Study on Image Position Algorithm of the PCB Detection

Similar documents
Research on QR Code Image Pre-processing Algorithm under Complex Background

CIRCULAR MOIRÉ PATTERNS IN 3D COMPUTER VISION APPLICATIONS

Research on online inspection system of emulsion explosive packaging defect based on machine vision

Based on correlation coefficient in image matching

Adaptive Zoom Distance Measuring System of Camera Based on the Ranging of Binocular Vision

Qiqihar University, China *Corresponding author. Keywords: Highway tunnel, Variant monitoring, Circle fit, Digital speckle.

HOUGH TRANSFORM CS 6350 C V

Pupil Localization Algorithm based on Hough Transform and Harris Corner Detection

Journal of Chemical and Pharmaceutical Research, 2015, 7(3): Research Article

Numerical Recognition in the Verification Process of Mechanical and Electronic Coal Mine Anemometer

Extracting Characters From Books Based On The OCR Technology

PARAMETERIZED COMPUTER AIDED DESIGN OF STUBBLE CLEANER

Coarse-to-Fine Search Technique to Detect Circles in Images

Carmen Alonso Montes 23rd-27th November 2015

Application of Geometry Rectification to Deformed Characters Recognition Liqun Wang1, a * and Honghui Fan2

Lecture 15: Segmentation (Edge Based, Hough Transform)

Face Recognition Using Vector Quantization Histogram and Support Vector Machine Classifier Rong-sheng LI, Fei-fei LEE *, Yan YAN and Qiu CHEN

Image segmentation based on gray-level spatial correlation maximum between-cluster variance

Modeling Body Motion Posture Recognition Using 2D-Skeleton Angle Feature

Research of Traffic Flow Based on SVM Method. Deng-hong YIN, Jian WANG and Bo LI *

Pedestrian Detection with Improved LBP and Hog Algorithm

result, it is very important to design a simulation system for dynamic laser scanning

Lecture 9: Hough Transform and Thresholding base Segmentation

Finite Element Analysis and Structure Optimal Design of the Column of Deep-Hole Drilling Machine

SEOUL NATIONAL UNIVERSITY

Study on Gear Chamfering Method based on Vision Measurement

OPTICAL MARK RECOGNITION (OMR) is technique

Time Stamp Detection and Recognition in Video Frames

Laboratory of Applied Robotics

FSRM Feedback Algorithm based on Learning Theory

Types of Edges. Why Edge Detection? Types of Edges. Edge Detection. Gradient. Edge Detection

OBJECT SORTING IN MANUFACTURING INDUSTRIES USING IMAGE PROCESSING

Research on Multi-sensor Image Matching Algorithm Based on Improved Line Segments Feature

Computer Numerical Control System for Automatic Surface Machining. Chen Zuo Yue, Wang Xiao E, Yang Mei

An Adaptive Threshold LBP Algorithm for Face Recognition

Three-Dimensional Reconstruction from Projections Based On Incidence Matrices of Patterns

Scanner Parameter Estimation Using Bilevel Scans of Star Charts

Skew Detection and Correction of Document Image using Hough Transform Method

BioTechnology. An Indian Journal FULL PAPER. Trade Science Inc. Research on motion tracking and detection of computer vision ABSTRACT KEYWORDS

Chapter 11 Arc Extraction and Segmentation

Analysis of TFT-LCD Point Defect Detection System Based on Machine Vision

IMAGE MATCHING UNDER GENERALIZED HOUGH TRANSFORM

Critique: Efficient Iris Recognition by Characterizing Key Local Variations

Sobel Edge Detection Algorithm

ENG 7854 / 9804 Industrial Machine Vision. Midterm Exam March 1, 2010.

