BEAVRS benchmark calculations with Serpent-ARES code sequence

Similar documents
Methodology for spatial homogenization in Serpent 2

SERPENT Cross Section Generation for the RBWR

Click to edit Master title style

PSG2 / Serpent a Monte Carlo Reactor Physics Burnup Calculation Code. Jaakko Leppänen

2-D Reflector Modelling for VENUS-2 MOX Core Benchmark

Click to edit Master title style

A MULTI-PHYSICS ANALYSIS FOR THE ACTUATION OF THE SSS IN OPAL REACTOR

Click to edit Master title style

Click to edit Master title style

1 st International Serpent User Group Meeting in Dresden, Germany, September 15 16, 2011

Coupled calculations with Serpent

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering

IMPROVEMENTS TO MONK & MCBEND ENABLING COUPLING & THE USE OF MONK CALCULATED ISOTOPIC COMPOSITIONS IN SHIELDING & CRITICALITY

WP1.4: CORE PHYSICS BENCHMARKING OVERVIEW

DRAGON SOLUTIONS FOR BENCHMARK BWR LATTICE CELL PROBLEMS

Status and development of multi-physics capabilities in Serpent 2

Daedeok-daero, Yuseong-gu, Daejeon , Republic of Korea b Argonne National Laboratory (ANL)

Application of MCNP Code in Shielding Design for Radioactive Sources

Status of the Serpent criticality safety validation package

Installation of a Second CLICIT Irradiation Facility at the Oregon State TRIGA Reactor

CORE MONITORING EXPERIENCE WITH GARDEL

A COARSE MESH RADIATION TRANSPORT METHOD FOR PRISMATIC BLOCK THERMAL REACTORS IN TWO DIMENSIONS

Verification of the 3D Method of characteristics solver in OpenMOC

MCNP Monte Carlo & Advanced Reactor Simulations. Forrest Brown. NEAMS Reactor Simulation Workshop ANL, 19 May Title: Author(s): Intended for:

Multiphysics simulations of nuclear reactors and more

Evaluation of PBMR control rod worth using full three-dimensional deterministic transport methods

CPM-3 BENCHMARKING to the DOE/B&W CRITICAL EXPERIMENTS

TREAT Modeling & Simulation Using PROTEUS

Experience in Neutronic/Thermal-hydraulic Coupling in Ciemat

EXPERIENCE AND EVALUATION OF ADVANCED ON-LINE CORE MONITORING SYSTEM BEACON AT IKATA SITE

Subplane-based Control Rod Decusping Techniques for the 2D/1D Method in MPACT 1. Aaron M. Graham, Benjamin S. Collins, Thomas Downar

Development of a Variance Reduction Scheme in the Serpent 2 Monte Carlo Code Jaakko Leppänen, Tuomas Viitanen, Olli Hyvönen

Parallel computation performances of Serpent and Serpent 2 on KTH Parallel Dator Centrum

Research Article Development and Application of MCNP5 and KENO-VI Monte Carlo Models for the Atucha-2 PHWR Analysis

SALOME-CŒUR : une plate-forme pour des études neutroniques à EDF

NUC E 521. Chapter 6: METHOD OF CHARACTERISTICS

A FLEXIBLE COUPLING SCHEME FOR MONTE CARLO AND THERMAL-HYDRAULICS CODES

Computing Acceleration for a Pin-by-Pin Core Analysis Method Using a Three-Dimensional Direct Response Matrix Method

Calculation and Verification of Assembly Discontinuity Factors for the DRAGON/PARCS code sequence. Luca Liponi, Julien Taforeau, Alain Hébert

LWR MULTI-PHYSICS DEVELOPMENTS AND APPLICATIONS WITHIN THE FRAMEWORK OF THE NURESIM EUROPEAN PROJECT

State of the art of Monte Carlo technics for reliable activated waste evaluations

CALCULATION OF THE ACTIVITY INVENTORY FOR THE TRIGA REACTOR AT THE MEDICAL UNIVERSITY OF HANNOVER (MHH) IN PREPARATION FOR DISMANTLING THE FACILITY

Modeling Integral Fuel Burnable Absorbers Using the Method of Characteristics

Radiological Characterization and Decommissioning of Research and Power Reactors 15602

Comparative analysis of neutronics/thermal-hydraulics multi-scale coupling for LWR analysis

WPEC - SG45: procedure for the validation of IRSN criticality input decks

The Pennsylvania State University. The Graduate School. Department of Mechanical and Nuclear Engineering

