G.epon and Current Status of Related Standardization

Similar documents
Introduction of optical access showcase for G.epon/SIEPON ~ Activities for related standardization and interoperability test~

APT/ITU Conformance and Interoperability Event

Interoperability Test Guideline. For Optical Access Network Devices

Interoperability Test Guideline. For Optical Access Network Devices

Development of Communication LSI for 10G-EPON

DOCSIS Provisioning of EPON (DPoE ) Architecture, Specifications, Qualification Curtis Knittle IEEE/ITU Joint Workshop, Geneva September 22, 2012

IEEE 1G and 10G EPONs: Factors that Influenced the Architecture and Specification

Flexible Access System Architecture: FASA

G.fast Ultrafast Access Technology Standardization in ITU-T

Development of Transport Systems for Dedicated Service Provision Using Packet Transport Technologies

Standardization Trend for Super 3G (LTE)

TR-142 Framework for TR-069 enabled PON Devices

Deployment & Operations Committee. FTTH Basics Architecture, Topology and Technology

MASTER PROJECT NEW DYNAMIC BANDWIDTH ALLOCATION ALGORITHM ANALYSIS: DDSPON FOR ETHERNET PASSIVE OPTICAL NETWORKS

Fully compatible with ITU-T G.984.1/2/3/4 Support downlink rate 2.448Gbit/s, uplink rate is 1.244Gbit/s Support 32 TCONU, 256 GEMPORT Support bidirect

International Standardization of IPTV at ITU-T IPTV-GSI

Last modified: 28 April 2008

Solutions for Optical Access Systems as Platform for Comfortable Communication

E3-E4 (CFA) EPON & GPON. For BSNL internal circulation only

FTTH: B-PON, GPON, EPON. Don McCullough VP Marketing Ericsson May 9, 2007

GPON Interface Vendor Information

NG- PON2 & XGS- PON: Lowering the Cost of Consolida<ng Residen<al and Business Services

Standardization Activities in International Electrotechnical Commission Technical Committee 86 (Fiber Optics)

NG-PON2 Next Generation PON. Single Technology Plataform for all Services

[Tutorial] NG-PON2 Technologies. Hirotaka Nakamura NTT Access Network Service Systems Laboratories, NTT Corporation

A Flexible Architecture for EPON

MA R K E TING R E PORT. The Future of Passive Optical Networking is Here NG-PON2

SERIES J: CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER MULTIMEDIA SIGNALS Digital transmission of television signals

Next Generation PON: Lessons Learned from G-PON and GE-PON

IN THE FIRST MILE CONSORTIUM. Clause 65 Test Suite v1.1 Technical Document. Last Updated: March 23, :43pm

ITU-T G Gbit/s point-to-point Ethernet-based optical access system

One LLID per ONU! (Comments to clause 56) Vincent Bemmel, Alloptic Ajung Kim, Samsung Bob Gaglianello, Lucent

Overview of MPLS-TP Standardization

IEEE Criteria for Standards Development (CSD)

ISCOM HT803G-W GPON home terminal

GPON - EPON Comparison. Vestyx Technologies Pvt. Ltd.

Proposed CSD Responses: Objectives Related to operation over DWDM System

GEOLT. Gigabit Ethernet Optical Line Terminal. About the Product

TR-247 Abstract Test Plan for GPON ONU Conformance

Major PAR form questions

720Gbps Switching Capacity

Grant/Request Method for Ethernet PON

Next-generation IPTV Service

Implementation of Software-based EPON-OLT and Performance Evaluation

Product Overview. Product Overview. Product Specifications. Ordering Information. Service Scenario for PON Interface Layout Operating Status LEDs

IEEE Ethernet Working Group 19 July 2012 San Diego, CA

Multiaccess in Ethernet Passive Optical Networks (EPON)

Joint ITU-T/IEEE Workshop on Next Generation Optical Access Systems. Standards Overview of ITU-T SG15/Q2

Importance of last mile interoperability

HSTP-IPTV-GUIDE.1 IPTV

Standardization Trends of the Next Generation Network in ETSI TISPAN

MCPC IN EPOC. Ryan Hirth, Glen Kramer

Gigabit Ethernet Passive Optical Network (GEPON) Tutorial. June 2004

Simply self-restored ring-based time-division-multiplexed passive optical network

Next Generation Access Architecture (NGA 2 ) -Evolution and Convergence. June 3-4, 2009 NGN Forum, Taipei

