2. Color. Emission spectra. The radiant energy spectrum. Watt, Chapter 15.

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2011

Chapter 5 Extraction of color and texture Comunicação Visual Interactiva. image labeled by cluster index

What is Color and How is It Measured?

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Lecture #13. Point (pixel) transformations. Neighborhood processing. Color segmentation

CSE 167: Lecture #6: Color. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

Understanding Variability

Fall 2015 Dr. Michael J. Reale

Digital Image Processing. Introduction

When this experiment is performed, subjects find that they can always. test field. adjustable field

Lecture 11. Color. UW CSE vision faculty

Spectral Images and the Retinex Model

Physical Color. Color Theory - Center for Graphics and Geometric Computing, Technion 2

CSE 167: Introduction to Computer Graphics Lecture #6: Lights. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2016

CS635 Spring Department of Computer Science Purdue University

this is processed giving us: perceived color that we actually experience and base judgments upon.

Visible Color. 700 (red) 580 (yellow) 520 (green)

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

The exam begins at 2:40pm and ends at 4:00pm. You must turn your exam in when time is announced or risk not having it accepted.

Illumination and Reflectance

Other approaches to obtaining 3D structure

CS 556: Computer Vision. Lecture 18

Colour computer vision: fundamentals, applications and challenges. Dr. Ignacio Molina-Conde Depto. Tecnología Electrónica Univ.

Color Constancy from Hyper-Spectral Data

Physics 1230: Light and Color

Lecture 15: Shading-I. CITS3003 Graphics & Animation

Starting this chapter

CS 4495 Computer Vision. Segmentation. Aaron Bobick (slides by Tucker Hermans) School of Interactive Computing. Segmentation

Visualisatie BMT. Rendering. Arjan Kok

COS Lecture 10 Autonomous Robot Navigation

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Distributed Algorithms. Image and Video Processing

Chapter 1. Light and color

Color. making some recognition problems easy. is 400nm (blue) to 700 nm (red) more; ex. X-rays, infrared, radio waves. n Used heavily in human vision

Color and Light. CSCI 4229/5229 Computer Graphics Summer 2008

Game Programming. Bing-Yu Chen National Taiwan University

Optics Test Science What are some devices that you use in everyday life that require optics?

Siggraph Course 2017 Path Tracing in Production Part 1 Manuka: Weta Digital's Spectral Renderer

Module 5: Video Modeling Lecture 28: Illumination model. The Lecture Contains: Diffuse and Specular Reflection. Objectives_template

ams AG TAOS Inc. is now The technical content of this TAOS document is still valid. Contact information:

Ligh%ng and Reflectance

Image Formation. Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

Mech 296: Vision for Robotic Applications

The Display pipeline. The fast forward version. The Display Pipeline The order may vary somewhat. The Graphics Pipeline. To draw images.

CS201 Computer Vision Lect 4 - Image Formation

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

Light and Sound. Wave Behavior and Interactions

COLOR FIDELITY OF CHROMATIC DISTRIBUTIONS BY TRIAD ILLUMINANT COMPARISON. Marcel P. Lucassen, Theo Gevers, Arjan Gijsenij

MODELING LED LIGHTING COLOR EFFECTS IN MODERN OPTICAL ANALYSIS SOFTWARE LED Professional Magazine Webinar 10/27/2015

Last update: May 4, Vision. CMSC 421: Chapter 24. CMSC 421: Chapter 24 1

Module 3. Illumination Systems. Version 2 EE IIT, Kharagpur 1

Color Matching Functions. The principle of trichromacy. CIE xyy (Chromaticity Space) Color spaces. Intro Computer Vision. CSE 152 Lecture 7`

Light. Computer Vision. James Hays

Introduction to Computer Vision. Week 8, Fall 2010 Instructor: Prof. Ko Nishino

Estimating the wavelength composition of scene illumination from image data is an

Introduction to Computer Graphics with WebGL

Radiance. Pixels measure radiance. This pixel Measures radiance along this ray

CG T8 Colour and Light

EXAM SOLUTIONS. Computer Vision Course 2D1420 Thursday, 11 th of march 2003,

Computer Graphics (CS 4731) Lecture 16: Lighting, Shading and Materials (Part 1)

