FIBER OPTIC RECEIVING MODULE TORX1353(V,F) Characteristics Symbol Rating Unit

Similar documents
FIBER OPTIC TRANSMITTING MODULE TOTX1353(F)

FIBER OPTIC TRANSCEIVING MODULE TODX2355(F) Characteristics Symbol Rating Unit

FIBER OPTIC TRANSCEIVING MODULE TODX2950(F)

FIBER OPTIC TRANSMITTING MODULE FIBER OPTIC TRANSMITTING MODULE FOR DIGITAL AUDIO EQUIPMENT

FIBER OPTIC TRANSMITTING MODULE TOTX1952(F) FIBER OPTIC TRANSMITTING MODULE FOR DIGITAL AUDIO EQUIPMENT

FIBER OPTIC TRANSMITTING MODULE TOTX1952(6M,F) FIBER OPTIC TRANSMITTING MODULE FOR DIGITAL AUDIO EQUIPMENT

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC7SGU04FU IN A GND

TORX176 TORX176 FIBER OPTIC RECEIVING MODULE FOR DIGITAL AUDIO EQUIPMENT. 1. Maximum Ratings (Ta = 25 C) 2. Recommended Operating Conditions

TA75W393FU TA75W393FU. Dual Voltage Comparator. Features. Marking (Top View) Pin Connection (Top View)

TCS40DPR. Digital Output Magnetic Sensor. Feature. Marking Pin Assignment (Top View) Function Table PA8

TORX147(F,T) TORX147(F,T) FIBER OPTIC RECEIVING MODULE FOR DIGITAL AUDIO INTERFACE. 1. Absolute Maximum Ratings (Ta = 25 C) 2.

RN1601, RN1602, RN1603 RN1604, RN1605, RN1606

FIBER OPTIC TRANSCEIVING MODULE TODX2860A(F) Characteristics Symbol Rating Unit

TC4049BP,TC4049BF, TC4050BP,TC4050BF

TOSHIBA Zener Diode Silicon Epitaxial Type. CRY62 to CRZ39

DF10G7M1N DF10G7M1N. 1. Applications. 2. Packaging and Internal Circuit Rev.5.0. Start of commercial production

3. Absolute Maximum Ratings (Note) (Unless otherwise specified, T a = 25 ) Symbol V ESD. P PK I PP T j T stg

TORX177(F,T) TORX177(F,T) TENTATIVE FIBER OPTIC RECEIVING MODULE FOR DIGITAL AUDIO INTERFACE. 1. Maximum Ratings (Ta = 25 C)

DF2S16FS DF2S16FS. 1. Applications. 2. Packaging and Internal Circuit Rev Toshiba Corporation

DF2S6.8FS DF2S6.8FS. 1. Applications. 2. Packaging and Internal Circuit Rev.5.0. Start of commercial production.

TORX178B TORX178B FIBER OPTIC RECEIVING MODULE FOR DIGITAL AUDIO INTERFACE. 1. Maximum Ratings (Ta = 25 C) FIBER OPTIC RECEIVING MODULE

TORX111 TORX111 FIBER OPTIC RECEIVING MODULE FOR APF. 1. Maximum Ratings (Ta = 25 C) FIBER OPTIC RECEIVING MODULE.

RN1101MFV,RN1102MFV,RN1103MFV RN1104MFV,RN1105MFV,RN1106MFV

TOSHIBA Schottky Barrier Rectifier Schottky Barrier Type CMS05

DF2B6M4SL DF2B6M4SL. 1. General. 2. Applications. 3. Features. 4. Packaging Rev.4.0. Start of commercial production

TOSHIBA Schottky Barrier Diode CMS16

FIBER OPTIC TRANSMITTING MODULE TOTX147(F,T)

TCK22xxxG, TCK2065G, TCK1024G

TOSHIBA Bi-CMOS Integrated Circuit Silicon Monolithic TB62781FNG

TBD62785APG, TBD62785AFWG

TC90195XBG Video signal Processing

M3H Group(2) Application Note 12-bit Analog to Digital Converter (ADC-A)

M3H Group(1) Application Note. I 2 C Interface (I2C-B) MASTER/SLAVE

TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic TA58LT00F. 150 ma Output Current and Tracking Regulator with ON/OFF Control Switch

RELIABILITY OF ENTERPRISE HARD DISK DRIVES

TD62783APG, TD62783AFWG

M3H Group(2) Application Note Asynchronous Serial Communication Circuit (UART-C)

M3H Group(1) Application Note I 2 C Interface (I2C-B)

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic TC74LCXR163245FT

TORX147PL(F,T) TORX147PL(F,T) FIBER OPTIC RECEIVING MODULE FOR DIGITAL AUDIO INTERFACE. 1. Absolute Maximum Ratings (Ta = 25 C) 2.