Evaluation of the Full Core VVER-440 Benchmarks Using the KARATE and MCNP Code Systems

Verification of the Hexagonal Ray Tracing Module and the CMFD Acceleration in ntracer

Opencg: A Combinatorial Geometry Modeling Tool for Data Processing and Code Verification

Adaptation of the Nagra Activation Analysis Methodology to Serpent

Development and Verification of an SP 3 Code Using Semi-Analytic Nodal Method for Pin-by-Pin Calculation

DEVELOPMENT OF A GRAPHICAL USER INTERFACE FOR IN-CORE FUEL MANAGEMENT USING MCODE

APROS laboratory manual:

Modeling the White Sands Missile Range Fast Burst Reactor Using a Discrete Ordinates Code, PENTRAN

COUPLED BWR CALCULATIONS with the NUMERICAL NUCLEAR REACTOR SOFTWARE SYSTEM

Neutronics Analysis of TRIGA Mark II Research Reactor. R. Khan, S. Karimzadeh, H. Böck Vienna University of Technology Atominstitute

SOFTWARE REQUIREMENTS SPECIFICATION FOR THE TRAC-M-SPECIFIC DATA MAP ROUTINE IN THE COUPLED TRAC-M/PARCS CODE. R. Matthew Miller, Thomas J.

OECD/NEA EXPERT GROUP ON UNCERTAINTY ANALYSIS FOR CRITICALITY SAFETY ASSESSMENT: CURRENT ACTIVITIES

OSCAR-4 code integration

PROJECT FINAL REPORT

SOFTWARE REQUIREMENTS SPECIFICATION FOR THE PARCS-SPECIFIC DATA MAP ROUTINE IN THE COUPLED RELAP5/PARCS CODE. Douglas A. Barber, Thomas J.

Modeling the ORTEC EX-100 Detector using MCNP

Overview of MELCOR Code Activities in IBRAE RAN

Using Periodic Boundary Conditions

A premilinary study of the OECD/NEA 3D transport problem using the lattice code DRAGON

Evaluation of RAPID for a UNF cask benchmark problem

Development of a Radiation Shielding Monte Carlo Code: RShieldMC

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA

MVP-BURN: Burn-up Calculation Code Using. A Continuous-energy Monte Carlo Code MVP

Particle track plotting in Visual MCNP6 Randy Schwarz 1,*

NURISP Overview. C. CHAULIAC, CEA, coordinator of the project F-P WEISS, FZD, chairman of the Governing Board

Lab 9: FLUENT: Transient Natural Convection Between Concentric Cylinders

OPTIMIZATION OF MONTE CARLO TRANSPORT SIMULATIONS IN STOCHASTIC MEDIA

Matlab representations of Polar Transmission Line Matrix Meshes.

Modeling Skills Thermal Analysis J.E. Akin, Rice University

Synrad3D Photon propagation and scattering simulation

Seismic-Initiated events risk mitigation in LEad cooled Reactors SILER How to isolate an NPP interface components: Metal Bellows Expansion joints

Deliverable D10.2. WP10 JRA04 INDESYS Innovative solutions for nuclear physics detectors

FloEFD 16 What s New. Alexey Kharitonovich Product Manager. Tatiana Trebunskikh Product Manager

Annals of Nuclear Energy

Porous Reactor with Injection Needle

Teresa S. Bailey (LLNL) Marvin L. Adams (Texas A&M University)

WESTINGHOUSE CFD MODELING AND RESULTS FOR EPRI NESTOR CFD ROUND ROBIN EXERCISE OF PWR ROD BUNDLE TESTING

Melting Using Element Death

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

Torsional-lateral buckling large displacement analysis with a simple beam using Abaqus 6.10

Abaqus Technology Brief. Two-Pass Rolling Simulation

Flow Around Nuclear Rod Bundles Simulations Based on RANS and LES Method Respectively

ABSTRACT. W. T. Urban', L. A. Crotzerl, K. B. Spinney', L. S. Waters', D. K. Parsons', R. J. Cacciapouti2, and R. E. Alcouffel. 1.