Physics-based Vision: an Introduction

Light Transport Baoquan Chen 2017

Transcription:

Colour Reading: Chapter 6 Light is produced in different amounts at different wavelengths by each light source Light is differentially reflected at each wavelength, which gives objects their natural colours (surface albedoes) The sensation of colour is determined by the human visual system, based on the product of light and reflectance Violet Indigo Blue Green Yellow Orange Red Measurements of relative spectral power of sunlight, made by J. Parkkinen and P. Silfsten. Relative spectral power is plotted against wavelength in nm. The visible range is about 400nm to 700nm. The colour names on the horizontal axis give the colour names used for monochromatic light of the corresponding wavelength. Credits: Many slides in this section from Jim Rehg and Frank Dellaert Spectral power gives the amount of light emitted at each wavelength. Black body radiators Construct a hot body with near-zero albedo (black body) Easiest way to do this is to build a hollow metal object with a tiny hole in it, and look at the hole. The spectral power distribution of light leaving this object is a function of temperature (degrees Kelvin) Surprisingly, the material does not make a difference! This leads to the notion of colour temperature --- the temperature of a black body that would create that colour Candle flame or sunset: about 2000K Incandescent light bulbs: 3000K Daylight (sun): 5500K Blue sky (shadowed from sun): 15,000K Colour camera film is rated by colour temperature Violet Indigo Blue Green Yellow Orange Red Relative spectral power of two standard illuminant models --- D65 models sunlight,and illuminant A models incandescent lamps. Relative spectral power is plotted against wavelength in nm. Measurements of relative spectral power of four different artificial illuminants, made by H.Sugiura. Relative spectral power is plotted against wavelength in nm. The visible range is about 400nm to 700nm. Spectral albedoes for several different flowers, with colour names attached. Notice that different colours typically have different spectral albedo, but that different spectral albedoes may result in the same perceived colour (compare the two whites). Spectral albedoes are typically quite smooth functions. Measurements by E.Koivisto. Spectral reflectance (or spectral albedo) gives the proportion of light that is reflected at each wavelength 1

The appearance of colours Reflected light at each wavelength is the product of illumination and surface reflectance Surface reflectance is typically modeled as having two components: Lambertian reflectance: equal in all directions (diffuse) Specular reflectance: mirror reflectance (shiny spots) When one views a coloured surface, the spectral radiance of the light reaching the eye depends on both the spectral radiance of the illuminant, and on the spectral albedo of the surface. colour Names for Cartoon Spectra Additive colour Mixing Subtractive colour Mixing Colour matching experiments - I Show a split field to subjects; one side shows the light whose colour one wants to measure, the other a weighted mixture of primaries (fixed lights). 2

Colour Matching Process Colour Matching Experiment 1 Basis for industrial colour standards Colour Matching Experiment 1 Colour Matching Experiment 1 Colour Matching Experiment 2 Colour Matching Experiment 2 3

Colour Matching Experiment 2 Colour matching experiments - II Many colours can be represented as a positive weighted sum of A, B, C write M=a A + b B + c C where the = sign should be read as matches This is additive matching. Gives a colour description system - two people who agree on A, B, C need only supply (a, b, c) to describe a colour. Subtractive matching Some colours can t be matched like this: instead, must write This is subtractive matching. Interpret this as (-a, b, c) M+a A = b B+c C Problem for building monitors: Choose R, G, B such that positive linear combinations match a large set of colours The principle of trichromacy Experimental facts: Three primaries will work for most people if we allow subtractive matching Exceptional people can match with two or only one primary (colour blindness) This could be caused by a variety of deficiencies. Most people make the same matches. There are some anomalous trichromats, who use three primaries but make different combinations to match. Human Photoreceptors Human Cone Sensitivities Fovea Periphery Spectral sensitivity of L, M, S (red, green, blue) cones in human eye 4