Research on Multi-service Unified Bearing Electric Power Communication Access Network Bao Feng1,a, Yang Li1, Yang Hu1, Yan Long2, Yongzhong Xie3

8-port GPON OLT P Compact high performance GPON OLT for medium and small operator

2-Port GEPON Managed OLT EPL-2220

ISCOM HT803-W EPON home terminal

NTT s Initiatives for NGN

Specific Systems: Passive Optical Networks (PONs) #14

IEEE Criteria for Standards Development (CSD)

Next Generation EPON Considerations of ODN, Coexistence and Transmission Speed

50 GbE 40km Objective 5C Study Group Discussion

IEEE Conformity Assessment Program (ICAP) June12, 2013

Table of Contents Chapter 1 EPON System Configuration Chapter 2 OLT Configuration Chapter 3 ONU Configuration

OP-GONT 91001W. Overview: 1Port Gigabit GPON ONT

Summary of Proposed Responses to CSD

Smooth migration Technology from GE-PON to NG-PON towards NGN era in Japan

Proactnes Series for Efficient IP Network Operation Management

Product Overview. Product Overview. Product Specifications. Ordering Information. Service Scenario for PON Interface Layout Operating Status LEDs

Super-PON Call For Interest Consensus Deck

ONT-4GE-W HGU GPON ONT

ANNOUNCING FIRST PRODUCTS TO ACHIEVE BROADBAND FORUM G-PON ONU CERTIFICATION

IPv6 Deployment Status in Japan

The 5-Criteria for EPoC

EPON OLT PTF3004. Description: Features:

IEEE Criteria for Standards Development (CSD)

IEEE YANG Data Model(s) Study Group Closing Report

"Field Trial of Signaling Interworking of Multi-Carrier ASON/GMPLS Network Domains" Satoru Okamoto

ONU 852, 853. PON ONU series. User Manual

ONT-1GE-W. Brief Views

Performance Evaluation of Standard IPACT for Future Long Reach Passive Optical Networks (LR-PON).

Overview of GMPLS Protocols and Standardization

GE-PON Optical Access Network

TR-167 GPON-fed TR-101 Ethernet Access Node

BDCOM GP3600 series High-density Rack-mounted GPON OLT

Experience of deployment of broadband optical access system and its future vista

The impact of G.fast / FTTdp

Network Core Technologies for a Next Generation Network

Overview on Test & Certification in Wi-SUN Alliance. Chin-Sean SUM Certification Program Manager Wi-SUN Alliance

WDS614GWI HGU GPON ONT

IEEE : Standard for Optimized Radio Resource Usage in Composite Wireless Networks

Alliance for Telecommunications Industry Solutions (ATIS)

CFI for CFI: 1x50Gb/s and 2x50Gb/s EPON

IP Video Surveillance Network Solution

Future Service Adaptive Access/Aggregation Network Architecture

GPONDOCTOR Current certification process has a high portion of Waste Drastic reduction Test execution capacity Manual execution of a Test Plan

July Keywords: Optical Fibre, Passive Optical Networks, GPON, XGPON, NG-PON2

Smart FiWi Networks: Challenges and Solutions for QoS and Green Communications

Transcription:

G.epon and Current Status of Related Standardization Ken-Ichi Suzuki Abstract G.epon is an ITU-T (International Telecommunication Union, Telecommunication Standardization Sector) version of the system-level EPON (Ethernet passive optical network) standard that uses generic OMCI (ONT (optical network terminal) management and control interface) in SIEPON (Service Interoperability in EPON) package B. It was given consent in July 2013 and approved in September 2013. This article reports on G.epon, which is expected to be deployed in emerging nations and developing countries, and explains the current status of related standardization. Keywords: EPON, SIEPON, OMCI 1. Introduction The use of optical access systems based on passive optical networks (PONs) has increased along with the expansion of broadband services. GE-PON *1, a type of EPON (Ethernet based PON), has been widely deployed in Japan. However, the scope of IEEE (Institute of Electrical and Electronics Engineers) EPON standardization has been limited to the PHY (physical) and MAC (media access control) layers and other system specifications that depended on implementations by system vendors or telecommunication carriers to provide their services. The scope of IEEE [1] standardization using the layer model of the EPON system is shown in Fig. 1. There is no specification of higher layers in IEEE standardization, as shown in the figure, so telecommunication carriers desiring system deployment in multivendor environments require additional development or modification of firmware and hardware. Moreover, system vendors have had difficulty doing business globally because they could not ensure that their systems would be interoperable with other systems even if they had been developed in compliance with IEEE standards. In view of these situations, IEEE initiated system-level EPON standardization in order to ensure the interoperability between optical line terminals (OLTs) and optical network units (ONUs). That standardization was approved in June 2013 [2]. By contrast, the trend to introduce de jure standards in developing countries and emerging nations has become an issue that must be addressed in the global promotion of EPON. In view of the fact that future networks were expected to be packet-oriented, we began proposing that the International Telecommunication Union, Telecommunication Standardization Sector (ITU-T) create EPON standards through the Full Service Access Network (FSAN) [3] in 2001, when IEEE started work on EPON standardization. However, this proposal was not realized. Consequently, a variety of EPON systems with different specifications were developed. We have continued to seek a way to create EPON standardization in ITU-T ever since then. By contrast, IEEE started SIEPON *2 standardization, which is a system-level EPON standard, in 2010. We decided to grab this SIEPON standardization opportunity to work on G.epon standardization in order to incorporate a full set of specifications of widely used EPON systems into ITU-T standardization. To make a breakthrough in EPON *1 GE-PON: Gigabit Ethernet PON; the term GE-PON is used in this article since it is widely used in Japan. However, the term 1G-EPON is recommended for use in the standard. *2 SIEPON: Service Interoperability in EPON specified in IEEE 1904.1 WG (Working Group); a corporate project sponsored by the IEEE Communication Society. NTT Technical Review

Client management - SNMP, IGMP, MLD, IEEE 802.1x Client management - SNMP, IGMP, MLD, IEEE 802.1x Higher layer MAC client - Forwarding - QoS - Priority control MAC control client - ONU registration - GATE generation - REPORT handling client - Alarm - Surveillance MAC client - Forwarding - QoS - Priority control MAC control client - ONU registration - GATE handling - REPORT generation client - Alarm - Surveillance MPCP MPCP MAC MAC MAC MAC RS RS Scope of standardization PCS Scope of IEEE PCS PMA PMA OLT PMD ONU PMD IGMP: Internet group management protocol MLD: multicast listener discovery MPCP: multipoint control protocol : operations, administration, and maintenance OLT: optical line terminal ONU: optical network unit PCS: physical coding sublayer PMA: physical medium attachment PMD: physical medium department QoS: quality of service RS: reconciliation sublayer SNMP: simple network management protocol Fig. 1. Scope of IEEE standardization. standardization in ITU-T, we focused on SIEPON package B for G.epon standardization in the Japanese market and aimed for early completion of G.epon standardization. We took into consideration the future replacement (or coexistence) with G-PON and decided to apply OMCI (ONT (optical network terminal) management and control interface), which is widely used in ITU-T standards, to G.epon. The G.epon standard was given consent in July 2013 and approved in September 2013. This article reports on ITU-T G. epon and the current status of related standardization. 2. Overview of ITU-T Recommendation G.epon (G.9801) 2.1 SIEPON standardization and G.epon I briefly introduce SIEPON standardization as a reference document of G.epon. SIEPON is intended to realize service interoperability among 1G-EPON or 10G-EPON equipment. In order to achieve this, the SIEPON standard specifies a system-level EPON standard that consists of three specification packages according to the market (Package A: North American MSOs (multiple system operators); Package B: Japan; Package C: China). The difference between G.epon and SIEPON in terms of constituent standards and principal functions is shown in Fig. 2. G.epon is an ITU-T version of the EPON standard specified by applying OMCI, which is widely used in ITU-T standards, to SIEPON package B. That standardization is being done under a Japanese initiative as a part of the Telecommunication Technology Committee (TTC) s [4] upstream activity. On the contrary, SIEPON uses extended operations, administration, and maintenance (e). However, hardware commonalization between G.epon and SIEPON compliant systems is anticipated because functions can be realized with firmware. The principal functions newly specified in G.epon/SIEPON standards are listed in Table 1. Because the existing EPON standards did not specify these functions, it was Vol. 12 No. 1 Jan. 2014 2

