CALMIP : HIGH PERFORMANCE COMPUTING

Similar documents
HOKUSAI System. Figure 0-1 System diagram

Graham vs legacy systems

UL HPC Monitoring in practice: why, what, how, where to look

Introduction to High Performance Computing. Shaohao Chen Research Computing Services (RCS) Boston University

HPC Issues for DFT Calculations. Adrian Jackson EPCC

HECToR. UK National Supercomputing Service. Andy Turner & Chris Johnson

HPC IN EUROPE. Organisation of public HPC resources

RECENT TRENDS IN GPU ARCHITECTURES. Perspectives of GPU computing in Science, 26 th Sept 2016

Introduction to Joker Cyber Infrastructure Architecture Team CIA.NMSU.EDU

Supercomputer and grid infrastructure! in Poland!

Accelerating High Performance Computing.

GPU ACCELERATED COMPUTING. 1 st AlsaCalcul GPU Challenge, 14-Jun-2016, Strasbourg Frédéric Parienté, Tesla Accelerated Computing, NVIDIA Corporation

Kohinoor queuing document

The Effect of In-Network Computing-Capable Interconnects on the Scalability of CAE Simulations

TESLA ACCELERATED COMPUTING. Mike Wang Solutions Architect NVIDIA Australia & NZ

Slurm and Abel job scripts. Katerina Michalickova The Research Computing Services Group SUF/USIT November 13, 2013

Exascale: challenges and opportunities in a power constrained world

Introduction CPS343. Spring Parallel and High Performance Computing. CPS343 (Parallel and HPC) Introduction Spring / 29

Accelerating Insights In the Technical Computing Transformation

CSCS Proposal writing webinar Technical review. 12th April 2015 CSCS

An Introduction to the Intel Xeon Phi. Si Liu Feb 6, 2015

IT4Innovations national supercomputing center. Branislav Jansík

High Performance Computing with Accelerators

Arm in HPC. Toshinori Kujiraoka Sales Manager, APAC HPC Tools Arm Arm Limited

Slurm and Abel job scripts. Katerina Michalickova The Research Computing Services Group SUF/USIT October 23, 2012

GPU computing at RZG overview & some early performance results. Markus Rampp

Umeå University

Umeå University

Hybrid KAUST Many Cores and OpenACC. Alain Clo - KAUST Research Computing Saber Feki KAUST Supercomputing Lab Florent Lebeau - CAPS

Technologies and application performance. Marc Mendez-Bermond HPC Solutions Expert - Dell Technologies September 2017

TECHNICAL OVERVIEW ACCELERATED COMPUTING AND THE DEMOCRATIZATION OF SUPERCOMPUTING

GPUs and the Future of Accelerated Computing Emerging Technology Conference 2014 University of Manchester

Stockholm Brain Institute Blue Gene/L

RHRK-Seminar. High Performance Computing with the Cluster Elwetritsch - II. Course instructor : Dr. Josef Schüle, RHRK

High Performance Computing Cluster Advanced course

The State of Accelerated Applications. Michael Feldman

Inauguration Cartesius June 14, 2013

HPC Architectures past,present and emerging trends

HPC Architectures. Types of resource currently in use

HETEROGENEOUS HPC, ARCHITECTURAL OPTIMIZATION, AND NVLINK STEVE OBERLIN CTO, TESLA ACCELERATED COMPUTING NVIDIA

Choosing Resources Wisely Plamen Krastev Office: 38 Oxford, Room 117 FAS Research Computing

Our Workshop Environment

Habanero Operating Committee. January

SCALABLE HYBRID PROTOTYPE

Motivation Goal Idea Proposition for users Study

InfiniBand Strengthens Leadership as the Interconnect Of Choice By Providing Best Return on Investment. TOP500 Supercomputers, June 2014

ACCELERATED COMPUTING: THE PATH FORWARD. Jensen Huang, Founder & CEO SC17 Nov. 13, 2017

Submitting and running jobs on PlaFRIM2 Redouane Bouchouirbat

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center

Phase inversion problem: performances on EOS. Annaïg PEDRONO IMFT Service Codes et Simulations Numériques

Performance Study of Popular Computational Chemistry Software Packages on Cray HPC Systems

Comsics: the parallel computing facility in the school of physics, USM.

