Diffraction and Interference of Plane Light Waves

Similar documents
Diffraction and Interference of Plane Light Waves

Diffraction at a single slit and double slit Measurement of the diameter of a hair

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

Models of Light The wave model: The ray model: The photon model:

Physics 1CL WAVE OPTICS: INTERFERENCE AND DIFFRACTION Fall 2009

Chapter 36 Diffraction

Lab 12 - Interference-Diffraction of Light Waves

Laboratory 11: Interference of Light Prelab

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

Lab 5: Diffraction and Interference

Lab 7 Interference and diffraction

25-1 Interference from Two Sources

Chapter 38. Diffraction Patterns and Polarization

University Physics (Prof. David Flory) Chapt_37 Monday, August 06, 2007

Interference and Diffraction of Light

Experiment 8 Wave Optics

Physical Optics. You can observe a lot just by watching. Yogi Berra ( )

INTERFERENCE. Interf - 1

Diffraction and Interference Lab 7 PRECAUTION

Lab 8. Interference of Light

Interference of Light

Dr. Quantum. General Physics 2 Light as a Wave 1

Physical optics. Introduction. University of Ottawa Department of Physics

Lecture 16 Diffraction Ch. 36

specular diffuse reflection.

If these are waves of light then we could say that constructive interference

Interference and Diffraction of Light

5. Double Slit Diffraction

Chapter 8: Physical Optics

f. (5.3.1) So, the higher frequency means the lower wavelength. Visible part of light spectrum covers the range of wavelengths from

Unit-22 Interference and Diffraction

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

Chapter 36. Diffraction. Dr. Armen Kocharian

UNIT 102-9: INTERFERENCE AND DIFFRACTION

Chapter 4 - Diffraction

Wave Properties of Light

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

PY212 Lecture 25. Prof. Tulika Bose 12/3/09. Interference and Diffraction. Fun Link: Diffraction with Ace Ventura

Where n = 0, 1, 2, 3, 4

Interference and Diffraction

Lecture 4. Physics 1502: Lecture 35 Today s Agenda. Homework 09: Wednesday December 9

PHYSICS 116 INTERFERENCE AND DIFFRACTION

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Fresnel's biprism and mirrors

The location of the bright fringes can be found using the following equation.

Interference of Light

EM Waves Practice Problems

Physical Optics. 1 st year physics laboratories. University of Ottawa.

Experiment 5: Polarization and Interference

PHYSICS - CLUTCH CH 32: WAVE OPTICS.

Module 18: Diffraction-I Lecture 18: Diffraction-I

Chapter 25. Wave Optics

Physics 214 Midterm Fall 2003 Form A

PROBLEM #1: INTERFERENCE DUE TO A DOUBLE SLIT

Observation Screen. Introduction

Fluids, Thermodynamics, Waves, & Optics Optics Lab 9 Interference and Diffraction

10.2 Single-Slit Diffraction

PHYS 1112L - Introductory Physics Laboratory II

Physics 309 Lab 3. where the small angle approximation has been used. This pattern has maxima at. Y Max. n L /d (2)

Chapter 38 Wave Optics (II)

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Diffraction and Interference

Experiment 1: Diffraction from a Single Slit

Young s Double Slit Experiment

Today: Interferometry, Diffraction

Physics 228 Today: Diffraction, diffraction grating

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

INTERFERENCE. where, m = 0, 1, 2,... (1.2) otherwise, if it is half integral multiple of wavelength, the interference would be destructive.

AP Physics Problems -- Waves and Light

Chapter 24. Wave Optics

mywbut.com Diffraction

PHY132 Introduction to Physics II Class 5 Outline:

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Activity 9.1 The Diffraction Grating

Diffraction Measurements

Electricity & Optics

Introduction. Part I: Measuring the Wavelength of Light. Experiment 8: Wave Optics. Physics 11B

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Interference of Light

Name: Lab Partner: Section:

Physics I : Oscillations and Waves Prof. S Bharadwaj Department of Physics & Meteorology Indian Institute of Technology, Kharagpur

G3 TWO-SOURCE INTERFERENCE OF WAVES

Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings

Michelson Interferometer

Chapter 24. Wave Optics

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CAUTION: NEVER LOOK DIRECTLY INTO THE LASER BEAM.

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 202 Homework 9

Scattering/Wave Terminology A few terms show up throughout the discussion of electron microscopy:

Physical or wave optics

To determine the wavelength of laser light using single slit diffraction

Chapter 24. Wave Optics. Wave Optics. The wave nature of light is needed to explain various phenomena

Diffraction Activity. Laser safety rules

Single slit diffraction

Lecture Wave Optics. Physics Help Q&A: tutor.leiacademy.org

Diffraction Challenge Problem Solutions

Transcription:

1 Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when a beam of light scatters from objects placed in its path. Such experiments were important historically as they were crucial in establishing the wave nature of light in face of competing theories that described light in terms of geometrical rays of discrete objects. Only a wave theory can give a quantitative explanation of the complex phenomena of diffraction and interference. A more complete description of diffraction and interference phenomena can be found in textbooks such as in chapters 21 and 22 of "Physics for Scientists and Engineers" by Knight, or Chapter 29 of Bauer & Westfall. A review lecture is also available on the 192 web site. Theory Part I: Diffraction When a plane light wave (in our case a laser beam) hits an obstacle it is diffracted. We can understand this phenomenon in terms of Huygens principle that states that every point in the wave front can be considered as a source of new wave fronts. This is illustrated in Figure 1 where a parallel beam of light strikes a barrier with a narrow slit and the diffracted wave can be considered to originate from a source at the slit. Incident Plane Wave Screen w ith slit w idth "a" Diffracted Wave a Fig. 1: Schematic representation of diffraction from a slit After the slit, points of equal phase on the wave front are no longer in a plane but on concentric circles as indicated in the figure. This is exactly true in the limit where the slit width "a" goes to zero. Page 1 of 8

2 The result of this is that if we observe the image of the slit from a distance we will not only see a bright central image of the slit but, in addition, a pattern of light and dark areas around the central image. This pattern is called the diffraction pattern. Its origin is explained in Figure 2 where we consider two wave fronts leaving the slit at an angle with respect to the normal to the slit. Slit r 1 r 2 Screen P 1 a P 0 D = distance slit to screen incident plane wave Fig. 2: Conditions for first minimum of diffraction from a slit Ignore the lens: the equations are the same if D>>a. These two wave fronts have the same phase at the slit, one starting at the edge, the other at the center. We will observe the resulting intensity pattern on a screen a distance D from the slit, where D is large compared to the slit width "a". This is sometimes called Fraunhofer diffraction. This can be achieved by using a focusing lens or by choosing D to be large (1-2 m) as is done in this lab. If the two light rays in Figure 2 are out of phase by 180 (at the point of observation P 1 ) the intensity at P 1 will be zero, i.e. it will be dark. This is the case when the paths of the two differ by n 2 where n = ± 1, ±2, ±3 etc. and is the wavelength of the light. So for the case shown, the condition for P 1 to be dark is: Therefore, we will find diffraction minima at the following angles: (1) (2) with n = ± 1, ±2, ±3 etc. For a single slit, the diffraction pattern intensity I, as a function of the angle is given by: where (3a) (3b) Page 2 of 8

3 The observed intensity distribution, given by Eq. 3 is displayed in Figure 3 for different values of "a" in terms of the wavelength. Single Slit intensities for several slit widths 1.0 0.8 a = λ a = 3λ 0.6 0.4 0.2 a = 10λ Angle (degrees) Fig. 3: Relative intensity vs. angle patterns for single slit diffraction. The intensity in the higher order maxima is much less than the central peak. Another feature is that with increasing slit width, the central peak becomes narrower and the secondary maxima more pronounced. Theory Part II: Diffraction and Interference Double Slit Interference 20 10 10 20 Up to this point, only single slits have been discussed and now we want to turn to what happens in the case of multiple slits. For simplicity we will consider a plane wave falling onto a double slit consisting of slits S 1 and S 2 as indicated in Figure 4. Furthermore, we will assume that the width of these slits is negligible so that there is no diffraction from within each slit. Each of the slits will act as a source of light and waves originating from S 1 and S 2 will be coherent, i.e. in phase. The interaction of these two coherent waves is in general called interference and this interaction will give rise to an interference pattern (or fringes) on the screen, i.e. we will observe light and dark areas. Again, in Figure 4 a focusing lens has been drawn, whereas, in the lab the distance from slit to the screen, D, is large and thereby eliminates the need for such a lens. Page 3 of 8

4 Incident Plane Wave Slit Screen S d r r P S D = distance Double Slit with separation d Fig. 4: Interference from a double slit. Ignore the lens: the equations are the same if D>>d. In a fashion similar to the first part of the lab, the conditions for destructive (intensity = zero) and constructive (intensity = maximum) interference are simple. Destructive interference results when the two waves are out of phase by 180 which is equivalent to saying that their path length (between slit and screen) differs by m /2. If the distance between the centers of the slits is "d" then the condition for interference minima is: Similarly the condition for interference maxima is: The intensity pattern will have a central maximum ( = 0) for m = 0 which is called the 0 th order maximum. Other maxima occur at angles given by m = 1, 2, 3,.. etc. and "m" is called the order number. The intensity distribution from the simplified double slit (assuming very small slit width) as a function of is given by: The distribution is shown in Figure 5a. (4) (5) (6) Page 4 of 8

5 Double Slit Diffraction with d = 10 λ Angle (degrees) Fig. 5a: Diffraction from a double slit. If we now allow the width of the two slits to be finite, diffraction will occur and the intensity distribution will be that given by Eq. 3 and shown graphically in Figure 5b. Diffraction from a slit of width a = 4 λ Angle (degrees) Fig. 5b: Diffraction from a single slit Page 5 of 8