Common Ethernet services HN management BBF TR-142 (TR-069 for PON) Service model BBF TR-156, 200 (TR-101 for PON) SIEPON G.988 (Generic OMCI) System level specifications e PON management (e.g., ) Higher layer specifications (e.g., QoS ) G.986 (1G-P2P) G.987 (XG-PON) G.984 (G-PON) av (10G-EPON) ah (GE-PON) MAC layer specifications (e.g., frame structure) Physical layer specifications (e.g., transmission bandwidth) ITU-T Recommendations G.epon IEEE standards BBF: Broadband forum HN: home networking TR: technical report Fig. 2. Differences between G.epon and SIEPON. Item Main specifications Remarks Client management client Table 1. Principal functions newly specified in G.epon/SIEPON standards. Encryption/authentication, protection, power saving, service management, system monitoring discovery, alarm handling, statistical information processing (surveillance) Various functions Surveillance and control functions MAC client Queue control, shaping, priority control, policing, etc. Main signal control functions MAC control client Bandwidth control, report generation, discovery control PON access control functions difficult to realize interoperability even with standard-compliant devices. 2.2 Architecture model for G.epon/SIEPON The architecture model for G.epon/SIEPON is shown in Fig. 3. The architecture model defines Line OLT/Line ONU having functions covered by the IEEE standards, Client OLT/Client ONU having functions covered by G.epon/SIEPON standards, and Service OLT/Service ONU having additional functions for specific services provided by the communication carrier or system vendors. Moreover, the architecture model newly defines OLT_CI/ONU_CI as logical interfaces on the core network/user network side of Client OLT/Client ONU and OLT_LI/ ONU_LI as a logical interface on the core network/ user network side of Line OLT/Line ONU. 2.3 Logical function model for G.epon/SIEPON The logical function model for G.epon/SIEPON is shown in Fig. 4. G.epon/SIEPON defines ESPs (EPON service paths), which provide basic functional blocks of the MAC client model to achieve provisioning, connection, and QoS in services. The basic functional blocks (input/output, classifier, modifier, policer, cross-connect, packet queue, and scheduler) in ESPs provide data forwarding in OLTs and ONUs. A set of ESPs in an OLT and an ONU represents a unidirectional connection. The example in this figure shows ESP configurations for the bidirectional unicast connection between an OLT and an ONU. The ESP concept is intended to be of help in understanding standard specifications because it simplifies and conceptualizes behaviors of MAC client functions, thus absorbing implementation differences 3 NTT Technical Review

Service OLT Client OLT NNI Servicespecific function OLT_CI OLT client Line OLT OLT_LI layering model OLT_MDI UNI ONU_CI ONU_LI ONU Servicespecific function client layering model ONU_MDI Line ONU Client ONU CI: client interface LI: line interface MDI: medium dependent interface NNI: network node interface UNI: user network interface Service ONU Coverage of IEEE Std. 1904.1 Coverage of IEEE Std. Fig. 3. Architecture model for G.epon/SIEPON. such as single LLID (logical link ID) and multiple LLID configurations. 3. Status of G.epon-related standardization This section describes the current status of G.eponrelated standardization. 3.1 Interoperability test specifications for G.epon A proposal to standardize a G.epon implementers guide was accepted in the ITU-T SG15/Q2 (Study Group 15; Question 2) interim meeting in February 2013. The G.epon implementers guide is intended to develop two kinds of test specifications for a conformance test, which is conducted by connecting an ONU under test to an OLT emulator, and an interoperability test, which is conducted by connecting one or multiple ONUs to an OLT in a multi-vendor environment. The IEEE 1904.1 WG is working on developing specifications for a conformance test (IEEE P1904.1 SIEPON/Conformance) that is performed by connecting an OLT and an ONU to an ONU emulator and OLT emulator, respectively. Although there are differences in each test configuration, the G.epon implementers guide is being developed in reference to SIEPON/Conformance standard documents. The development of the implementers guide is expected to be done through a Japanese initiative as part of upstream activities in TTC in common with G.epon. 3.2 Interoperability tests in Japan The development of the G.epon implementers guide and SIEPON/Conformance have accelerated the movement to carry out EPON interoperability tests in Japan. Various organizations are cooperating in the interoperability tests, as shown in Fig. 5. The Optical Access Ad-hoc WG was established in the HATS (Harmonization of Advanced Telecommunication Systems) conference [5] of Japan in August 2012. This WG is an operating organization for conducting interoperability tests of G.epon/SIEPON compliant equipment. Hereafter, the Optical Access Ad-hoc WG is expected to conduct interoperability tests in cooperation with the SIEPON certificate program and TTC. Vol. 12 No. 1 Jan. 2014 4

