FRDM-KE04Z User s Guide User Guide

Similar documents
FRDM-KE02Z User s Manual

FRDM-KL03Z User s Guide

User Manual Rev. 0. Freescale Semiconductor Inc. FRDMKL02ZUM

User Manual Rev. 0. Freescale Semiconductor Inc. FRDMKL02ZUM

FRDM-KL26Z User s Guide

Freescale Semiconductor Inc. Microcontroller Solutions Group. FRDM-KL46Z User s Manual FRDM-KL46Z-UM Rev. 1.0

Quick Start Guide for FRDM-KL05Z

Quick Start Guide for the Freescale Freedom Development Platform FRDM-KL43Z

Freedom FRDM-KV31F Development Platform User s Guide

Quick Start Guide for FRDM-KL46Z Rev 1

HVP-KV10Z32 User s Guide

Quick Start Guide for FRDM-KL46Z Rev 1

HVP-KV31F120M User s Guide

TWR-KL28Z User s Guide

OpenSDA on TWR-KW2x. User s Guide Rev 1.1

FRDM-KL82Z User s Guide

FRDM-K20D50M User s Manual FRDM-K20D50M-UM Rev. 1.2

P1010RDB-PB Quick Start Guide

Freescale MKW40Z IEEE Software Quick Start Guide

TWR-KE18F User's Guide

TWR-KV10Z32 Sample Code Guide for CodeWarrior Board configuration, software, and development tools

TWR-KV10Z32 Sample Code Guide for IAR Board configuration, software, and development tools

Component Development Environment Getting Started Guide

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, the Energy Efficient Solutions logo, mobilegt, PowerQUICC,

HVP-MC56F82748 User s Guide

Mask Set Errata for Mask 2N27B

FRDM-K64F Board Errata

Freedom FRDM-MC-LVBLDC Development Platform User s Guide

Migrating Applications from MC9S12VR64 to MC9S12VR32 by: Manuel Rodríguez

Mask Set Errata for Mask 3N86B

TWR-KV11Z75M Tower System Module User s Guide

Freescale. TWR-KL25Z Tower Module User Manual TWR-KL25Z-UM Rev. 1.0

Qorivva MPC5744P Evaluation Board 144LQFP Expansion Board User s Guide Barbara Johnson Applications Engineering

Using VRC_CTL to Control an External VDD_LV Supply on the MPC5748G

Quick Start Guide TRK-KEA. Kinetis EA Series MCUs for Automotive Electronics Applications. StarterTRAK

MQX RTOS Release Notes for Kinetis SDK v1.2.0 for KL33Z64 for FRDM-KL43Z Freescale Freedom Development Platform

Getting Started with Freescale MQX RTOS for Kinetis SDK and MDK-ARM Keil

i.mx 6ULZ Migration Guide

Emulating I2S bus on KE06

MQX RTOS Release Notes for Kinetis SDK FRDM- KV10Z Freescale Freedom Development Platform

Kinetis SDK Freescale Freedom FRDM-KL03Z Platform User s Guide

Three-Phase Power Meter Hardware Design Reference Manual

New VLE Instructions for Improving Interrupt Handler Efficiency Robert Moran Applications Engineer Microcontroller Solutions Group

S12Z MagniV LIN Bootloader

Working around ERR7026 according to application needs

FRDM-KW41Z Freedom Development Board User's Guide

Kinetis KE1xF512 MCUs

Freedom Board for Kinetis K22F Hardware (FRDM-K22F)

