Modified Expectation Maximization Method for Automatic Segmentation of MR Brain Images

Similar documents
An Introduction To Automatic Tissue Classification Of Brain MRI. Colm Elliott Mar 2014

Comparison Study of Clinical 3D MRI Brain Segmentation Evaluation

MR IMAGE SEGMENTATION

Ischemic Stroke Lesion Segmentation Proceedings 5th October 2015 Munich, Germany

Segmenting Glioma in Multi-Modal Images using a Generative Model for Brain Lesion Segmentation

mritc: A Package for MRI Tissue Classification

Performance Evaluation of the TINA Medical Image Segmentation Algorithm on Brainweb Simulated Images

Norbert Schuff VA Medical Center and UCSF

CHAPTER 6 MODIFIED FUZZY TECHNIQUES BASED IMAGE SEGMENTATION

Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

maximum likelihood estimates. The performance of

AN EFFICIENT SKULL STRIPPING ALGORITHM USING CONNECTED REGIONS AND MORPHOLOGICAL OPERATION

AN AUTOMATED SEGMENTATION FRAMEWORK FOR BRAIN MRI VOLUMES BASED ON ADAPTIVE MEAN-SHIFT CLUSTERING

Segmentation and Classification of MRI Brain Tumor using FLGMM Segmentation and Neuro-Fuzzy Classifier

Design of direction oriented filters using McClellan Transform for edge detection

Preprocessing II: Between Subjects John Ashburner

SAR IMAGE CHANGE DETECTION USING GAUSSIAN MIXTURE MODEL WITH SPATIAL INFORMATION

Automated Brain-Tissue Segmentation by Multi-Feature SVM Classification

IMAGE ENHANCEMENT USING NONSUBSAMPLED CONTOURLET TRANSFORM

Katholieke Universiteit Leuven

Norbert Schuff Professor of Radiology VA Medical Center and UCSF

International Journal of Engineering Science Invention Research & Development; Vol. I Issue III September e-issn:

Segmenting Glioma in Multi-Modal Images using a Generative-Discriminative Model for Brain Lesion Segmentation

Automatic Generation of Training Data for Brain Tissue Classification from MRI

MRI Brain Image Segmentation by Fuzzy Symmetry Based Genetic Clustering Technique

Discriminative, Semantic Segmentation of Brain Tissue in MR Images

Constrained Gaussian Mixture Model Framework for Automatic Segmentation of MR Brain Images

Processing math: 100% Intensity Normalization

MEDICAL IMAGE COMPUTING (CAP 5937) LECTURE 4: Pre-Processing Medical Images (II)

IMAGE SEGMENTATION BY FUZZY C-MEANS CLUSTERING ALGORITHM WITH A NOVEL PENALTY TERM

A Novel NSCT Based Medical Image Fusion Technique

Global Thresholding Techniques to Classify Dead Cells in Diffusion Weighted Magnetic Resonant Images

Segmenting Lesions in Multiple Sclerosis Patients James Chen, Jason Su

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

PET Image Reconstruction using Anatomical Information through Mutual Information Based Priors

A Model-Independent, Multi-Image Approach to MR Inhomogeneity Correction

Automatic Optimization of Segmentation Algorithms Through Simultaneous Truth and Performance Level Estimation (STAPLE)

GLIRT: Groupwise and Longitudinal Image Registration Toolbox

1. Medical Intelligence Laboratory, Computer Engineering Department, Bu Ali Sina University, Hamedan, Iran. A B S T R A C T

TISSUE classification is a necessary step in many medical

Tissue Tracking: Applications for Brain MRI Classification

Object Extraction Using Image Segmentation and Adaptive Constraint Propagation

Fast 3D Brain Segmentation Using Dual-Front Active Contours with Optional User-Interaction

Image Registration + Other Stuff

Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit

Learning-based Neuroimage Registration

Segmentation of Cerebral MRI Scans Using a Partial Volume Model, Shading Correction, and an Anatomical Prior

Computational Neuroanatomy

Magnetic resonance image tissue classification using an automatic method

MRI Segmentation. MRI Bootcamp, 14 th of January J. Miguel Valverde

Feature Extraction and Texture Classification in MRI

CS839: Probabilistic Graphical Models. Lecture 10: Learning with Partially Observed Data. Theo Rekatsinas

Knowledge-Based Segmentation of Brain MRI Scans Using the Insight Toolkit

Automatic MS Lesion Segmentation by Outlier Detection and Information Theoretic Region Partitioning Release 0.00

Global Journal of Engineering Science and Research Management

ISSN: X Impact factor: 4.295

An ITK Filter for Bayesian Segmentation: itkbayesianclassifierimagefilter

ADAPTIVE GRAPH CUTS WITH TISSUE PRIORS FOR BRAIN MRI SEGMENTATION

Non-rigid Image Registration using Electric Current Flow

Brain Portion Peeling from T2 Axial MRI Head Scans using Clustering and Morphological Operation

Automatic Segmentation of Multiple Sclerosis Lesions in Brain MR Images

Change Detection in Remotely Sensed Images Based on Image Fusion and Fuzzy Clustering

Detection of Brain Tumor from MRI of Brain Using Fuzzy C-mean (FCM)

North Asian International Research Journal of Sciences, Engineering & I.T.