6 The intensity distribution resulting from the combination of diffraction and interference is given by the product of Equations 3 and 6 and is displayed in Figure 5c. Diffraction and Interference from Double Slit Angle (degrees) Fig. 5c: Diffraction and Interference from Double Slit For slit separation = 10 λ and Slit Width = 4 λ The envelope of the distribution is determined by diffraction, whereas, the internal structure is due to interference. Note, however, that the envelope depends critically on the width of the slit and, as expected, the influence of diffraction can be minimized by choosing very narrow slits (see Figure 3). In our example, diffraction broadens the minimum in the region of 14, as you can see by comparing the narrow minimum of Figure 5a with the broader minimum of 5b and thus in 5c. Multiple Slits A logical extension of the double slit experiment is the multiple slit experiment where the number of slits is increased from two to some large number N. A particular multiple slit arrangement where the number of slits can exceed 10 3 /mm is called a diffraction grating. With increasing N, the interference fringes within the central diffraction envelope become narrower. The condition for maximum is still given by Eq. 5, but now "d" has become very small. Page 6 of 8

7 Experiment: Part 1: Diffraction and Single Slits A laser produces monochromatic light (λ = 632.8 nm red; 532 nm green) which is well collimated and coherent. Make sure your eyes are never exposed to direct laser light or its reflections. 1.1 Single Slit Diffraction Set up a projection screen by clipping a piece of paper to the stand on the optical beam. Use the single slit wheel, which contains several single slits of different widths, in front of the laser so that a diffraction pattern is produced on the screen. Do the best compromise between autocollimation and centering you can (autocollimation attempts to make the slit wheel perpendicular to the beam). Record the patterns for the four available single slits. Then for each width, record the locations of the minima ( 5 on each side). 1.1.1 From the pattern, the distance D from slit to screen and from, compute the slit width "a" and estimate your error in "a". 1.1.2 Compare your measurement with the value indicated on the slit. 1.1.3 Do the general features of the observed patterns and their dependence on the slit width agree with the predictions of Figure 3? 1.1.4 Observe and describe qualitatively the results of using the variable slit. 1.1.5 Extra Credit: Describe what you see for of the one of the two dimensional patterns or circular apertures. How is it related to the physical pattern on the disc? 1.2 Diffraction from a line and a slit Now use the line/slit patterns. From the diffraction pattern determine the thickness of the line using the single diffraction formula for the location of the minima. Is the pattern the same as the slit of the same width? Again estimate errors and compare to the given width. Extra credit: Use this method and a sample holder to measure the diameter of your hair (no error estimate needed), and compare it with the measurement from caliper. Question 1: If you shine the laser beam on a hair, wire or line, why do you expect to see a diffraction pattern instead of just a shadow? In particular, why could there be a bright spot directly behind the obstacle? Think about the wire as being complementary to a slit. Part 2: Interference and Diffraction in Double Slits Switch holders to the double slits. Repeat a procedure like that of part 1 for this set of four double slits: quantitatively for one of the slits (a=.04 or.08 mm; d=.25 mm works well), and qualitatively for the rest. From the observed pattern for the selected double slit, calculate both slit width and slit separation and their uncertainties for one of the double slits. To do this you ll measure the far-spaced minima for diffraction and the Page 7 of 8

8 narrowly-spaced minima or maxima for interference (you ll need 5 or more mins or maxes on each side of 0). For the other 3 double slits, compare the observed patterns with your expectations based on a knowledge of "a" and "d". Describe the effects of the variable double slit, and use it to explain your results qualitatively. Part 3: Multiple Slits Repeat the procedure qualitatively for the set of multiple slits with N = 2, 3, 4, 5. Based on your observation, please comment on how the spacing, width and brightness change with increasing N. Question 2: When N is large, say 100, what do you expect the pattern to look like? Part 4: Diffraction Grating Measure the bright spots for two different "diffraction" gratings. In the lab, there should be gratings with grating constant G = 1/d = 500 lines/mm and 1000 lines/mm. You may have to reduce D to observe the patterns, and probably won t be able to find 5 bright spots (interference maxima) on each side. The angles involved may not be small; if so you ll have to do the trigonometry without making any small angle approximations. From the patterns calculate the grating spacing, "d", for each grating and the fractional uncertainty to which you measure it. Repeat the experiment using the G = 500 lines/mm grating with the green laser. Calculate the wavelength of the laser based on the locations of the diffraction maxima. Compare the wavelength you determine with the manufacturer s specification. Manufacturer s Tolerance In your analysis of results, the manufacturer s error tolerances are useful to know. For the Pasco slits on the rotating holder, use the following: slit width tolerance: ±.005 mm slit separation tolerance ±.005 mm if separation is.125 mm ±.010 mm otherwise These specifications are best interpreted, not as a standard deviation, but as giving a range of values within which the manufacturer claims the true value will lie. One way to handle this is to find a t value for the nominal slit parameters from the manufacturer, and then, if this t value indicates incompatibility, to check whether there is any value within the manufacturer s range which would give an acceptable t value. Question 3: Which is more precise: your ability to measure slit parameters with this technique (using an accurately-know laser wavelength)? Or the manufacturer s ability to fabricate the slits? Page 8 of 8