CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

Similar documents
CS 152 Computer Architecture and Engineering. Lecture 9 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation

CS 152 Computer Architecture and Engineering. Lecture 8 - Address Translation

Last =me in Lecture 7 3 C s of cache misses Compulsory, Capacity, Conflict

CS 152 Computer Architecture and Engineering. Lecture 11 - Virtual Memory and Caches

Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Cache Performance

Virtual Memory: From Address Translation to Demand Paging

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory

Improving Cache Performance and Memory Management: From Absolute Addresses to Demand Paging. Highly-Associative Caches

Lecture 9 - Virtual Memory

Virtual Memory: From Address Translation to Demand Paging

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 8 Address Transla>on

Chapter 5B. Large and Fast: Exploiting Memory Hierarchy

Modern Virtual Memory Systems. Modern Virtual Memory Systems

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. April 12, 2018 L16-1

Virtual Memory. Daniel Sanchez Computer Science & Artificial Intelligence Lab M.I.T. November 15, MIT Fall 2018 L20-1

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory. Bernhard Boser & Randy Katz

CS252 Spring 2017 Graduate Computer Architecture. Lecture 17: Virtual Memory and Caches

New-School Machine Structures. Overarching Theme for Today. Agenda. Review: Memory Management. The Problem 8/1/2011

John Wawrzynek & Nick Weaver

Lecture 9 Virtual Memory

CS 61C: Great Ideas in Computer Architecture. Lecture 23: Virtual Memory

CS 61C: Great Ideas in Computer Architecture Virtual Memory. Instructors: John Wawrzynek & Vladimir Stojanovic

COSC3330 Computer Architecture Lecture 20. Virtual Memory

CS 61C: Great Ideas in Computer Architecture Excep&ons/Traps/Interrupts. Smart Phone. Core. FuncWonal Unit(s) Logic Gates

CS 61C: Great Ideas in Computer Architecture Virtual Memory. Instructors: Krste Asanovic & Vladimir Stojanovic h>p://inst.eecs.berkeley.

CS 152 Computer Architecture and Engineering. Lecture 9 - Virtual Memory. Last?me in Lecture 9

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 9 Virtual Memory

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

Lecture 7 - Memory Hierarchy-II

CS 61C: Great Ideas in Computer Architecture (Machine Structures) Intro to Virtual Memory

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

ecture 33 Virtual Memory Friedland and Weaver Computer Science 61C Spring 2017 April 12th, 2017

Computer Science 146. Computer Architecture

Part I: You Are Here!

Virtual Memory Virtual memory first used to relive programmers from the burden of managing overlays.

CS 152 Computer Architecture and Engineering. Lecture 7 - Memory Hierarchy-II

EECS 470. Lecture 16 Virtual Memory. Fall 2018 Jon Beaumont

Virtual Memory. Motivations for VM Address translation Accelerating translation with TLBs

CS 152 Computer Architecture and Engineering. Lecture 8 - Memory Hierarchy-III

Chapter 8. Virtual Memory

ECE 4750 Computer Architecture, Fall 2017 T03 Fundamental Memory Concepts

CS 318 Principles of Operating Systems

ECE 552 / CPS 550 Advanced Computer Architecture I. Lecture 13 Memory Part 2

Virtual Memory Oct. 29, 2002

CS162 - Operating Systems and Systems Programming. Address Translation => Paging"

EITF20: Computer Architecture Part 5.1.1: Virtual Memory

ECE 252 / CPS 220 Advanced Computer Architecture I. Lecture 13 Memory Part 2

Virtual Memory. Patterson & Hennessey Chapter 5 ELEC 5200/6200 1

EITF20: Computer Architecture Part 5.1.1: Virtual Memory

Chapter 8 Memory Management

CSE 120 Principles of Operating Systems

Random-Access Memory (RAM) Systemprogrammering 2007 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics

Computer Systems. Virtual Memory. Han, Hwansoo

Virtual Memory. Virtual Memory

Random-Access Memory (RAM) Systemprogrammering 2009 Föreläsning 4 Virtual Memory. Locality. The CPU-Memory Gap. Topics! The memory hierarchy

virtual memory. March 23, Levels in Memory Hierarchy. DRAM vs. SRAM as a Cache. Page 1. Motivation #1: DRAM a Cache for Disk

virtual memory Page 1 CSE 361S Disk Disk

Lecture 17: Address Translation. James C. Hoe Department of ECE Carnegie Mellon University

Processes and Virtual Memory Concepts

Virtual Memory. Motivation:

198:231 Intro to Computer Organization. 198:231 Introduction to Computer Organization Lecture 14

CSE 120 Principles of Operating Systems Spring 2017

CS 61C: Great Ideas in Computer Architecture. Virtual Memory

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

Virtual to physical address translation

Computer Architecture Lecture 13: Virtual Memory II

CS 152 Computer Architecture and Engineering. Lecture 18: Multithreading

CS 152 Computer Architecture and Engineering. Lecture 6 - Memory

CS 153 Design of Operating Systems Winter 2016

Virtual Memory. Stefanos Kaxiras. Credits: Some material and/or diagrams adapted from Hennessy & Patterson, Hill, online sources.