Simulating the RF Shield for the VELO Upgrade

Abaqus Technology Brief. Sound Radiation Analysis of Automobile Engine Covers


Artifact Mitigation in High Energy CT via Monte Carlo Simulation

HeatWave Three-dimensional steady-state and dynamic thermal transport with temperature-dependent materials

CORPUS : A MULTIPHYSICS SALOME APPLICATION FOR REACTOR MULTIPHYSICS ANALYSIS

Graphical User Interface Development for the MARS Code

VALIDATION OF SASSI2010 SOLUTION METHODS THROUGH INDEPENDENT VERIFICATION USING SAP2000 FOR DEEPLY EMBEDDED STRUCTURES WITH LARGE FOOTPRINTS

UNSTRUCTURED 3D CORE CALCULATIONS WITH THE DESCARTES SYSTEM APPLICATION TO THE JHR RESEARCH REACTOR

CFD Simulation of Cavitation in an Internal Gear Pump

Transcription:

BEAVRS benchmark calculations with Serpent-ARES code sequence Jaakko Leppänen rd International Serpent User Group Meeting Berkeley, CA, Nov. 6-8,

Outline Goal of the study The ARES nodal diffusion code BEAVRS Benchmark Results The complete work is reported in: J. Leppänen, R. Mattila and M. Pusa. Validation of the Serpent-ARES Code Sequence using the MIT BEAVRS Benchmark Initial Core at HZP Conditions. Submitted to Ann. Nucl. Energy.

Goals of the study This study is related to a larger project involving Serpent as the group constant generator for Finnish fuel cycle and transient simulator codes (ARES, HEXBU-D, TRAB-D, HEXTRAN) Specific goals: - Test and demonstrate the Serpent-ARES coupling in a realistic LWR geometry - Evaluate the methods used in Serpent for group constant generation - Point out any methodological shortcomings - Determine the level of accuracy obtained using nodal diffusion codes in comparison to a reference D Monte Carlo solution - Evaluate the impact of approximations on homogenization - Obtain better undestanding on deterministic methods in core analysis This presentation covers the first part of the study (HZP initial core calculations), the next stage involves fuel cycle simulations with thermal hydraulics and burnup

The ARES Code (/) ARES a is a fuel cycle simulator code developed at the Finnish Radiation and Nuclear Safety Authority (STUK) since for independent safety analyses of Finnish NPP s Stationary fuel cycle simulations for PWR and BWR cores with rectangular fuel geometry: - Evaluation of safety margins - Burnup calculations for transient simulations - Reference calculations for commercial codes (SIMULATE) Originally designed to use group constant data generated using CASMO One of the inspirations for starting Monte Carlo code development at VTT in 4 a AFEN REactor Simulator

The ARES Code (/) Physics: - Two-group nodal diffusion method - Based on three-dimensional analytical function expansion nodal model (AFEN) a - Nodal flux solution in eigenmode representation, using 8 analytical form functions per flux mode - Coupling between nodes using 8 radial ADF s per group (boundary and edge) Improved diagonal coupling between nodes: better accuracy near assembly edges, solution more sensitive to ADF s The calculations in this study were limited to HZP initial core no burnup, thermal hydraulics or interpolation between state points a R. Mattila. Three-dimensional analytic function expansion nodal model. YE-PD-9/, VTT Technical Research Centre of Finland,.

Test case (/5) The MIT BEAVRS benchmark a was established in as a test case for high-fidelity core analysis methods (primarily D Monte Carlo) Detailed description of a commercial MWe PWR initial core: - Standard 7 7 PWR fuel, three assembly types (.6,.4 and. w/o U-5) - Burnable absorber in 5 configurations: 6,, 5, 6 and pins (configurations with 6 and 5 pins asymmetrically positioned) - Control rod clusters in 4 control and 5 shutdown banks - Operation history for first two cycles Experimental results: control rod bank worths, power distributions, boron letdown curve a N. Horelik and B.Herman. Benchmark for evaluation and validation of reactor simulations. MIT Computational Reactor Physics Group ().

Test case (/5) Serpent models: D model for reference results, D assembly-level models for homogenization (single-assembly and colorset configurations) ADF s and pin-power peaking factors calculated separately using a Matlab script (see Maria s presentation) No major approximations in geometry: spacer grids homogenized with assembly, gas-filled instrumentation tubes omitted ARES model: - 9 unique assembly types - reflector node types - axial nodes (9 active + reflector) The D Monte Carlo calculation was carried out using the same code and cross section data that was used for homogenization the best imaginable reference solution for the D nodal diffusion calculation

Test case (/5) R P N M L K J H G F E D C B A III III III III III III III III III III III III I I I I I I II III III III 4 5 6 7 8 9 4 5 III III II II 6 6 6 II II III III III III II 6 6 II III III III II 5 6 6 6 6 6 5 II III III III II 6 6 6 6 II III III III II 6 6 6 6 I III III I 6 6 6 6 I III III I 6 I III III I 6 6 6 6 6 6 I III III I 6 I III III I 6 6 6 6 I III III I 6 6 6 6 II III III III II 6 6 6 6 II III III III II 5 6 6 6 6 6 5 II III III III II 6 6 II III III III III II II 6 6 6 II II III III III III III II I I I I I I III III III III III III III III III III III III Figure : Left: Core layout with fuel enrichment (red =.6, yellow =.4 and blue =. w/o U-5), number of burnable absorber pins and reflector type, Right: Geometry plot of the Serpent D model at core mid-plane.