Sherlock for IBIIS. William Law Stanford Research Computing

Trends in HPC (hardware complexity and software challenges)

DATARMOR: Comment s'y préparer? Tina Odaka

1 Bull, 2011 Bull Extreme Computing

Scalable x86 SMP Server FUSION1200

Chemistry Packages at CHPC. Anita M. Orendt Center for High Performance Computing Fall 2011

Comet Virtualization Code & Design Sprint

19. prosince 2018 CIIRC Praha. Milan Král, IBM Radek Špimr

Exercises: Abel/Colossus and SLURM

Batch Usage on JURECA Introduction to Slurm. May 2016 Chrysovalantis Paschoulas HPS JSC

Fish4Knowledge WP 4 High Performance Storage and Execution Architecture NCHC, NARL, TW

Managing and Deploying GPU Accelerators. ADAC17 - Resource Management Stephane Thiell and Kilian Cavalotti Stanford Research Computing Center

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

MARCC: On Data Subject to Restrictions

Quantum Chemistry (QC) on GPUs. Feb. 2, 2017

Cerebro Quick Start Guide

An Introduction to Gauss. Paul D. Baines University of California, Davis November 20 th 2012

INTRODUCTION TO THE ARCHER KNIGHTS LANDING CLUSTER. Adrian

Introduction to the NCAR HPC Systems. 25 May 2018 Consulting Services Group Brian Vanderwende

Batch Systems & Parallel Application Launchers Running your jobs on an HPC machine

Compiling applications for the Cray XC

Resources Current and Future Systems. Timothy H. Kaiser, Ph.D.

Duke Compute Cluster Workshop. 3/28/2018 Tom Milledge rc.duke.edu

Choosing Resources Wisely. What is Research Computing?

I/O Monitoring at JSC, SIONlib & Resiliency

Parallel Applications on Distributed Memory Systems. Le Yan HPC User LSU

Using EasyBuild and Continuous Integration for Deploying Scientific Applications on Large Scale Production Systems

Parallel & Scalable Machine Learning Introduction to Machine Learning Algorithms

n N c CIni.o ewsrg.au

HPC Resources & Training

The Stampede is Coming: A New Petascale Resource for the Open Science Community

Leibniz Supercomputer Centre. Movie on YouTube

Combining OpenMP and MPI. Timothy H. Kaiser,Ph.D..

The Mont-Blanc Project

Quantum Chemistry (QC) on GPUs. Dec. 19, 2016

How to Use a Supercomputer - A Boot Camp

FUSION1200 Scalable x86 SMP System

TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 16 th CALL (T ier-0)

CYFRONET SITE REPORT IMPROVING SLURM USABILITY AND MONITORING. M. Pawlik, J. Budzowski, L. Flis, P. Lasoń, M. Magryś

Introduction to HPC2N

High performance Computing and O&G Challenges

TECHNICAL OVERVIEW ACCELERATED COMPUTING AND THE DEMOCRATIZATION OF SUPERCOMPUTING

Intel Many Integrated Core (MIC) Architecture

It s a Multicore World. John Urbanic Pittsburgh Supercomputing Center Parallel Computing Scientist

Co-designing an Energy Efficient System

ECE 574 Cluster Computing Lecture 16

Parallel Computer Architecture - Basics -

Introduc)on to High Performance Compu)ng Advanced Research Computing

Transcription:

CALMIP : HIGH PERFORMANCE COMPUTING Nicolas.renon@univ-tlse3.fr Emmanuel.courcelle@inp-toulouse.fr CALMIP (UMS 3667) Espace Clément Ader www.calmip.univ-toulouse.fr

CALMIP :Toulouse University Computing Center q Start in 1994 : 17 Labs. share computing resources q Support of University of Toulouse (6 Universities+ CNRS) q Purposes : q Promote High Performance Computing q training in parallel computing, code optimisation q Exchanges experiences (Thematic Days) q Access to a Competitive computing system q Purchase a system q Achieving performance/»easy to use»/stable q Support Users q Basics q Developping parallel code Page 2

CALMIP : a medium/meso size computing Center European O(10) PF National O(1) PF Mesocentre O(100) TF Labs. Mesocentre CALMIP : ü Propinquity ü Production (reliable ressources) ü Multi scientific topic TF = TeraFlop/s (10 12 flop/s) PF = PetaFlop/s (10 15 flop/s) Flop/s = Floating Operation per second Page 3

HPC in Europe (Partnership for Advanced Computing in Europe) Sweden Finland Archer 1.3 PFLOP Nederlands CURIE 9PFLOP JUQUEEN 5PFLOP HAZEL HEN SUPERMUC 5PFLOP 3PFLOP Czech Piz Daint 19 PFLOP Poland MareNostrum 6,2 PF MARCONI 6PFLOP PF = PetaFlop/s (10 15 flop/s)

CALMIP : CPU hours needs 2010-2017 Evolution demande H_CPU/nombre_projets 110000000 90000000 231 77 813 765 250 265 98 124 080 280 103 619 210 260 253 240 220 70000000 178 211 217 200 180 Heures CPU 50000000 137 35 061 314 41 771 450 160 140 120 nombre projets 30000000 29 354 000 100 80 10000000 10 279 000 22 486 860 Total demandes Total projets 60 40-10000000 2010 2011 2012 2013 2014 2015 2016 2017 20 0 Années Page 5

CALMIP : CPU hours needs % per Scientific Topics. (+45 Labs) Theoretical Physics 4% Hour CPU needs per scientific topics Engineer Science 3% Matter Science 24% Fluid Mechanics 30% Quantum Chemistry 12% Life Science 10% Numerical Algorithm and Method 1% Universe Science 16% Page 6