Implementation of a Face Recognition System for Interactive TV Control System

Elaborazione delle Immagini Informazione Multimediale. Raffaella Lanzarotti

Introducing Robotics Vision System to a Manufacturing Robotics Course

Your Flowchart Secretary: Real-Time Hand-Written Flowchart Converter

The Study of Identification Algorithm Weeds based on the Order Morphology

Investigation of Algorithms for Calculating Target Region Area

This paper puts forward three evaluation functions: image difference method, gradient area method and color ratio method. We propose that estimating t

Computer Aided Drafting, Design and Manufacturing Volume 26, Number 2, June 2016, Page 18

Quaternion-based color difference measure for removing impulse noise in color images

(Refer Slide Time: 0:32)

Pattern recognition systems Lab 3 Hough Transform for line detection

Finding 2D Shapes and the Hough Transform

International Journal of Advance Engineering and Research Development. Iris Recognition and Automated Eye Tracking

13 Vectorizing. Overview

OBJECT detection in general has many applications

Detecting Ellipses via Bounding Boxes

A Kind of Fast Image Edge Detection Algorithm Based on Dynamic Threshold Value

Study on Delaunay Triangulation with the Islets Constraints

A Hand Gesture Recognition Method Based on Multi-Feature Fusion and Template Matching

RESEARCH ON INTELLIGENT DESIGN AND ACCURATE MODELLING OF SPIRAL BEVEL GEARS BASED ON FUNCTION-TO-FORM MAPPING

CS443: Digital Imaging and Multimedia Binary Image Analysis. Spring 2008 Ahmed Elgammal Dept. of Computer Science Rutgers University

A New Technique of Extraction of Edge Detection Using Digital Image Processing

An algorithm of lips secondary positioning and feature extraction based on YCbCr color space SHEN Xian-geng 1, WU Wei 2

Extracting Layers and Recognizing Features for Automatic Map Understanding. Yao-Yi Chiang

[10] Industrial DataMatrix barcodes recognition with a random tilt and rotating the camera

Edge and local feature detection - 2. Importance of edge detection in computer vision

DSP-Based Parallel Processing Model of Image Rotation

Strategy. Using Strategy 1

Picture Maze Generation by Repeated Contour Connection and Graph Structure of Maze

Texture Image Segmentation using FCM

Understanding Tracking and StroMotion of Soccer Ball

Multi-Step Segmentation Method Based on Adaptive Thresholds for Chinese Calligraphy Characters

Fingerprint Ridge Distance Estimation: Algorithms and the Performance*

Subpixel Corner Detection Using Spatial Moment 1)

Face Recognition Technology Based On Image Processing Chen Xin, Yajuan Li, Zhimin Tian

ISSN: X International Journal of Advanced Research in Electronics and Communication Engineering (IJARECE) Volume 6, Issue 8, August 2017

A Rapid Automatic Image Registration Method Based on Improved SIFT

Iterative Removing Salt and Pepper Noise based on Neighbourhood Information

GENERALIZING THE HOUGH TRANSFORM TO DETECT ARBITRARY SHAPES. D. H. Ballard Pattern Recognition Vol. 13 No

Lane Markers Detection based on Consecutive Threshold Segmentation

Infrared Image Stitching Based on Immune Memory Clonal Selection Algorithm

A Template-Matching-Based Fast Algorithm for PCB Components Detection Haiming Yin

A Model-based Line Detection Algorithm in Documents

Robust Ring Detection In Phase Correlation Surfaces

E0005E - Industrial Image Analysis

Multi-pass approach to adaptive thresholding based image segmentation

Ch 22 Inspection Technologies

Detecting Elliptic Objects Using Inverse. Hough{Transform. Joachim Hornegger, Dietrich W. R. Paulus. The following paper will appear in the

SIMULATION OF METAL FORMING PROCESSES. Konstantin SOLOMONOV a, Victor SVIRIN b

Object Shape Recognition in Image for Machine Vision Application

Bridge Surface Crack Detection Method

Rectangle Positioning Algorithm Simulation Based on Edge Detection and Hough Transform

A Fast Caption Detection Method for Low Quality Video Images

The Precise Detection Techniques in Optical Lenses Alignment. Deng-yu ZHOU, Xin YE, Zhi-jing ZHANG * and Zi-fu WANG

Fast K-nearest neighbors searching algorithms for point clouds data of 3D scanning system 1