Kinetis KM3x Metrology MCUs based on ARM Cortex -M0+ Core

Load Position-Independent Code (PIC) on a Kinetis Platform Using the IAR EWARM Compiler

i.mxrt1060 Product Lifetime Usage Estimates

QN9080 QN908x RF Certification Guide

Differences Between S32K11x and S32K142

IMXPINSQSUG Quick Start Guide on Pins Tool for i.mx Processors

TWR-KL25Z Tower Module

TWR-KM34Z50MV3 Quick Start Guide

TWR-KL43Z48M Quick Start Guide

Emulating Dual SPI Using FlexIO

QCVS Frame Distributor Wizard User Guide

FRDM-KW41Z Freedom Development Board

Offline Flash Programmer for Kinetis K- and L-series MCUs

Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis,

How to Reduce SoC Power when Running M4 with A53 on i.mx8m

Quick Start Guide for FRDM-FXS-MULTI-B

TWR-KV58F220M Tower Module User's Guide

S32K1xx Bootloader. 1. Introduction. 2. Architecture description. NXP Semiconductors. Application Notes Rev. 1, 10/2018. Contents

Jan ps/site/prod_summary.jsp?code=r DMK30&fsrch=1&sr=1

Kinetis KL1x General-Purpose Ultra-Low- Power MCUs Up to 256 KB Flash and 32 KB SRAM

Quick Start Guide. TWR-KV10Z32 Development Kit for Kinetis KV1x Family TOWER SYSTEM

Quick Start Guide. TWR-VF65GS10 For Vybrid Controller Solutions Based on ARM Cortex -A5 and Cortex-M4 Processors with the DS-5 Toolchain TOWER SYSTEM

TWR-KE18F. Quick Start Guide. 32-bit Kinetis MCU based on ARM Cortex -M4 provides up to 168 MHz CPU performance, up to 512 KB flash with 64 KB SRAM

Exception and fault checking on S32K1xx

Adding a run control interface into an existing CodeWarrior for MCU v10.x project

CodeWarrior U-Boot Debugging

TWR-LS1021A Getting Started

Kinetis KV5x Real-Time Control MCUs with Ethernet Up to 1 MB Flash and 256 KB SRAM

Kinetis SDK v Release Notes for the MK21DA5 and MKW24D5 Devices

Using the Xtrinsic FXOS8700CQ Command Line Interface Software

MC34708TRN Rev /1/2011

Kinetis Bootloader to Update Multiple Devices in a Field Bus Network

Kinetis EA Ultra-Reliable Microcontrollers. Automotive and Industrial Applications

KIT09XS3400EVBE Evaluation Board User Guide Featuring the MC09XS3400

PAC5523EVK1. Power Application Controllers. PAC5523EVK1 User s Guide. Copyright 2017 Active-Semi, Inc.

TWR-LS1021A Getting Started

KW40 ZumoBot Reference Design

TWR-K80F150M Quick Start Guide

TWR-K22F120M Tower Module User s Guide

Quick Start Guide for TWR-MC56F8257 TOWER SYSTEM MC56F8257. For power conversion and motor control applications

Freescale MQX RTOS TWR-K64F120M Release Notes

S12VR Hardware Design. Guidelines. 1 Introduction. 2 Hardware Design. Guidelines. 2.1 Voltage regulator. Freescale Semiconductor

Emulating I2C Bus Master by using FlexIO

FRDM-KW36 Freedom Development Board User s Guide

Leading Performance - Low Power - Scalability - Industrial-grade reliability & temp

Kinetis SDK Release Notes for the TWR-K24F120M Tower System Module

FRDM-KEA QUICK START GUIDE (QSG) FRDM-KEAZ128 FRDM-KEAZ64 FRDM-KEAZN32 Ultra-Reliable MCUs for Industrial and Automotive Applications

Quick Start Guide for TWR-S08MM128-KIT TOWER SYSTEM MC9S08MM128. The industry s most complete solution for portable medical applications

Kinetis SDK v Release Notes for KV5x Derivatives

Getting Started with the MCU Flashloader

Getting Started with MQX RTOS for Kinetis SDK

Freescale, the Freescale logo, AltiVec, C- 5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis,

Transcription:

Freescale Semiconductor Document Number: FRDMKE04ZUM User's Guide Rev 0, 02/2014 FRDM-KE04Z User s Guide User Guide by: Wang Peng 1 Overview The Freescale Freedom development platform is an ideal evaluation and development tool for rapid prototyping of microcontroller-based applications. The hardware design is form-factor compatible with popular third-party hardware designed to work with Arduino and Arduino-compatible boards. The Freescale KE04Z Freedom board (FRDM-KE04Z) is a simple, yet sophisticated design featuring a Kinetis E series microcontroller KE04Z, a 5 V microcontroller built on the ARM Cortex -M0+ core. The Kinetis E series is the most scalable portfolio of lowpower, high-robustness, mixed signal 32-bit ARM Cortex- M0+ MCUs running up to 48 MHz in the industry. It supports power supply voltage range from 2.7 V to 5.5 V, ambient operating temperature ranges from -40 C to 105 C and includes up to 128 KB flash. The FRDM-KE04Z board includes the Freescale open standard embedded serial and debug adapter known as OpenSDA. This circuit offers several options for serial communications, flash programming and run-control debugging to the user. There are also many software development tool options available to the user. Choices include CodeWarrior for Microcontrollers, IAR Embedded Workbench, Keil MDK Contents 1 Overview...1 2 Getting started... 2 3 FRDM-KE04Z hardware overview...2 4 FRDM-KE04Z hardware description...4 4.1 Power supply...... 4 4.2 Serial and Debug Adapter (OpenSDA)...5 4.2.1 Debugging interface...6 4.2.2 Virtual serial port...... 7 4.3 KE04Z microcontroller......7 4.3.1 Clock Source...... 7 4.4 Infrared port... 8 4.5 Capacitive touch slider...... 9 4.6 Three-axis accelerometer...10 4.7 RGB LED...... 11 4.8 Input/Output headers...12 4.9 Arduino compatibility... 13 5 References...... 13 6 Revision history...... 14 2014 Freescale Semiconductor, Inc.

Getting started featuring the µvision IDE, Red Suite from Code Red Technologies, Atollic TrueSTUDIO, Rowley Crossworks, and more. All of these features are combined to give freedom to the user to rapidly prototype the embedded designs: a powerful microcontroller built on a very low-power core and SoC platform, easy-access to I/O with a large ecosystem of compatible hardware, a flexible programming and debug interface, and a large ecosystem of software development environments. 2 Getting started Refer to the FRDM-KE04Z Quick Start Package for step-by-step instructions for getting started with the Freedom board. See Quick Start Package and Software Lab guides available on freescale.com. 3 FRDM-KE04Z hardware overview The FRDM-KE04Z hardware is a Freescale Freedom development platform microcontroller board assembled with the following features: Kinetis E Series KE04 family MCU MKE04Z8VFK4 in an 24 QFN package Onboard serial and debug adapter (OpenSDA) I/O headers for easy access to MCU I/O pins Freescale inertial sensor, MMA8451Q Capacitive touch slider Reset pushbutton RGB LED Infrared communication Motor control header for simple BLDC motor control on APMOTOR56F8000E Figure 1 shows the block diagram of FRDM-KE04Z board. 2 Freescale Semiconductor, Inc.

FRDM-KE04Z hardware overview Figure 1. FRDM-KE04Z block diagram The FRDM-KE04Z features two microcontrollers (MCUs): the target MCU and the serial and debug adapter (OpenSDA) MCU. The target MCU is a Kinetis E series KE04 family device, the KE04Z8VFK4. The OpenSDA MCU is a Kinetis K series K20 family device, the K20DX128VFM5. Features of the KE04Z8VFK4 target MCU include: 32-bit ARM Cortex-M0+ core Up to 48 MHz operation Single-cycle fast I/O access port Aliased SRAM bitband region Memories 8 KB flash 1 KB SRAM System integration Power management and mode controllers Low-leakage wakeup unit Bit manipulation engine (BME) for read-modify-write peripheral operations Clock Clock generation module with FLL for system and CPU clock generation 32 khz internal reference clock System oscillator supporting external crystal or resonator Low-power 1 khz RC oscillator for RTC and watchdog Analog peripherals 12-bit SAR ADC Two analog comparators Freescale Semiconductor, Inc. 3