Test case (4/5) The calculations were repeated with different approximations for homogenization, by starting from simple and gradually refining the model:. All assemblies homogenized in single-assembly calculations without B leakage correction. All assemblies homogenized in single-assembly calculations with B leakage correction. Like Config., but assemblies with. w/o enriched fuel and zero and six burnable absorber pins homogenized in colorset with.5 assembly widths of surroundings 4. All assemblies homogenized in colorset with.5 assembly widths of surroundings 5. Like Config., but assemblies with. w/o fuel homogenized in colorset with.5 assembly widths of surroundings 6. All assemblies homogenized in colorset with.5 assembly widths of surroundings

Test case (5/5) Figure : Single assembly and colorset configurations

Results (/6) Table : Summary of results: Effective multiplication factor calculated by ARES, maximum negative and positive differences in assembly power between ARES and Serpent D, and error fractions and mean absolute errors in ARES pin-power distribution. Config. k eff Differences Error fractions Mean < % < % < %.999 [-7.7,.].5 9. 44.8 4..9995 [-8.4,.9] 6.8.5 4.8 4..998 [-.8,.8] 4.6 78.7 94.8. 4.99994 [-.8, 8.7] 7.9 58.8 8.8.9 5.99949 [-.6,.4] 7.7 98. 99.7.7 6.99995 [-.6,.6] 8.4 97.7 99.7.

Results (/6) Figure : Left: Config All assemblies homogenized in single-assembly calculations. Right: Config Assemblies with 6 BA pins homogenized with surroundings.

Results (/6).6 Het. flux, infinite lattice Hom. flux, infinite lattice Het. flux, colorset Hom. flux, colorset.6 Het. flux, infinite lattice Hom. flux, infinite lattice Het. flux, colorset Hom. flux, colorset.99.4.4..97. Relative flux.5.9 Relative flux..94.8.8.6.6..5.4 5 5 Position (cm).4 5 5 Position (cm) Figure 4: Impact of surroundings in homogeneous and heterogeneous flux in assemblies with 6 BA pins. Left: fast group. Right: thermal group.

Results (4/6) R P N M L K J H G F E D C B A -. -.5 -. -.5 -.7 -. -. R P N M L K J H G F E D C B A -. -.6 -.9 -.4 -.6. -.6 -. -.5 -.6 -. -.7 -.4 -. -. -.5 -.5 -. -.4 -. -.4 -. -.9 -.5 4..4.. -.4 -.9 -.7 -. -.5 -.4 -.5 -.5 -. 4 5 6 -.5... -. -.8 -.9 -. -.9 -. -.6 -.5 -.5 -.4 -.6..4.4. -.6 -.6 -.8 -.5 -. -. -. -.7 -. -.9 -. 5 6 7... -. -.6 -.7 -. -. -.5 -.8 -. -. -.6 -. -.7 7 8.4.6. -. -. -... -. -.5 -. -.7 -.4 -. -.7 8 9.4.. -. -.4 -.5 -.. -. -.8 -.7 -.8 -. -.6 -.5 9.. -.. -. -.4 -. -. -.6 -.7 -.8 -. -. -. -.4 -. -.4..4. -.4 -.4 -.4 -.6 -.6 -... -. -.6 -..... -. -. -. -.... -. -.9...5... -. -... -.4 -.6 4 -....4..4 -. -. -.6 -. -. 4 5 -.. -... -. -.8 5 Figure 5: Config 6 All assemblies homogenized in colorset with.5 assembly widths of surroundings (best results). Left: relative differences in assembly power at core mid-plane. Right: relative differences in pin power at core mid-plane.