Transcription:

odern Applied cience; Vol. 6, No. 8; 01 IN 1913-1844 E-IN 1913-185 Published by Canadian Center of cience and Education tudy on Image Position Algorithm of the PCB Detection Zhou Lv 1, Deng heng 1, Yan Huaiyu 1 & Wang Liang 1 1 College of echanical Engineering, University of hanghai for cience and Technology, hangha China Correspondence: heng Deng, College of echanical Engineering, University of hanghai for cience and Technology, 334th, Jun Gong Road, hanghai 00093, China. Tel: 86-188-019-9084. E-mail: Dengsheng116@163.com Received: June 7, 01 Accepted: July 3, 01 Online Published: July 7, 01 doi:10.5539/mas.v6n8p58 URL: http://dx.doi.org/10.5539/mas.v6n8p58 The research is supported by hanghai Leading Academic Discipline Proect, Proect number: J50503 Abstract With the continuous development of electronic technology, automatic detection of the PCB board has become particularly important, and the key step of the detection is to identify and locate the location mark (usually it is a round). Hough transform is one of the most widely used circle detection method, but it is complex in computing and requires much resource. For these conditions, a new idea of circle detection is proposed to get the rough location of the circle with the template matching, and then the precise positioning is accomplished by an improved Hough transform which is to draw two non-parallel strings on the orientation round and the center of the circle shall locate the strings perpendicular intersection. Experiments show that the method is simple and effective, and can accomplish the PCB image positioning accurately. Keywords: visual, Printed Circuit Board (PCB), detection, image-positioning, Hough transform 1. Introduction The methods used by the automatic detection of the PCB is a computer vision positioning. The basic process is to set up two location mark (usually round) in the design and manufacture of the PCB, and stepper motor controlled by computer drives a camera to intake the photograph of these two signs respectively, then find the center of the two circles. According to the coordinates of the two rounds in the CAD files, you can determine the ratio between actual coordinates and CAD coordinates, and finally according to this ratio and the coordinates of the obects in CAD files, we will be able to determine their actual position (Zhang, Gao, & Wang, 1999). Circle detection mainly refers to the striking of characteristic parameters of the image of the hole or arc, such as the center coordinates and radius. The traditional methods of detection of circular feature is the Hough Transform, which uses the correspondence between image space and parameter space to transform image space to parameter space, and by a simple cumulative statistics in the parameter space to complete the inspection task (Fu & Chen, 010). The method is characterized by high reliability, and in the noisy and distortion state, even in the of loss of the regional information, this method can still achieve the desired results, but its drawback is of complex computation, high resource requirements, and the interference of the complex image background information will bring a large number of unwanted accumulation, so that the performance of the algorithm greatly reduced, and even unable to effectively extract the round. This paper presents a new method to detect PCB positioning circle. The method is simple in principle, of fast calculation, high accuracy and can meet the needs of the PCB testing occasions.. A Rough Location Based on Template atching For the positioning of the circuit board image, you first need to select the appropriate reference point to ensure convenient, reliable and accurate positioning. Under normal circumstances, the circuit board has its own round for positioning, so it is appropriate to select the round as the positioning reference of the board. The positioning round is shown in Figure 1(a). We can see that the camera captures an image of the board, including the positioning round, which contains a wealth of information, and the information of interest is only the positioning round, so in order to locate accurately, the first step is to conduct the rough location and extract the general area of the orientation round, as far as possible to eliminate irrelevant information. o as to get the rough region of 58