M3H Group(2) Application Note I 2 C Interface (I2C-B) arbitration

Super-convergence for Real Time Analytics at the Edge Flashmatrix 1000 Series. storage.toshiba.com/flashmatrix/

TORX147L(F,T) TORX147L(F,T) FIBER OPTIC RECEIVING MODULE FOR DIGITAL AUDIO INTERFACE. 1. Maximum Ratings (Ta = 25 C)

NAND Flash Memory / NAND

TBD62183A Series Usage considerations

TBD62384A series Usage considerations

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC TA8428K, TA8428FG. Weight HSIP7 P 2.54 : 1.88 g (Typ.) The TA8428FG is RoHS compatible.

Product Guide Microwave Semiconductors

Product Guide 2017 Microwave Semiconductors

TBD62308AFAG TBD62308AFAG. TOSHIBA BiCD Integrated Circuit Silicon Monolithic. 4channel Low active high current sink type DMOS transistor array

TBD62781A series Usage considerations

TBD62783A series Usage considerations

TBD62064APG, TBD62064AFG

TC35661SBG-501 Bluetooth IC Embedded Profile Series [SPP+GATT] Supported Functions Specification Overview. Rev 1.00

TOSHIBA LED Lamp TLWF1100C(T11)

TBD62786A series Usage considerations

TB67Z800FTG TB67Z800FTG. 3-channel Half Bridge Driver. Features TOSHIBA Bi-CD Integrated Circuit Silicon Monolithic

TBD62783APG, TBD62783AFG, TBD62783AFNG, TBD62783AFWG

TBD62064A series Usage considerations

TOSHIBA LED Lamp TLWLF1108(T11)

TBD62387A series Usage considerations

1Z6.2~1Z390, 1Z6.8A~1Z30A

TOSHIBA LED lamps TL12W03-N(T30)

TBD62003APG, TBD62003AFG, TBD62003AFNG, TBD62003AFWG TBD62004APG, TBD62004AFG, TBD62004AFNG, TBD62004AFWG

BiCD Integrated Circuit Silicon Monolithic TB62215AFG

TL2FL-DW1,L TL2FL-DW1,L. 1. Applications. 2. Features. 3. Packaging and Pin Assignment Rev.2.0. Start of commercial production

LDO XTAL. Built-in OSC for Wake-up. Power. Management. State Machine Management. Data Buffer CNL PHY. TC35420 Example System Configuration Diagram

02DZ2.0~02DZ24 02DZ2.0~02DZ24. Constant Voltage Regulation Applications Reference Voltage Applications. Absolute Maximum Ratings (Ta = 25 C)

TLP290-4 Technical Information

FFSA TM. 130nm series

32-bits RISC Microcontroller. TMPM3H Group(1) Reference manual Memory Map (MMAP-M3H(1)) Revision

TLPGE183P TLPGE183P. Panel Circuit Indicator. Maximum Ratings (Ta = 25 C) TOSHIBA LED Lamp InGaAlP Pure Green Light Emission.

Item MN07ACA14T MN07ACA12T. Formatted Capacity 14 TB 12 TB Interface Speed. 6.0 Gbit/s, 3.0 Gbit/s, 1.5 Gbit/s Rotation Speed

Solid State Drive CG2 Series

TXZ Family. Reference Manual. CRC calculation circuit (CRC-A) 32-bit RISC Microcontroller. Revision TXZ Family CRC calculation circuit

TOSHIBA CDMOS Integrated Circuit Silicon Monolithic TC78H610FNG

TD62M8600FG TD62M8600FG 8CH LOW SATURATION VOLTAGE SOURCE DRIVER FEATURES SCHEMATICS PIN CONNECTION (TOP VIEW)

Microwave Semiconductors. Product Guide

TLP350F TLP350F. Industrial Inverter Inverter for Air Conditioner IGBT/Power MOSFET Gate Drive IH(Induction Heating) Pin Configuration (top view)

Toshiba Bi-CD Integrated Circuit Silicon Monolithic TB6593FNG

FIBER OPTIC TRANSMITTING MODULE. Characteristics Symbol Rating Unit. Characteristics Symbol Min Typ. Max Unit

TD62382AP,TD62382AF TD62382AP/AF 8CH LOW INPUT ACTIVE SINK DRIVER FEATURES PIN CONNECTION (TOP VIEW) SCHEMATICS (EACH DRIVER)

AL15SEB SERIES ENTERPRISE PEFORMANCE HDD

Old Company Name in Catalogs and Other Documents

TD6127BP TD6127BP. ECL Prescaller For Communications Radio. Features TOSHIBA Bipolar Digital Integrated Circuit Silicon Monolithic