EPON service path (ESP) Input Classifier [C] Modifier [M] Policer/shaper [PS] CrossConnect [X] Queues [Q] Scheduler [S] Output [O] Provisioning/arms & status Functional blocks related to connectivity Functional blocks related to QoS Example of ESP - Bidirectional unicast connection OLT ESP#1 ONU ESP#2 [C] [M] [PS] [X] [Q] [S] [O] [C] [M] [PS] [X] [Q] [S] [O] [O] [S] [Q] [X] [PS] [M] [C] [O] [S] [Q] [X] [PS] [M] [C] ESP#3 DBA ESP#4 Fig. 4. Logical function model for G.epon/SIEPON. IEEE SIEPON Certification Program (SIEPON CASG) - Conduct conformance test and SIEPON issue certificate. Interoperability test Vendors A B G.epon/SIEPON IOP Test - Conduct IOP test of SIEPON equipment with SIEPON certificate and G.epon equipment. - Create test guideline. - Global promotion of G.epon/SIEPON equipment Telecommunication carriers A B G.epon Interoperability test Test lab (Not in Japan) Harmonization with ITU-T/ASTAP C - Participate in test. D Cooperation HATS conference Optical Access Ad-hoc WG TTC - Create related Japan standards. - Support for IOP test - Provide test machine. - Use test results. C ASTAP: Asia-Pacific Telecommunity Standardization Program CASG: Conformity Assessment Steering Group IOP: interoperability Fig. 5. Cooperation between related organizations for interoperability test. 5 NTT Technical Review

4. Future perspectives This article reported on G.epon, which was given consent this July, and the status of related standardization. G.epon is an ITU-T version of the EPON standard based on SIEPON package B for the Japanese market, which uses generic OMCI *3 instead of e. G.epon is expected to be deployed in emerging nations and developing countries that place importance on de jure standards. The development of the G.epon implementers guide, which is a reference document for interoperability tests, and the corresponding movement to carry out interoperability tests in Japan are expected to accelerate activities related to interoperability test for G.epon and SIEPON. Moreover, successful G.epon standardization is expected to promote further cooperation between ITU-T and IEEE such as IEEE s request to issue an ITU-T Recommendation number for the entire SIEPON standard including all packages. *3 Generic OMCI: ONT (optical network terminal) management and control interface specified in ITU-T G.988, which has been generalized for application to various PON systems. Ken-Ichi Suzuki Senior Research Engineer, Supervisor, Group Leader of Full Service Access Group, NTT Access Network Service Systems Laboratories. He received the B.E. and M.E. degrees in electronic engineering from Utsunomiya University, Tochigi, in 1988 and 1990, respectively, and the Ph.D. degree in information science and technology from Hokkaido University in 2009. He joined NTT laboratories in 1990, where he has been working on R&D of optical communication systems including PON based optical access systems. He currently leads the Full Service Access Group, which is investigating optical access related services/technologies. His current research interests are 10G-EPON related optical access systems/technologies and optical-amplifier-based long-reach PON systems/technologies. He is an IEEE WG voter and was an active member of the IEEE Pav Task Force creating 10G-EPON standardization. He has been a Vice Chair of IEEE P1904.1 SIEPON WG since 2011 and was an executive secretary of IEEE P1904.1 SIEPON WG during 2009 2011. He has been a Director of the Optical Access Adhoc WG in HATS conference of Japan for EPON family interoperability tests since 2012. He is a member of IEEE, the Institute of Electronics, Information and Communication Engineers (IEICE), and the Optical Society of America. He has also been a member of the Technical Committee on Communication Systems in IEICE Communication Society since 2008 and was an associate editor of IEICE Transactions on Communications during 2007 2011. He is the TPC Secretary of IEEE CQR2012, 2013, and 2014. References [1] IEEE Ethernet WG. http://www.ieee802.org/3/index.html [2] IEEE 1904.1 SIEPON (service interoperability in EPON) WG. http://grouper.ieee.org/groups/1904/1/index.html [3] FSAN (Full Service Access Network). http://www.fsan.org/ [4] TTC (Telecommunication Technology Committee). http://www.ttc.or.jp/e/ [5] HATS (Harmonization of Advanced Telecommunication Systems) conference. http://www.ciaj.or.jp/hats/english/about.html Vol. 12 No. 1 Jan. 2014