FRDM-KE04Z hardware description Communication peripherals One 8-bit serial peripheral interface (SPI) One I 2 C module One UART module Timers One 6-channel FlexTimer module (FTM) One 2-channel timer/pwm module One 2-channel periodic interrupt timer (PIT) Real-time clock (RTC) System tick timer One watchdog module Security One CRC Human-Machine Interfaces (HMI) General purpose input/output controller Two 8-bit keyboard interrupt modules (KBI) External interrupt (IRQ) 4 FRDM-KE04Z hardware description 4.1 Power supply The FRDM-KE04Z offers a design with multiple power supply options. It can be powered from the USB connector, the VIN pin on the I/O header, an off-board 1.71 3.6 V supply from the 3.3 V pin on the I/O header or 3.3 V from motor control header. The USB and VIN supplies are regulated on-board using a 3.3 V linear regulator to produce the main power supply. The other two sources are not regulated onboard. Figure 2 shows the schematic drawing for the power supply inputs and the onboard voltage regulator. Figure 2. FRDM-KE04Z block diagram Table 1 provides operational details and requirements for the power supplies. 4 Freescale Semiconductor, Inc.

Table 1. Power supply requirements Supply source Valid range OpenSDA operational? Regulated onboard? OpenSDA USB (J7) 5 V >Yes Yes VIN pin on I/O header 4.3 9 V Yes Yes 3.3V pin on I/O header 1.71 3.6 V Yes No 3.3V pin on motor control header 3.3 V Yes No FRDM-KE04Z hardware description Power supply name NOTE The OpenSDA circuit is only operational when a USB cable is connected and supplying power to J6. However, the protection circuitry is in place to enable multiple sources to be powered at once. Table 2. FRDM-KE04Z power supplies Description P5 9V_VIN Power supplied from the V IN pin of the I/O headers (J4 pin 16). P5V_SDA P3V3_VREG P3V3 P3V3_KE04Z P3V3_SDA P5V_USB P3V3_MOTOR Power supplied from the OpenSDA USB connector (J6). Regulated 3.3 V supply. Sources power to the P3V3 supply rail through a back drive protection Schottky diode. Main supply rail for the FRDM-KE04Z. Can be sourced from P3V3_VREG, or directly from the I/O headers (J4 pin 8), or from P3V3_MOTOR. KE04Z MCU power supply. Header J9 provides a convenient means for KE04Z energy consumption measurements. OpenSDA circuit power supply. Header J10 provides a convenient means for K20 energy consumption measurements. Nominal 5 V supplied to the I/O headers (J4 pin 10). Sourced from P5V_SDA supply through a back drive protection Schottky diode. 3.3 V supply from motor control header. NOTE J9 and J10 are not populated by default on the production version. The two pins of these headers are shorted together using the 0 Ω resistors R12 and R26 on the PCB. To measure the energy consumption of either KE04Z or OpenSDA MCU, the 0 Ω resistor between these pins must first be cut. A current probe or a shunt resistor and voltage meter can then be applied to measure the energy consumption on these rails. When the MCU current measurement is done complete and no longer required, the 0 Ω resistors can be soldered on again. To get ADC accuracy on KE04Z, it is recommended that a 0 Ω resistor R13 be soldered on and ensure there is no power supply from P3V3_MOTOR and P3V3 sourced from I/O headers. 4.2 Serial and Debug Adapter (OpenSDA) OpenSDA is an open-standard serial and debug adapter. It bridges serial and debug communications between a USB host and an embedded target processor as shown in Figure 3. The hardware circuit is based on a Freescale Kinetis K20 family microcontroller (MCU) with 128 KB of embedded flash and an integrated USB controller. OpenSDA features a mass storage Freescale Semiconductor, Inc. 5