Results (5/6)..................4.4.4..4.4......4.4..4.4.4...9.9......9.9.8.6.5...5..........9.8.9.6.5.4..5.8.9.9.8.7.6.6.5.4.4....4.6..7.7.9..9.8.6.7.5.5.5.4...4.6..7.8.6.98.9.87.8.8.8.77.7.6.54.4..8.5.89.6.4.96.9.86.8.8.79.76.69.6.54.4..8.4.89.5.4.9.4..7..95.89.8.77.7.65.59.5.47.4.6..8..9.5.99.9.87.8.76.7.65.59.54.48.4..5.7.9..........9.7.5..4.6.8.9..........9.8.6.4.5...4.7..6...5....7..8.5....5.9..7...6...4.7..8.5..5.7.4..95.9.84.9.89.8.88.87.8.87.9.98.6.9.7.4..96.9.84.89.9.8.88.87.8.87.9.98.5..5.8..9.8.74.66.7.78.8.7.64.59.45..9.5.88.7..9.8.7.64.7.77.79.7.6.57.44..8.4.88.5.54.44.9.5..8.8..7.98.9.86.77.7.6.54.46.5.4.6..7.6.5.9.5.96.9.84.76.68.6.5.46.5..7..6.8.4.8..6.8.7.8.8.7.7.8.7.8.8.6..7..8.6..8.4..5..4.47..5..4.47.45.45.46.45.44.44.44.44.4.8.7.8..4.7.6.8.4..95.86.7.67..94.85.7.68.7.7.7.7.7.68.7.69.64.7.8.96.5.65.7.84.98.5.8.98.8.66.59.7.98.8.64.58.64.8.64.79.77.7.75.68.5.9..6.89.5.8..5.88.66.59.55.55.5.6.54.5.5.47.4.7..4..4.9..9.8.7.6.5.88.79.69.59.5..9.6..9.6...8.8..8.8.....8.8..8.8...6.9..6.9....4...44.5.5.46.46.5.44.44.5.49.54.54.47.46.5.45.44.5.49.7..5.7..5.98.88.7.98.88.7.59.6.74.77.7.76.7.58.56.6.6.7.78.7.77.7.59.57.69.9..69.9..7.94.7.6.9.7.58.6.7.78.8.7.66.6.54.57.6.7.77.8.7.66.6.5.7.8.89.5.7.9.76.7.7.7.66.68.64.55.4.4.9.9..6.99.59.5.4..8.5.9..96.8.67.56.78.65.55...8....9.9..9.9....8..4.4.5.49.54.5.56.5.49.54.49.48.5.48.49.4.7.6.96.8.64.58.6.6.76.86.9.85.7.59.6.55.6.85..7.9.67.6.7.8.8.8.84.74.67.6.5.4.9.9.9.85.8.85.8.7.65.5.4.9.7.9.4.5.97.87.7.6.4..8....9.9..9.9....8..4.5.5.5.56.54.57.5.5.55.5.48.5.49.49.4.7.6.96.8.65.59.64.6.75.87.9.85.75.6.6.55.6.85..7.89.66.6.7.8.8.8.8.7.65.6.49.4.8.8.9.8.78.8.76.65.6.48.4.6..6...95.85.7.59.4..4...................4..4.6.4.6.4.55.58.57.59.58.57.58.58.57.56.57.56.5.5.5.5..8.4.9.94.75.95.76.6.6.6.6.75.95.75.97.94.7.95.7.6.58.6.57.79.9.78.8.7.86.7.85.69.86.68.85.9.89.9.88.79.7.77.69.5.4.5.4..9..9.94.95.9.9.88.8.84.77.64.55.6.5.8..6.7.....8.65.78.64...7.8.9........9.8.7...7.8.5.5.5.59.54.54.59.5.5.56.48.44.4..8.94.8.68.7.76.76.86.96..95.84.7.7.7.66.84.9..97.8.84.89.95.89.86.86.74.66.6.48.7.7.9.9..98..89.8.8.67.58.54.4..7.5.5.97.8.68...8.8.9........9.8.8...7.8.5.5.5.6.55.55.59.5.5.56.48.44.44..9.96.8.69.74.76.77.88.99.6.96.85.7.74.7.67.85.9..97.8.8.88.95.88.85.8.7.65.6.47.6.7.8.9.95.9.95.85.79.77.66.55.5.9..5...95.8.67...6.7.9........9.7.7.....7.8.9........9.8.7...4........................5.7.9.5.5.54.6.55.55.6.54.5.56.48.44.44..9.8.9.5.5.54.6.56.56.6.55.5.57.5.45.44...9.4.57.6.6.6.6.59.54.5.6...45.58.6.6.6.6.59.55.5.6..5.95.8.7.78.86.96.97.99..98.94.9.8.7.68.85..95.8.69.77.87.98.99....97.95.86.74.68.85.9.94.76.7.94.5....9.7.79.9.94.77.74.94.9..9..9.7.8.9.5.4.8..95.95.98.9.87.86.74.67.6.48.6.7.9.9..7..94.9.97.9.86.85.74.65.6.47.5.5.8.9.6.5...97.9.79.7.5.4..9.5...99.95.9.77.7.5.8..9.5.5.5.7.96.89.87.74.64.58.47.9.4....87.7..99..9.86.84.7.64.58.46.7...8..85.7..5.8..85.7.56.49..8.94.76.8..4.97.8.74.58.49.8.7.9.74.5...7.8.9........9.8.7...9.4.5.5.54.6.56.57.6.55.54.58.5.46.45...95