CALMIP COMPUTING CAPACITY EVOLUTION CALMIP : Supercomputer Evolution 2004-2014 # 223 @TOP 500 x 7 # 183 @TOP 500 # 183 @TOP 500 274 TFlops x 22 33 TFlops 38,5 TFlops x 3,75 1,5 TFlops 400 GFlops SOLEIL1 SOLEIL2 HYPERION HYPERION+ EOS 68 CPU 136 Go RAM 512 CPU 512 Go RAM 2 912 CPU 14 To RAM 3 500CPU 14 To RAAM 2004 2007 2009 2011 12 240CPU 39 To RAM 2014 7

TOP 500 List #1 2017 = 93 PF 15 MW 2,2 MW Moore s Law #1 2011 = 10 PF 12 MW Page 8

Ø Shered Memory Machine (or SMP : Symetric Multi-Processing) Memory interconnect Application Parallelism: OpenMP!$OMP DO PARALLEL cores 0 1 limited #cores do i = 1, n a(i) = 92290. + real(i) ; end do Ø Distributed Memory Machine!$OMP END DO Memory interconnect cores interconnexion interconnexion 0 1 n n+1 Application Parallelism: MPI (Message Passing Interface) more complexity ++ n large, almost unlimited #cores

CALMIP & Atomic and Molecular Computation Codes in Matter Science, Quantum Chemistry q 4HE-DFT (OpenMP) q LAMMPS (MPI, GPU) q ADF (MPI) q ABINIT (MPI) q AMBER (MPI, GPU) q bigdft (MPI GPU) q DeMon (demon-nano) (MPI) q DIRAC (MPI) q CPMD (MPI+OpenMP) q CP2K (MPI+OpenMP) q GAMESS (MPI) q GAUSSIAN (OpenMP) q GROMACS (MPI+OpenMP, GPU) q MOLCAS q MOLPRO q NWCHEM (MPI) q NAMD (MPI, GPU) q ORCA (MPI) q QMC=chem (Custom) q QUANTUM ESPRESSO (MPI+OpenMP) q SIESTA (MPI) q VASP (MPI+OpenMP, GPU) q WIEN2K (MPI, Custom) q Today focus on : 4HE-DFT Page 10

HIGH PERFORMANCE COMPUTING EOS COMPUTING SYSTEM Frontales de connexion : 4 x (20-cores,128 GB RAM) Cluster distribué BULLx DLC : 12240 cores - 612 nodes Intel Ivybridge 2,8 Ghz 10-cores 64 GB RAM / nœud Interconnection : Infiniband FDR Nœud large mémoire : 128 cores - 2 TB RAM Intel Haswell-EX 2,2 Ghz 16-cores - Page web associée Solution de visualisation à distance : 2 nœuds (20-cores, 128 GB RAM) Cartes Nvidia Quadro 6000

Supercomputer EOS : Architecture Interconnect Interconnexion infiniband FDR interconnexion Compute node (SMP) Compute node (SMP) Compute node (SMP) Memory 64Go SHARED 64Go SHARED 64Go SHARED 20 cores Cache Cache Cache Cache Cache Cache Intel Ivybridge processeur or socket = 10 cores and 25 Mo de cache

HIGH PERFORMANCE COMPUTING HANDS ON : CONNEXION TO FRONTAL NODE Connexion «Secure Shell» (ssh) Linux / macos ssh X {login}@eos Frontals nodes : 4 x (20-cores,128 GB RAM) Windows Client ssh with serveur X (Putty/Xming, MobaXterm) - Page web associée

HIGH PERFORMANCE COMPUTING LAUNCH COMPUTATIONS : BATCH SCHEDULER Connexion ssh X {login}@eos Frontales de connexion : 4 x (20-cores,128 GB RAM) Launch through the batch scheduler (SLURM) sbatch mon_job Distributed Memory Cluster BULLx DLC (12240 cores - 612 nodes) Processeurs Intel Ivybridge 2,8 Ghz 10-cores 64 GB RAM / nœud Interconnection : Infiniband FDR Topologie : full fat-tree

HIGH PERFORMANCE COMPUTING SLURM COMMANDS : BASICS Launch job sbatch mon_job Stop job scancel $SLURM_JOBID The list of jobs for $USER squeue u $USER - Page web associée

HIGH PERFORMANCE COMPUTING LAUNCH AN OPENMP CODE Shared Memory parallelism (multithreading) : #!/bin/bash #SBATCH --job-name=script_utilisationeos #SBATCH --nodes=1 #SBATCH --ntasks=1 #SBATCH --cpus-per-task=5 #SBATCH --time=0-01:00:00 export OMP_NUM_THREADS=5 Specify # cores (example : 5) OpenMP variable specify the number of threads (should be the same as # cores above) srun./mon_appli.exe - Page web associée

MESOCENTER CALMIP