CISC 360. Virtual Memory Dec. 4, 2008

Agenda. CS 61C: Great Ideas in Computer Architecture. Virtual Memory II. Goals of Virtual Memory. Memory Hierarchy Requirements

Operating Systems, Fall

Operating Systems, Fall

Lecture 14: Multithreading

Motivations for Virtual Memory Virtual Memory Oct. 29, Why VM Works? Motivation #1: DRAM a Cache for Disk

CSE 451: Operating Systems Winter Page Table Management, TLBs and Other Pragmatics. Gary Kimura

Memory Management! Goals of this Lecture!

Chapter 5 Memory Hierarchy Design. In-Cheol Park Dept. of EE, KAIST

Memory Management. An expensive way to run multiple processes: Swapping. CPSC 410/611 : Operating Systems. Memory Management: Paging / Segmentation 1

Carnegie Mellon. Bryant and O Hallaron, Computer Systems: A Programmer s Perspective, Third Edition

Virtual Memory Nov 9, 2009"

Computer Architecture and Engineering. CS152 Quiz #3. March 18th, Professor Krste Asanovic. Name:

CPS104 Computer Organization and Programming Lecture 16: Virtual Memory. Robert Wagner

CS252 S05. Main memory management. Memory hardware. The scale of things. Memory hardware (cont.) Bottleneck

14 May 2012 Virtual Memory. Definition: A process is an instance of a running program

Lecture 20: Virtual Memory, Protection and Paging. Multi-Level Caches

CS 152 Computer Architecture and Engineering

CS 152 Computer Architecture and Engineering. Lecture 19: Directory-Based Cache Protocols

Virtual Memory. CS61, Lecture 15. Prof. Stephen Chong October 20, 2011

Virtual Memory, Address Translation

CS5460: Operating Systems Lecture 14: Memory Management (Chapter 8)

CS 152 Computer Architecture and Engineering. Lecture 10 - Complex Pipelines, Out-of-Order Issue, Register Renaming

Reducing Hit Times. Critical Influence on cycle-time or CPI. small is always faster and can be put on chip

CS 152 Computer Architecture and Engineering CS252 Graduate Computer Architecture. Lecture 7 Memory III

@2010 Badri Computer Architecture Assembly II. Virtual Memory. Topics (Chapter 9) Motivations for VM Address translation

Memory hierarchy review. ECE 154B Dmitri Strukov

Transcription:

CS 152 Computer Architecture and Engineering Lecture 9 - Address Translation Krste Asanovic Electrical Engineering and Computer Sciences University of California at Berkeley http://www.eecs.berkeley.edu/~krste! http://inst.eecs.berkeley.edu/~cs152! February 18, 2010 CS152, Spring 2010

Last time in Lecture 8 Multi-level cache hierarchies reduce miss penalty 3 levels common in modern systems Inclusive versus exclusive caching policy Can change design tradeoffs of L1 cache if known to have L2 Non-blocking caches Allow hits and maybe misses while misses in flight Prefetching: retrieve data from memory before CPU request Prefetching can waste bandwidth and cause cache pollution Software vs hardware prefetching Software memory hierarchy optimizations Loop interchange, loop fusion, cache tiling February 18, 2010 CS152, Spring 2010 2

Memory Management From early absolute addressing schemes, to modern virtual memory systems with support for virtual machine monitors Can separate into orthogonal functions: Translation (mapping of virtual address to physical address) Protection (permission to access word in memory) Virtual memory (transparent extension of memory space using slower disk storage) But most modern systems provide support for all the above functions with a single page-based system February 18, 2010 CS152, Spring 2010 3

Absolute Addresses EDSAC, early 50 s Only one program ran at a time, with unrestricted access to entire machine (RAM + I/O devices) Addresses in a program depended upon where the program was to be loaded in memory But it was more convenient for programmers to write location-independent subroutines How could location independence be achieved? Linker and/or loader modify addresses of subroutines and callers when building a program memory image February 18, 2010 CS152, Spring 2010 4

Dynamic Address Translation Motivation In the early machines, I/O operations were slow and each word transferred involved the CPU Higher throughput if CPU and I/O of 2 or more programs were overlapped. How? multiprogramming Location-independent programs Programming and storage management ease need for a base register Protection Independent programs should not affect each other inadvertently need for a bound register prog1 prog2 Physical Memory February 18, 2010 CS152, Spring 2010 5