.8.69.78.87.97.97.99..98.94.9.8.74.68.85..4.7..95.94.99.9.87.86.74.67.6.47.6.7..9.6.5.8.9...87.76.7.59.5.46....96.79...7.8.9........9.8.7...9.4.5.5.55.6.57.58.6.56.55.58.5.46.45...94.8.69.77.87.97.99....97.95.86.74.68.85.9..7..94.9.97.9.86.85.74.65.6.47.5.5.8.9...5.6..97.85.78.7.6.5.44..8.9.9.77...7.8.9........9.8.7.....8.8.9........9.8.8...............9.4.5.5.55.6.57.57.6.55.54.58.5.47.46...9.4.54.54.56.6.58.57.6.56.55.58.5.47.46....44.59.6.6.6.6.59.57.5.7..95.8.67.7.76.76.86.96..95.84.7.7.7.66.85..95.8.68.74.76.76.87.98.6.96.85.7.74.7.67.85..9.74.6.6.75.95.94.7.59.58.79.9..97.8.8.89.96.9.87.85.75.67.6.48.7.7..9..97.8.8.88.95.88.85.8.7.65.6.47.6.7.8.9.7.86.69.86.9.89.78.7.5.4..9...4.5.9.7.9.85.8.67.57.5.7.6.6.99.8.8.7...6.5.9.84.79.65.56.49.6..5.98.8.5.9.7..4.95.77.67.47.5.6.85.4...........4.9.45.59.6.6.6.6.59.57.54.7..94.75.6.6.75.96.95.7.6.57.79.9.6.85.68.85.9.88.77.69.5.4..9..6.4.8..94.74.65.44..4.84...8.....9..9.9....8..4.4..8....9.9..9.9....8..4.9.9.54.6.58.6.55.55.59.5.5.58.5.54.47...8.9.54.6.59.6.56.55.6.54.5.59.54.54.47...94.8.6.58.6.6.75.86.9.85.7.6.6.55.6.86..95.8.64.58.6.6.75.86.9.85.75.6.6.56.6.85..7.9.67.6.7.8.8.8.8.74.67.6.5.4.9.9.9.6.89.66.6.7.8.79.8.8.7.65.6.49.4.7.8.89.7.7.5....5.96.9.78.68.6.5.4.6.6.87..6....6..94.89.76.66.59.46.8..4.85..9.5...8.8..8.8...6.9...9.6...8.8..8.8...6.9...7..5.8.7.7.7.7.7.6..7..5.6.5.49.6.6.5.5.56.5.5.55.56.4.8..6.5.49.6.59.54.5.58.5.5.57.56.4.8..5..8.49.54.5.5.5.5.5.4..4.9.5.97.86.7.58.6.7.77.7.76.7.59.56.69.9..96.86.69.59.6.7.77.7.77.7.59.57.7.9...9.8.7.67.69.7.7.69.64.7.84.98.6.5.7.9.7.58.6.7.78.8.7.66.6.54.6.7.89.6.9.69.56.6.7.77.8.7.66.6.5.5.7.89.8.97.8.66.59.64.79.76.69.5.9..6.89.5.8.7.5..4.9..96.8.7.67.56.7.7.89.5.6..9..6.98.94.79.7.64.5.5.5.87.9.7.9.4..8.8.89.79.58.4.5.8.9.5.4.8..6.8.8.7.7.8.8.6..8.4.5..9.5.54.54.54.5.5.5.44..4..99.9.84.7.67.7.7.7.69.65.7.84.98.6.6.97.8.64.58.6.78.75.68.5.8..5.88.8.6.7...5.6.87.76.56.4..6.87..5.7.9..........9.7.5..4.6.8.9..........9.8.6.4..6..5.9.45.4.4.44.9.8.4.6..6....6..5.4.45.4.4.45.9.8.4.6..5...5..98.95.89.8.89.89.8.88.87.8.87.9.99.7..5..99.94.9.8.88.89.8.88.87.8.87.9.99.6..8..9.8.74.65.7.77.8.7.64.59.45..9.5.88.6..89.8.7.64.7.76.79.7.6.56.4..8.4.88..8.7.6.5.4..5..87.77.69.54.4.5..9..8.7.5.....98.84.75.66.5.7..7.89......4......4........5.7.9..9.8..8.8.7.5.4....4.6.6.6.5..5.4..4....5.8..9.7.5.98.9.87.8.8.8.76.7.6.54.4..8.5.89.6..9.7.4...5.98.88.77.68.55.4.8..96.4.4.4..4.4......4.4..4.4.4...6.7.9.....9.8.7.5.....4.6.8.7.6.4.6.4.4.5....4.7..9.5..95.9.85.8.8.78.75.69.6.5.4.9.8.4.88.4..8.5..9...95.85.75.64.5.8.4.9.9.9.5...4... -...4..5..5.5.7..4.7.7...... -....... -. -..9..5..7..5.6..8 -.4. -. -.. -.6 -.9 -. -. -. -. -.5 -.7 -.6 -.8 -.9 -. -.5 -.6 -. -. -.4. -.6 -.6 -. -.9 -.5 -.7 -.5 -. -. -. -. -.4 -..5.7 6..6.7.4.4... -.........5.....5..5.... -..... -. -... -...5. -.... -..6 -... -..8 -.7 -.6 -.8 -.7 -.9 -.9 -.9 -.7 -.4 -.5 -.6 -.6 -. -.5 -.5 -.6 -. -.8 -. -. -. -. -.8 -.5 -.7 -.4 -. -. -. -.6 -.6 -. -.5.4...4...5 -.. -.....4....4...6.... -. -.4.. -. -.4 -..4..4.5 -...5...6 -. -.6 -. -. -.9 -.5 -. -.8 -. -. -.5 -.4 -.9 -. -.7 -. -.8 -. -.6 -.6 -. -.7 -.6 -. -.6 -. -.6 -.7 -.6..5.4..4...5... -.......5........ -... -. -. -. -.. -.5 -..5.7.6 -...5.. -. -.6 -.4 -.6 -.7 -.8 -. -.6 -.8 -.8 -. -. -. -. -.8.4 -.5 -. -.6 -.6 -. -.4 -.6 -.4 -. -.9 -.7 -.6 -. -.9 -.......5....... -...4...4.4.8.6....4. -. -.... -... -.5.4.4.5 -. -...6..8.... -..4. -. -.4 -. -.6 -.6 -.7 -.5 -. -.4 -.8 -. -. -.9 -. -.9 -.8 -. -.7 -. -. -.9 -. -. -.5 -. -. -.6 -.6 -. -. -.8 -.7 -.9......6..4.... -..4.7.6... -...4...6.5. -...7.4.. -.4 -. -. -. -.4 -.9 -.4 -.8 -.7 -. -. -. -. -.4.5 -.8 -. -. -.9 -.4 -.8 -.9 -.9 -.7 -.4 -.6 -.......5..6.5.6.4.5.5.. -.....4.....4...4 -. -...5 -...7.6.5.6..4.8...7.6........ -.5 -.9 -.7 -. -.7 -.5 -. -.8 -.8 -.7 -.5 -.6 -. -.8 -.7 -.5 -.4 -. -. -. -.8 -.7 -.8 -. -. -.8 -.8 -.5 -.9 -.5 -.9 -..4..7.5..5.6..6..5...5 -....4..7.5..5.......6.... -. -. -. -.4.5.8...8...6.8... -.5 -.8 -. -.6 -.6 -.9 -.6 -.4 -.8 -.6 -. -.9 -. -.5 -.4 -.4 -.7. -.4 -.6 -.5 -.6 -.7 -.5 -...5 -.9 -. -.7 -. -. -. -.8 -.4 -...4.6.4...5.5....6.5.6.4 -.....4. -.. -..5.4..8 4...6. -..8 -. -.5 -. -.8 -. -. -.8 -. -.6 -. -.4.. -.6 -. -. -. -..5. -. -. -.8 -. -.. -.....4.5...5.4.6.....4...5.5.4.4..7...6 -... -. -.. -.4 -. -. -...4...7..5.7.6. -.. -.5 -.8 -. -. -.8 -.7 -. -.6 -.7 -.9 -. -. -. -.4 -.6 -. -.. -.8 -. -. -. -. -.8 -.7...6 -. -.8 -.8 -.5 -.4 -.6 -.....4.4.5.4.6..5.7.6....4.4 -...6.5.4.. -..... -.......4.4.7 -...6..5.6.4..8..4. -. -. -. -. -.8 -.7 -.7 -. -.8 -. -. -. -.7 -.5 -.9 -. -. -.9 -. -.5 -. -. -.5 -. -.4 -. -.6 -.8 -.4 -.7 -. -.5 -.7 -. -.7...7.4.4.5.6.4.5.4.5.4 -.. -...4........5.7. -. -..5...5 -.5 -. -. -. -.9 -.9 -.6 -.6 -.5 -. -. -. -. -.5. -. -.5 -. -. -.8 -. -.4 -. -.7 -.4 -. -..6..5.4..6 -..4.6.5.4..4.... -.4....4.4...6.5..5.4 -..... -.6. -..4. -... -..7.5.. -. -.. -. -.6 -.6 -.5 -. -.8 -.8 -. -.9 -.8 -. -. -. -.9 -.9 -.8 -.6 -.5 -.7 -.5 -. -.5 -.6 -. -.4 -. -. -. -. -. -. -. -.6 -.7.7.4.5.5.4.6.4.......4. -.... -..6 -..7.5..7.... -.. -.6.4 -.5 -..4.5.5 -...7.. -. -.7 -.5 -.5 -. -. -.5 -.5 -.4 -.7 -.4 -.9 -.8 -.9 -.5 -. -. -.6 -.9 -.4 -.5 -.5 -.5 -. -.6 -.4 -.5 -.9 -. -.7 -..6.4.9.7.....4.6..4.5.5....4..6.4.6...4...5 -. -... -..4. -. -..6.4 -... -. -. -.7 -.4 -.7 -. -.5 -.9 -. -.7 -.5 -. -.5 -.9 -.7 -.5 -. -.4 -.9 -.5 -. -.4 -.9 -.5 -. -.5 -. -.9.5.6.5..6.4 -... -...5..4.6.6.5 -.........5. -..4.. -. -... -..4 -.4.. -. -.. -. -.4.6... -..7 -. -.9 -. -. -. -. -.7 -.7 -.8 -. -. -.5 -. -.5 -.9 -. -.5 -.5 -. -. -.5 -.7 -.9 -. -. -. -.4 -. -.8 -. -.9 -.6 -. -.8..7...7........6...6.8 -.8 -... -...4.8.5.. -.. -.. -. -. -.....6.5.4..5.5..6 -. -. -.4.. -. -. -. -. -. -.6 -.8 -. -.5 -. -. -.6 -.7 -.4 -.4 -. -.9 -.8 -. -.5 -.7 -.5 -.6 -.6 -. -.4 -.5 -. -. -.4 -.5 -.6 -. -4. Figure 6: Pin-level results in selected assembly positions (left to right: A8, M, P9, A8 and B). Top row: power distributions, Bottom row: relative differences to Serpent D calculation (in percent).