Grassman s Laws Linear colour spaces RBG colour Matching A choice of primaries yields a linear colour space --- the coordinates of a colour are given by the weights of the primaries used to match it. Choice of primaries is equivalent to choice of colour space. RGB: primaries are monochromatic. Energies are 645.2nm, 526.3nm, 444.4nm. CIE XYZ: Primaries are imaginary, but have other convenient properties. Colour coordinates are (X,Y,Z), where X is the amount of the X primary, etc. monochromatic 645.2, 526.3, 444.4 nm. negative parts -> some colours can be matched only subtractively. CIE XYZ colour Matching CIE XYZ: colour matching functions are positive everywhere, but primaries are imaginary. Usually draw x, y, where x=x/(x+y+z) y=y/(x+y+z) So overall brightness is ignored. Geometry of colour (CIE) White is in the center, with saturation increasing towards the boundary Mixing two coloured lights creates colours on a straight line Mixing 3 colours creates colours within a triangle Curved edge means there are no 3 actual lights that can create all colours that humans perceive! 5

RGB colour Space The colours that can be displayed on a typical computer monitor (phosphor limitations keep the space quite small) The black-body locus (the colours of heated black-bodies). Uniform colour spaces McAdam ellipses (next slide) demonstrate that differences in x,y are a poor guide to differences in colour Each ellipse shows colours that are perceived to be the same Construct colour spaces so that differences in coordinates are a good guide to differences in colour. McAdam ellipses Figures courtesy of 10 times actual size Actual size Non-linear colour spaces Adaptation phenomena HSV: (Hue, Saturation, Value) are non-linear functions of XYZ. because hue relations are naturally expressed in a circle Munsell: describes surfaces, rather than lights - less relevant for graphics. Surfaces must be viewed under fixed comparison light The response of your colour system depends both on spatial contrast and what it has seen before (adaptation) This seems to be a result of coding constraints -- receptors appear to have an operating point that varies slowly over time, and to signal some sort of offset. One form of adaptation involves changing this operating point. Common example: walk inside from a bright day; everything looks dark for a bit, then takes its conventional brightness. 6

Viewing coloured objects Finding Specularities Assume diffuse (Lambertian) plus specular model Specular component specularities on dielectric (nonmetalic) objects take the colour of the light specularities on metals have colour of the metal Diffuse component colour of reflected light depends on both illuminant and surface Assume we are dealing with dielectrics specularly reflected light is the same colour as the source Reflected light has two components diffuse specular and we see a weighted sum of these two Specularities produce a characteristic dogleg in the histogram of receptor responses in a patch of diffuse surface, we see a colour multiplied by different scaling constants (surface orientation) in the specular patch, a new colour is added; a dogleg results 7

Skewed-T in Histogram Skewed-T in Histogram B S Illuminant color G T B Diffuse region Boundary of specularity B Diffuse component R A Physical Approach to colour Image Understanding Klinker, Shafer, and Kanade. IJCV 1990 G G R R Recent Application to Stereo Recent Application to Stereo Synthetic scene: Real scene: Sing Bing Kang Motion of camera causes highlight location to change. This cue can be combined with histogram analysis. Sing Bing Kang Human colour Constancy Colour constancy: determine hue and saturation under different colours of lighting Lightness constancy: gray-level reflectance under differing intensity of lighting Humans can perceive colour a surface would have under white light colour of reflected light (separate surface colour from measured colour) colour of illuminant (limited) Land s Mondrian Experiments Squares of colour with the same colour radiance yield very different colour perceptions White light Photometer: 1.0, 0.3, 0.3 Photometer: 1.0, 0.3, 0.3 Red Blue Audience: Red Red light Red Blue Audience: Blue 8

Basic Model for Lightness Constancy 1-D Lightness Retinex Assumptions: Planar frontal scene Lambertian reflectance Linear camera response C( x) = kci( x) p( x) Modeling assumptions for scene Piecewise constant surface reflectance Slowly-varying Illumination Threshold gradient image to find surface (patch) boundaries 1-D Lightness Retinex colour Retinex Integration to recover surface lightness (unknown constant) Images courtesy John McCann Colour constancy Following methods have been used: Average reflectance across scene is known (often fails) Brightest patch is white Gamut (collection of all colours) falls within known range Known reference colour (colour chart, skin colour ) Gamut method works quite well for correcting photographs for human observers, but not well enough for recognition For object recognition, best approach is to use ratio of colours on the same object (Funt and Finlayson, 1995) 9