TD62384APG,TD62384AFG TD62385APG,TD62385AFG

DATA SHEET ZENER DIODES 1.0 W PLANAR TYPE 2-PIN SMALL POWER MINI MOLD. Parameter Symbol Ratings Unit Remarks

TLP385 TLP Applications. 2. General. 3. Features Rev Toshiba Corporation. GaAs Infrared LED & Photo Transistor

Old Company Name in Catalogs and Other Documents

SII Semiconductor Corporation, Rev.2.2_01

MD06ACA-V SERIES SURVEILLANCE HDD

XG5-P SERIES CLIENT SSD

MG07SCA SERIES ENTERPRISE CAPACITY HDD

CRY62~CRZ47 CRY62~CRZ47. Applications: Communication, Control and Measurement Equipment Constant Voltage Regulation Transient Suppressors

S-93C76A 3-WIRE SERIAL E 2 PROM. Features. Packages. ABLIC Inc., Rev.7.0_03

TC358768AXBG/TC358778XBG

Old Company Name in Catalogs and Other Documents

S-5840B Series TEMPERATURE SWITCH IC (THERMOSTAT IC) WITH LATCH. Features. Applications. Package.

XBP4SMAJ Series APPLICATIONS FEATURES PIN CONFIGRATION MARKING ABSOLUTE MAXIMUM RATINGS. 400W Transient Voltage Suppressor (TVS) 1/5.

XG6 SERIES CLIENT SSD

Transcription:

FIBER OPTIC RECEIVING MODULE TORX1353(V,F) GENERAL PURPOSE OPTICAL RECEIVING MODULE Data rate: DC to 500k b / s (NRZ code) Transmission distance: 0.2 m to 10 m (Using TOTX1353(V,F) and APF) For JIS F05 Optical Connector C-MOS Interface ATC (Automatic Threshold Control) circuit built-in Low current consumption 1.5mA max (Active) / 30μA max (Standby) Vertical mounting type 1. Absolute Maximum Ratings (Ta = 25 C) Characteristics Symbol Rating Unit Storage Temperature T stg 40 to 95 C Operating Temperature T opr 40 to 85 C Supply Voltage V CC 0.5 to 6 V High Level Output Current I OH 1 ma Low Level Output Current I OL 20 ma Soldering Temperature T sol 260 (Note 1) C Note 1: Soldering time 10 s (More than 1 mm apart from the package). Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc) May cause this product to decrease in the reliability significantly even if the operating conditions (i.e.operating temperature/ current/ voltage, etc) are within the absolute maximum ratings. Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ( Handling Precautions / derating Concept and Methods ) and individual reliability data (i.e. reliability test report and estimated failure rate, etc). 2. Operating Ranges Characteristics Symbol Min Typ. Max Unit Supply Voltage V CC 4.75 5.0 5.25 V Data Rate DC - 500 kb/s High Level Output Current I OH - - 0.8 ma Low Level Output Current I OL - - 0.8 ma Start of commercial production 2013-02 1

3. Electrical and Optical Characteristics (Ta = 25 C, Vcc = 5 V) Characteristics Symbol Test Condition Min Typ. Max Unit Data Rate NRZ Code(Note 2) DC - 500 kb / s Transmission Distance(Note5) Using APF (Note3) and TOTX1353(V,F) 0.2-10 m Pulse Width Distortion (Note4)(Note5) Δtw 30-30 % Maximum Receivable Power (Note 6) P MAX DC to 500 kb / s, Using APF(Note 3) 11 - - dbm Minimum Receivable Power (Note 6) P MIN DC to 500 kb / s, Using APF(Note 3) - - 23.5 dbm Current Consumption Active (Optical flux on) Standby (No optical flux on) I CC(1) - 0.3 1.5 ma I CC(2) - 20 30 μa High Level Output Voltage V OH 4.2 4.8 - V Low Level Output Voltage V OL - 0.2 0.4 V Note 2: High level output when optical flux is received. Low level output when it is not received. Note 3: All Plastic Fiber (980μm core / 1000μm cladding, NA=0.5), Polished surface. Note 4: Between input of driver circuit of TOTX1353(V,F) and output of TORX1353(V,F). Note 5: A value changes with LED drive circuits. Note 6: BER 10 9, Valued by peak. 4. Application Circuit TORX1353(V,F) Soldered to PC board 4 5 Soldered to PC board 0.1μF Less than 7mm Vcc GND Output (Top View) 5. Applicable Optical Fiber with Fiber Optic Connectors All Plastic Fiber (980μm core / 1000μm cladding, NA=0.5). F05 type optical connector with polished surface. 2