Results (6/6) Thermal flux and detector signal (A.U).5.5.5 Assembly position B D Serpent ARES Measured Thermal flux and detector signal (A.U).5.5.5 Assembly position D D Serpent ARES Measured Thermal flux and detector signal (A.U).5.5.5 Assembly position C5 D Serpent ARES Measured Thermal flux and detector signal (A.U) 4 Axial coordinate (cm).5.5.5 Assembly position L5 D Serpent ARES Measured Thermal flux and detector signal (A.U) 4 Axial coordinate (cm).5.5.5 Assembly position B D Serpent ARES Measured Thermal flux and detector signal (A.U) 4 Axial coordinate (cm).5.5.5 Assembly position D D Serpent ARES Measured 4 Axial coordinate (cm) 4 Axial coordinate (cm) 4 Axial coordinate (cm) Figure 7: Node-averaged thermal flux distributions at selected assembly positions from D Serpent and ARES calculations, together with experimental fission chamber measurements in the central instrumentation tube.

Summary and conclusions Lessons learned: - Serpent (v...6) is capable of producing all group constants needed for simulating the HZP initial core of a PWR using a nodal diffusion code - The neutronics model in ARES is capable of producing very accurate results at pin-level, compared to the reference D Monte Carlo solution - The ARES flux solution is sensitive to ADF s, and the best results are obtained when a sufficiently large region of surroundings is included with the homogenized assembly What s next: - HFP and fuel cycle simulations requires additional data and interpolation between state points methods yet to be completed - Automated ADF calculation and burnup sequence with branch and coefficient calculations - Time constants for transient simulations - Group constant generation for HEXBU-D, TRAB-D and HEXTRAN codes

Thank you for your attention!