www.ccsenet.org/mas odern Applied cience Vol. 6, No. 8; 01 the positioning round, you can use the template matching method. The template matching method (Ding, Goshtasby, & atter, 001) is a registration method based on gray-scalprinciple is shown in Figure 1. et up a emplate the size of the graph T of x*y and search graph size of Nx* Ny. The cross-correlation, whichh studies whether there is a known template image in the picture. The template is stacked on the reference figure and translation. The piece of the search graph covered by the template is called a graph, the coordinates of the lower left corner of the sub-graph in the -graph is ( ), called the reference point. It is easy to know thatt i and rangess from 0 I, N-. You can now compare the contentt of T and. If they are consistent, T and is equal. Use the normalized cross-correlation (Chen, Liu, & Xu, 011) to measure the similarity between T andd (called NC algorithms). It determines the degree of match by computing the cross-correlation value of the template image and the image to be matching to. Cross-correlation definition has generally the followingg two forms: NC (, i ) N m 1 n 1 T( m, n) N T ( m, n) m1 n 1 m1 n 1 ( mn, ) [ ( m, n)] (1) NC(, i) m1n1 m1n1 i, i, ( Tmn (,) Tmn (,))( (,) mn (,)) mn) (( T mn,) Tmn (,)) m 1n 1 mn mn, )) i, i, ( (, ) (, () where T( m, n) 1 m 1 n 1 1 ( m, n) N m 1 n1 Tmn (, ) N ( m, n) (3) (4) (a) Reference circle (b) earch graph T Figure 1. earch graph and template (c) Template The greater the value of NC ( ) is, the more similar ( ) position of the search graph and the template are. NC ( ) value of 1 indicates that the position is the matching position. In practical applications, becausee the matching image and reference image is different between time and cameras, the gray value of the corresponding pix is often not absolutely equal, and thus the location of NC value of 1 can t be found. o we only need too find the location of the maximum NC valuee in the search graph, and consider the location as the best match position. In this paper, the Equation (1) is used to udge the degree of similarity in template matching algorithm. Template matching algorithm is of a lot of calculation. In order to improve computing speed, with a larger step size to search for the rough location of the template, then a small step is used to find the precise matching location. 59

www.ccsenet.org/mas odern Applied cience Vol. 6, No. 8; 01 Figure (a) as a template, Figure 1 is searched for locate round, and the result is shown in Figure (b) with a matched orientation round surrounded by a black box. After getting the rough region of positioning round, the next step is to get the center coordinate of the circle. In this paper the used camera is a black and white one, and the image is gray-scale. o in the extraction of the positioning circle, we can t start from the color. The image limited in the area is shown in Figure (c) (Figure 1 is a scaled image, so the positioning rounds of Figure 1 and Figure are deferent in size). For the processed image of positioning circle, if its noise is relatively low, it will be processed with the binarization of threshold 80. Figure (d) shows the results. It can be seen from the figure, the binarization positioning circle is displayed with white in black background. Obviously, the positioning circle has been split out, but some small areas of interference still exist. To get extent possible, accurate positioning circular coordinates, we should get rid of these small areas. The ize Filtering ethod can achieve the goal, and the results are show in Figure (e). ize filtering method only eliminates the black interference, and you need negative phase in Figure (e) to remove the white part of the small areas. The final results are shown in Figure (g). (a)template (b) atching result (c) Positioning round (d) Binarization (80) (e) Eliminates the black interference (f) Negative phase obect (g) Final result Figure. The extraction process positioning round After the above series of image processing, a position image, which is full and of clear outline, is achieved, and the calculation of the center coordinates is the next step. 3. Precise Positioning and Results 3.1 Average Pixel Coordinates ethod o-called average pixel coordinates method is a statistical method, which records the x and y coordinates and the number of pixels with 55 values (white) by scanning the whole lot of binary image, and then accumulate x and y coordinates of white pixels, and the average coordinates are the center coordinates of the positioning round. x x i, yi y (5) n n Among them, n refers to the number of white pixel respectively, and x i, y i refer to the total value of all white pixels cumulative gross x and y coordinates, /x, /y to the center coordinates. According to Equation (5), the center coordinates of Figure (g) is (83,471). 60