6. Precautions during use (1) Absolute maximum rating The absolute maximum ratings are the limit values which must not be exceeded during operation of device. None of these rating value must not be exceeded. If The maximum rating value is exceeded, the characteristics of devices may never be recovered properly. In extreme cases, the device may be permanently damages. (2) Operating Range The operating range is the range of conditions necessary for the device to operate as specified in individual technical datasheets and data books. Care must be exercised in the design of the equipment. If a device is used under conditions that do not exceed absolute maximum ratings but exceed the operating range, the specifications related to device operation and electrical characteristics may not be met, resulting in a decrease in reliability. If greater reliability is required, derate the device s operating ranges for voltage, current, power and temperature before use. (3) Soldering Optical modules are comprised of internal semiconductor devices. However, in principle, optical modules are optical components. During soldering, ensure that flux dose not contact with the emitting surface or detecting surface. Also ensure that proper flux removal is conducted after soldering. Some optical modules come with protective cap. The protective cap is used to avoid malfunction when the optical module is not in use. Not that it is not dust or waterproof. As mentioned before, optical modules are optical component. Thus, in principle, soldering where there may be flux residue or flux removal after soldering is not recommended. Toshiba recommends that soldering be performed without the optical module mounted on the board. Then, after the board is cleaned, solder the optical module manually. Do not perform any further cleaning. If the optical module cannot be soldered manually, use non halogen (chlorine free) flux and make sure, without cleaning, there is no residue such as chlorine. This is one of the ways to eliminate the effects of flux. In such a case, check the reliability. (4) Noise resistance It is believed that the use of optical transfer devices improve the noise resistance. In principle, optical fiber is not affected by noise. However, especially receiving module which handle signals whose level is extremely small, are comparatively more susceptible to noise. When using TOSLINK, Toshiba recommends that you test using the actual device and check the noise resistance. Use a simple noise filter on the TOSLINK fiber optic receiving module power line. If the ripple in power supply used is high, further reinforce the filter. When locating the optical module in an area susceptible to radiated noise, increase shielding by covering the optical module and the power line filter using a metallic cover. (5) Vibration and shock This module is resin molded construction with wire fixed by resin. This structure is relatively sound against vibration or shock, In actual equipment, there are some cases where vibration, shock, and stress is applied to soldered parts or connected parts, resulting in line cut. Attention must be paid to the design of the mechanism for applications which are subject to large amounts of vibration. (6) Fixing fiber optical receiving module Solder the fixed pin (pins 4 and 5) of fiber optic receiving module TORX1353(V,F) to the printed circuit board to fix the module to the board. (7) Solvent When using solvent for flux removal, do not use a high acid or high alkali solvent. Be careful not to pour solvent in the optical connector ports. If solvent is inadvertently poured there, clean with cotton tips. (8) Protective cap When the fiber optic receiving module TORX1353(V,F) is not in use, use the protective cap. 3

(9) Supply voltage Use the supply voltage within the operating ranges (V CC = 5 ± 0.25 V). Make sure that supply voltage does not exceed the absolute maximum rating value of 6 V, even instantaneously. (10) Output When the receiver output is at low level and connected to the power supply, or when the output is at high level and connected to GND, the internal IC may be destroyed. (11) Soldering condition Solder at 260 C or less within ten seconds. (12) An influence of flash or strong light Do not emit a flash or a strong light to the optical module directly. They may cause an error in data transmission. (13) Precaution on waste When discarding devices and packing materials, follow procedures stipulated by local regulations in order to protect the environment against contamination. 4

7. Package Outline drawing Unit: mm Tolerance: ±0.5 mm, unless otherwise specified. Pin Connection 1.OUTPUT 2.GND 3. Vcc 4. NC 5. NC 5

RESTRICTIONS ON PRODUCT USE Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice. This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission. Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS. PRODUCT IS NEITHER INTENDED NOR WARRANTED FOR USE IN EQUIPMENTS OR SYSTEMS THAT REQUIRE EXTRAORDINARILY HIGH LEVELS OF QUALITY AND/OR RELIABILITY, AND/OR A MALFUNCTION OR FAILURE OF WHICH MAY CAUSE LOSS OF HUMAN LIFE, BODILY INJURY, SERIOUS PROPERTY DAMAGE AND/OR SERIOUS PUBLIC IMPACT ("UNINTENDED USE"). Except for specific applications as expressly stated in this document, Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. IF YOU USE PRODUCT FOR UNINTENDED USE, TOSHIBA ASSUMES NO LIABILITY FOR PRODUCT. For details, please contact your TOSHIBA sales representative. Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part. Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable laws or regulations. The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise. ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER, INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT, OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT. Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the applicable export laws and regulations including, without limitation, the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations. Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product. Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA ASSUMES NO LIABILITY FOR DAMAGES OR LOSSES OCCURRING AS A RESULT OF NONCOMPLIANCE WITH APPLICABLE LAWS AND REGULATIONS. 6