Simple Base and Bound Translation Load X Program Address Space Bound Register Effective Address Base Register Segment Length + Bounds Violation? Physical Address Base Physical Address current segment Base and bounds registers are visible/accessible only when processor is running in the supervisor mode Physical Memory February 18, 2010 CS152, Spring 2010 6

Separate Areas for Program and Data Load X Program Address Space Data Bound Register Effective Addr Register Data Base Register Program Bound Register Program Counter + Bounds Violation? Bounds Violation? data segment program segment Physical Memory Program Base Register + What is an advantage of this separation? (Scheme used on all Cray vector supercomputers prior to X1, 2002) February 18, 2010 CS152, Spring 2010 7

Memory Fragmentation user 1 user 2 user 3 OS Space 16K 24K 24K 32K Users 4 & 5 arrive user 1 user 2 user 4 user 3 OS Space 16K 24K 16K 8K 32K Users 2 & 5 leave user 1 user 4 user 3 OS Space 16K 24K 16K 8K 32K free 24K user 5 24K 24K As users come and go, the storage is fragmented. Therefore, at some stage programs have to be moved around to compact the storage. February 18, 2010 CS152, Spring 2010 8

Paged Memory Systems Processor-generated address can be split into: page number offset A page table contains the physical address of the base of each page: 1 0 1 2 3 0 1 2 3 0 3 Physical Memory Address Space of User-1 Page Table of User-1 2 Page tables make it possible to store the pages of a program non-contiguously. February 18, 2010 CS152, Spring 2010 9

Private Address Space per User User 1 VA1 OS pages Page Table User 2 User 3 VA1 VA1 Page Table Physical Memory Page Table free Each user has a page table Page table contains an entry for each user page February 18, 2010 CS152, Spring 2010 10

Where Should Page Tables Reside? Space required by the page tables (PT) is proportional to the address space, number of users,... Space requirement is large Too expensive to keep in registers Idea: Keep PTs in the main memory needs one reference to retrieve the page base address and another to access the data word doubles the number of memory references! February 18, 2010 CS152, Spring 2010 11

Page Tables in Physical Memory PT User 1 VA1 User 1 Virtual Address Space VA1 PT User 2 Physical Memory User 2 Virtual Address Space February 18, 2010 CS152, Spring 2010 12

CS152 Administrivia February 18, 2010 CS152, Spring 2010 13

A Problem in the Early Sixties There were many applications whose data could not fit in the main memory, e.g., payroll Paged memory system reduced fragmentation but still required the whole program to be resident in the main memory Programmers moved the data back and forth from the secondary store by overlaying it repeatedly on the primary store tricky programming! February 18, 2010 CS152, Spring 2010 14

Manual Overlays Assume an instruction can address all the storage on the drum Method 1: programmer keeps track of addresses in the main memory and initiates an I/O transfer when required Difficult, error-prone! Method 2: automatic initiation of I/O transfers by software address translation Brooker s interpretive coding, 1960 Inefficient! 40k bits main 640k bits drum Central Store Ferranti Mercury 1956 Not just an ancient black art, e.g., IBM Cell microprocessor using in Playstation-3 has explicitly managed local store! February 18, 2010 CS152, Spring 2010 15

Demand Paging in Atlas (1962) A page from secondary storage is brought into the primary storage whenever it is (implicitly) demanded by the processor. Tom Kilburn Primary memory as a cache for secondary memory User sees 32 x 6 x 512 words of storage Primary 32 Pages 512 words/page Central Memory Secondary (Drum) 32x6 pages February 18, 2010 CS152, Spring 2010 16

Hardware Organization of Atlas Effective Address Initial Address Decode 48-bit words 512-word pages 1 Page Address Register (PAR) per page frame 0 31 PARs <effective PN, status> Main 32 pages 1.4 µsec 16 ROM pages 0.4 ~1 µsec 2 subsidiary pages 1.4 µsec Drum (4) 192 pages system code (not swapped) system data (not swapped) 8 Tape decks 88 sec/word Compare the effective page address against all 32 PARs match normal access no match page fault save the state of the partially executed instruction February 18, 2010 CS152, Spring 2010 17

Atlas Demand Paging Scheme On a page fault: Input transfer into a free page is initiated The Page Address Register (PAR) is updated If no free page is left, a page is selected to be replaced (based on usage) The replaced page is written on the drum» to minimize drum latency effect, the first empty page on the drum was selected The page table is updated to point to the new location of the page on the drum February 18, 2010 CS152, Spring 2010 18

Caching vs. Demand Paging secondary memory CPU cache primary memory CPU primary memory Caching Demand paging cache entry page frame cache block (~32 bytes) page (~4K bytes) cache miss rate (1% to 20%) page miss rate (<0.001%) cache hit (~1 cycle) page hit (~100 cycles) cache miss (~100 cycles) page miss (~5M cycles) a miss is handled a miss is handled in hardware mostly in software February 18, 2010 CS152, Spring 2010 19