www.ccsenet.org/mas odern Applied cience Vol. 6, No. 8; 01 3. The Traditional Hough Transform Assume that the collection of the composition points of the image circle is { x i, y i i 1,,3,..., n }, (x, y) is any point in this collection, so its equation in the parametric coordinate system can be expressed as: ( a x) ( b y) r (6) This equation is a three-dimensional cone in space. o if put any point of the image into (6), the corresponding result is a three-dimensional cone to the analytic geometry knowledge. Putting set of points on the circumference into the Equation (6), the result consists of the conical surface cluster For the points on the same circle, the conical surface cluster is bound to intersect at one point (a0, b0, r0), and this intersection is the required radius and center coordinates (Ioannoua, Hudab, & Lainec, 1999). Equation (6) in the discrete image can be rewritten as: ( i) ( i) a x b y r The letter in the above formula refer to the digital compensation of the image. The specific transformation process: 1) elect the appropriate a, b, r, to create a conical surface clusters. ) Create a three-dimensional array A (a, b, r) used to accumulate; according to Equation (6), with the change of a and b, corresponding r is calculated, and after calculating r, A (a, b, r) cumulative one more time: A (a, b, r) = A (a, b, r) +1. 3) Obtained the local maximum of three-dimensional array A (a, b, r), this value is the required radius and center coordinates. 3.3 Improved Hough Transform The traditional Hough transform for circle detection involves too many points, too high cumulative array dimension and large computation load. Therefore, to reduce the dimension of the cumulative array is one of the keys to improve the efficiency of Hough transform. According to the above principle, we improved Hough transform. (a) Access to the center of the circle (b) Contour extraction for Figure (g) (c) Improved Hough Transform (d) Center of the circle to calculate Figure 3. The circle detection processes of improved Hough transform In Figure 3(a), we take a point called A on the edge of the image, point B taken after some interval points, and 61

www.ccsenet.org/mas odern Applied cience Vol. 6, No. 8; 01 connect A and B. For the line AB, perpendicular intersects the circle at two points called C and J, and we can see by the knowledge of geometry, segment CJ go through the center called O point of the circle. imilarly, from the point B, point D taken after some interval points, you can get a segment called EI. The Intersection of the segments CJ and EI is to the center of the circle to calculate (Yue & Xiang, 006). The steps of improved Hough Transform: once a time of search is completed, the neighbor point of point A in the clockwise direction is taken as a new starting point. The neighbor point of this new starting point is the starting point for the next search. Repeat the above steps until back to the point near the initial point A. In the search process, a two-dimensional accumulator is ust needed to accumulate the center of the circle. Compared to the traditional Hough transform, the new method needs less storage space and it is less complex. Finally, the maximum of the accumulator is the center coordinates.et up the coordinates of the points A, B, and C, respectively, (x1, y1), (x, y) and (x3, y3), then the equation of straight line CJ and EI is: y y x x ( x x ) CJ: 1 1 1 y x y y1 y y x x ( x x ) EI: 3 3 3 y x y3 y According to Equation (7) and (8), the intersection of two lines is the center coordinates. The process of Hough transform circle detection is shown in Figure 3. The first step is to extract the circular contour, and then the Hough transform is used to get the center coordinates (89,460). Compared to the previous method, in theory, this algorithm is more accurate, and need less calculation time. Overall, using the improved Hough transform can improve the detection accuracy, and it is ideal for situations which require high accuracy. 4. Conclusion In this paper, Firstly, the template matching method is used to get the coarse position and then a full positioning image of clear outline is achieved after the binary method, size filtering and negative processing. Finally, complete the orientation circle detection using an improved Hough transform method. Compared with the pixel average coordinates method and the traditional Hough transform method, this new method is simple, effective and accurate in the image positioning for the PCB. References Chen, L. F., Liu, Y., & Xu, W. B. (011). The gray image template matching method based on improved normalized cross-correlation method. Computer Engineering and Applications, 47(6), 181-183. http://dx.chinadoi.cn/10.3778/.issn.100-8331.011.6.050 Ding, L., Goshtasby, A., & atter,. (001). Volume image registration by template matching. Image and Vision Computing, 19, 81-83. http://dx.doi.org/10.1016/06-8856(00)00101-3 Ioannoua, D., Hudab, W., & Lainec, F. A. (1999). Circle recognition through a D Hough Transform and radius histogramming. Image and Vision Computing, 17(1), 15-6. http://dx.doi.org/10.1016/06-8856(98)00090-0 Yue, J., & Xiang, X. Z. (006). A circle detection method based on improved Hough Transform. The Application of cience and Technology, 33(6), 74-76. Zhang, L., Gao, Y. Y., & Wang, H. (1999). tudy in the localization of PCB detection. China Journal of Image and Graphics, 4(8), 659-661. (7) (8) 6