FRDM-KE04Z hardware description device (MSD) bootloader, which provides a quick and easy mechanism for loading different OpenSDA applications such as flash programmers, run-control debug interfaces, serial-to-usb converters, and more. Two or more OpenSDA applications can run simultaneously. For example, run-control debug application and serial-to-usb converter runs in parallel to provide a virtual COM communication interface while allowing code debugging via OpenSDA with just a single USB connection. These two applications are provided in a single code package. For more details, refer to the OpenSDA User s Guide available on freescale.com. Figure 3. OpenSDA block diagram OpenSDA is managed by a Kinetis K20 MCU built on the ARM Cortex-M4 core. The OpenSDA circuit includes a status LED (D4) and a RESET pushbutton (SW1). The pushbutton asserts the reset signal to the KE04Z target MCU. It can also be used to place the OpenSDA circuit into bootloader mode by holding down the RESET pushbutton while plugging the USB cable to USB connector J6. After the OpenSDA enters bootloader mode, other OpenSDA applications such as the debug application can be programmed. SPI and GPIO signals provide an interface to the SWD debug port of KE04Z. Additionally, signal connections are available to implement a UART serial channel. The OpenSDA circuit receives power when the USB connector J6 is plugged into a USB host. 4.2.1 Debugging interface Signals with SPI and GPIO capability are used to connect directly to the SWD of KE04Z. These signals are also brought out to a standard 10-pin (0.05 ) Cortex debug connector (J7) as shown in Figure 4. It is possible to isolate the KE04Z MCU from the OpenSDA circuit and use J7 to connect to an off-board MCU. To accomplish this, cut the 0 Ω resistor R58. This will disconnect the SWD_CLK pin to the KE04Z so that it will not interfere with the communications to an off-board MCU connected to J7. 6 Freescale Semiconductor, Inc.

KE04Z microcontroller Figure 4. FRDM-KE04Z block diagram 4.2.2 Virtual serial port A serial port connection is available between the OpenSDA MCU and UART0 pin PTB1 (TXD) and PTB0 (RXD) of KE04Z. Freescale provides several default OpenSDA applications, such as the MSD Flash Programmer and the P&E Debug Application which provide a USB communication Device Class (CDC) interface that bridges serial communication between the USB host and its serial interface on KE04Z MCU. 4.3 KE04Z microcontroller 4.3.1 Clock Source The Kinetis KE04 microcontrollers feature an on-chip oscillator compatible with two ranges of input crystal or resonator frequencies: 32 khz (low-frequency mode) and 4 20 MHz (high-frequency mode). The KE04Z on the FRDM-KE04Z is clocked from a 8 MHz crystal. 4.3.1.1 Serial port The serial port interface signals used with OpenSDA are UART0 pin PTB1 (TXD) and PTB0 (RXD). These signals are also connected to I/O header J1. 4.3.1.2 Reset The PTA5/RESET signal on the KE04Z is externally connected to a pushbutton, SW1. The reset button can be used to force an external reset event in the target MCU. It can also be used to force the OpenSDA circuit into bootloader mode when plugging the USB cable to J6. For more details, see Serial and Debug Adapter (OpenSDA) section. Freescale Semiconductor, Inc. 7

KE04Z microcontroller 4.3.1.3 Debug The sole debug interface on all Kinetis E series devices is a Serial Wire Debug (SWD) port. The primary controller of this interface on the FRDM-KE04Z is the onboard OpenSDA circuit. However, a 2x5-pin (0.05 ) Cortex Debug connector, J7, provides access to the SWD signals for the KE04Z MCU. The following table shows SWD connector signals description for KE04Z: Table 3. ARM JTAG/SWD mini connector description Pin Function Connection to KE04Z 1 VTref 3.3V system power supply (V_BRD) 2 SWDIO/TMS PTA4/SWD_DIO 3 GND GND 4 SWDCLK/TCK PTA0/SWD_CLK 5 GND GND 6 SWO/TDO NC 7 NC NC 8 TDI NC 9 NC NC 10 RESET PTA5/RESET 4.4 Infrared port One infrared Rx port and one Tx port, as shown in Figure 5, are connected to ACMP0 input pin (ACMP0_IN1) and UART0 TXD0 pin of KE04Z to demonstrate the capability of UART0 modulated by the Flextimer module for generating infrared signals and use ACMP0 as a filter to receive the SCI data via infrared signal. 8 Freescale Semiconductor, Inc.