Modern Virtual Memory Systems Illusion of a large, private, uniform store Protection & Privacy several users, each with their private address space and one or more shared address spaces page table name space Demand Paging Provides the ability to run programs larger than the primary memory OS user i Primary Memory Swapping Store Hides differences in machine configurations The price is address translation on each memory reference VA Mapping PA February 18, 2010 CS152, Spring 2010 20

Linear Page Table Page Table Entry (PTE) contains: A bit to indicate if a page exists PPN (physical page number) for a memory-resident page DPN (disk page number) for a page on the disk Status bits for protection and usage OS sets the Page Table Base Register whenever active user process changes Page Table PPN PPN DPN PPN DPN PPN PPN DPN DPN DPN PPN PPN Offset VPN Data Pages Data word PT Base Register VPN Offset Virtual address February 18, 2010 CS152, Spring 2010 21

Size of Linear Page Table With 32-bit addresses, 4-KB pages & 4-byte PTEs: 2 20 PTEs, i.e, 4 MB page table per user 4 GB of swap needed to back up full virtual address space Larger pages? Internal fragmentation (Not all memory in page is used) Larger page fault penalty (more time to read from disk) What about 64-bit virtual address space??? Even 1MB pages would require 2 44 8-byte PTEs (35 TB!) What is the saving grace? February 18, 2010 CS152, Spring 2010 22

Hierarchical Page Table Virtual Address 31 22 21 12 11 0 p1 p2 offset 10-bit L1 index Root of the Current Page Table (Processor Register) 10-bit L2 index p1 Level 1 Page Table p2 offset Physical Memory page in primary memory page in secondary memory Level 2 Page Tables PTE of a nonexistent page Data Pages February 18, 2010 CS152, Spring 2010 23

Address Translation & Protection Kernel/User Mode Virtual Address Virtual Page No. (VPN) offset Read/Write Protection Check Address Translation Exception? Physical Address Physical Page No. (PPN) offset Every instruction and data access needs address translation and protection checks A good VM design needs to be fast (~ one cycle) and space efficient February 18, 2010 CS152, Spring 2010 24

Translation Lookaside Buffers Address translation is very expensive! In a two-level page table, each reference becomes several memory accesses Solution: Cache translations in TLB TLB hit Single Cycle Translation TLB miss Page-Table Walk to refill virtual address VPN offset V R W D tag PPN (VPN = virtual page number) (PPN = physical page number) hit? physical address PPN offset February 18, 2010 CS152, Spring 2010 25

TLB Designs Typically 32-128 entries, usually fully associative Each entry maps a large page, hence less spatial locality across pages more likely that two entries conflict Sometimes larger TLBs (256-512 entries) are 4-8 way set-associative Larger systems sometimes have multi-level (L1 and L2) TLBs Random or FIFO replacement policy No process information in TLB? TLB Reach: Size of largest virtual address space that can be simultaneously mapped by TLB Example: 64 TLB entries, 4KB pages, one page per entry TLB Reach =? 64 entries * 4 KB = 256 KB (if contiguous) February 18, 2010 CS152, Spring 2010 26

Handling a TLB Miss Software (MIPS, Alpha) TLB miss causes an exception and the operating system walks the page tables and reloads TLB. A privileged untranslated addressing mode used for walk Hardware (SPARC v8, x86, PowerPC) A memory management unit (MMU) walks the page tables and reloads the TLB If a missing (data or PT) page is encountered during the TLB reloading, MMU gives up and signals a Page-Fault exception for the original instruction February 18, 2010 CS152, Spring 2010 27

Hierarchical Page Table Walk: SPARC v8 Virtual Address Context Table Register Context Register Index 1 Index 2 Index 3 Offset 31 23 17 11 0 Context Table root ptr L1 Table PTP L2 Table PTP L3 Table PTE 31 11 0 Physical Address PPN Offset MMU does this table walk in hardware on a TLB miss February 18, 2010 CS152, Spring 2010 28

Address Translation: putting it all together Virtual Address TLB Lookup hardware hardware or software software miss hit Page Table Walk Protection Check the page is memory memory denied permitted Page Fault (OS loads page) Update TLB Protection Fault Physical Address (to cache) Where? SEGFAULT February 18, 2010 CS152, Spring 2010 29

Acknowledgements These slides contain material developed and copyright by: Arvind (MIT) Krste Asanovic (MIT/UCB) Joel Emer (Intel/MIT) James Hoe (CMU) John Kubiatowicz (UCB) David Patterson (UCB) MIT material derived from course 6.823 UCB material derived from course CS252 February 18, 2010 CS152, Spring 2010 30