KE04Z microcontroller Figure 5. Infrared connection 4.5 Capacitive touch slider Two GPIO pins, functioning as Touch Sense Input (TSI) signals, are connected to capacitive electrodes configured as a touch slider as shown in the following figure: Freescale Semiconductor, Inc. 9

KE04Z microcontroller Figure 6. Touch slider connection 4.6 Three-axis accelerometer A Freescale MMA8451Q low-power, and three-axis accelerometer is interfaced through an I 2 C bus and two GPIO signals, as shown in Table 4. By default, the I 2 C address is 0x1D (SA0 pulled high). Table 4. Accelerometer signal connections MMA8451Q SCL PTA3 SDA PTA2 INT1 PTC0 INT2 - KE04Z The application circuit of MMA8451 is represented as follows: 10 Freescale Semiconductor, Inc.

KE04Z microcontroller Figure 7. Accelerometer connection 4.7 RGB LED Three PWM-capable KE04Z signals are connected to red, green, and blue LED. The signal connections are shown in Table 5. Table 5. RGB LED signal connections Red Cathode Green Cathode Blue Cathode RGB LED KE04Z PTC5/FTM2CH3/BUSOUT PTC4/FTM2CH2 PTB3/FTM0CH0 The following figure represents the RGB LED circuit: Freescale Semiconductor, Inc. 11

KE04Z microcontroller Figure 8. RGB LED connection 4.8 Input/Output headers The MKE04Z8VFK4 microcontroller is packaged in a 24-pin QFN. Some pins are utilized in onboard circuitry, but many are directly connected to one of four I/O headers (J1, J2, J3, and J4). J1 and J2 also function as motor control headers to provide access to a motor control board, such as simple BLDC motor driving board APMOTOR56F8000E. The following figure provides all the details of input/output headers: 12 Freescale Semiconductor, Inc.

References Figure 9. I/O headers 4.9 Arduino compatibility The I/O headers on the FRDM-KE04Z are arranged to enable compatibility with peripheral boards (known as shields) that connect to Arduino and Arduino-compatible microcontroller boards. The pins on the headers share the same mechanical spacing and placement as the I/O headers on the Arduino Uno Revision 3 board design. See Figure 9 for compatible signals. 5 References OpenSDA User's Guide (document OSDAUG), available at freescale.com KE04 Sub-Family Reference Manual, available at freescale.com Freescale Semiconductor, Inc. 13

Revision history Arduino Overview, available at wikipedia.com Arduino Uno, available at www.arduino.cc/en/main/arduinoboarduno 6 Revision history Table 6. Revision history Revision number Date Substaitial changes 0 02/2014 Initial release 14 Freescale Semiconductor, Inc.

How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including typicals, must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/ SalesTermsandConditions. Freescale, the Freescale logo, AltiVec, C-5, CodeTest, CodeWarrior, ColdFire, ColdFire+, C-Ware, Energy Efficient Solutions logo, Kinetis, mobilegt, PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore, Symphony, and VortiQa are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, CoreNet, Flexis, Layerscape, MagniV, MXC, Platform in a Package, QorIQ Qonverge, QUICC Engine, Ready Play, SafeAssure, SafeAssure logo, SMARTMOS, Tower, TurboLink, Vybrid, and Xtrinsic are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. 2014 Freescale Semiconductor, Inc. Document Number FRDMKE04ZUM Revision 0, 02/2014

How to Reach Us: Home Page: freescale.com Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Typical parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including typicals, must be validated for each customer application by customer s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/salestermsandconditions. Freescale, the Freescale logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. 2014 Freescale Semiconductor, Inc. Document Number: FRDMKE04ZUM Rev. 0 02/2014