Methods for data preprocessing

Color Image Enhancement Based on Contourlet Transform Coefficients

NEW REGION GROWING ALGORITHM FOR BRAIN IMAGES SEGMENTATION

Expectation Maximization (EM) and Gaussian Mixture Models

High Accuracy Region Growing Segmentation Technique for Magnetic Resonance and Computed Tomography Images with Weak Boundaries

Image Denoising Based on Hybrid Fourier and Neighborhood Wavelet Coefficients Jun Cheng, Songli Lei

MR Brain Segmentation using Decision Trees

DYNAMIC BACKGROUND SUBTRACTION BASED ON SPATIAL EXTENDED CENTER-SYMMETRIC LOCAL BINARY PATTERN. Gengjian Xue, Jun Sun, Li Song

Ensemble registration: Combining groupwise registration and segmentation

PBSI: A symmetric probabilistic extension of the Boundary Shift Integral

Atlas of Classifiers for Brain MRI Segmentation

CHAPTER 6 ENHANCEMENT USING HYPERBOLIC TANGENT DIRECTIONAL FILTER BASED CONTOURLET

Sampling-Based Ensemble Segmentation against Inter-operator Variability

A Quantitative Approach for Textural Image Segmentation with Median Filter

Multi-Sectional Views Textural Based SVM for MS Lesion Segmentation in Multi-Channels MRIs

Learning to Identify Fuzzy Regions in Magnetic Resonance Images

MRI Tissue Classification with Neighborhood Statistics: A Nonparametric, Entropy-Minimizing Approach

Automatic White Matter Lesion Segmentation in FLAIR MRI

ABSTRACT 1. INTRODUCTION 2. METHODS

Lesion Segmentation and Bias Correction in Breast Ultrasound B-mode Images Including Elastography Information

A Systematic Analysis System for CT Liver Image Classification and Image Segmentation by Local Entropy Method

A Simple Algorithm for Image Denoising Based on MS Segmentation

IMAGE SUPER RESOLUTION USING NON SUB-SAMPLE CONTOURLET TRANSFORM WITH LOCAL TERNARY PATTERN

NSCT BASED LOCAL ENHANCEMENT FOR ACTIVE CONTOUR BASED IMAGE SEGMENTATION APPLICATION

Short Survey on Static Hand Gesture Recognition

A Fuzzy C-means Clustering Algorithm for Image Segmentation Using Nonlinear Weighted Local Information

Improving the efficiency of Medical Image Segmentation based on Histogram Analysis

LOCUS: LOcal Cooperative Unified Segmentation of MRI Brain Scans

Whole Body MRI Intensity Standardization

Texture Image Segmentation using FCM

Automatic Extraction of Tissue Form in Brain Image

Adaptive online learning based tissue segmentation of MR brain images

QUANTITATION OF THE PREMATURE INFANT BRAIN VOLUME FROM MR IMAGES USING WATERSHED TRANSFORM AND BAYESIAN SEGMENTATION

MARS: Multiple Atlases Robust Segmentation

[2006] IEEE. Reprinted, with permission, from [Wenjing Jia, Huaifeng Zhang, Xiangjian He, and Qiang Wu, A Comparison on Histogram Based Image

Transcription:

Modified Expectation Maximization Method for Automatic Segmentation of MR Brain Images R.Meena Prakash, R.Shantha Selva Kumari 1 P.S.R.Engineering College, Sivakasi, Tamil Nadu, India 2 Mepco Schlenk Engineering College, Sivakasi, Tamil Nadu,India Abstract. An automated method of MR brain image segmentation is presented. A block based Expectation Maximization Algorithm is proposed for the tissue classification of MR brain images. The standard Gaussian Mixture Model is the most widely used method for MR Brain image segmentation and Expectation Maximization algorithm is used to estimate the model parameters. The Gaussian Mixture Model considers each pixel as independent and does not take into account the spatial correlation between the neighboring pixels. Hence the segmentation result obtained using standard GMM is highly sensitive to Intensity Non- Uniformity and Noise. The image is divided into blocks before applying EM since the GMM is preserved in the local image blocks. Also, Nonsubsampled Contourlet Transform is employed to incorportate the spatial correlation among the neighbouring pixels. The method is applied to the 12 MR brain volumes of MRBRAINS13 test data and the White Matter, Gray Matter and CSF structures were segmented. Keywords: MR Brain Image, Segmentation, Expectation Maximization,Intensity Non-Uniformity. 1 Introduction Segmentation of MR Brain images into White Matter, Gray Matter and Cerebrospinal Fluid(CSF) is an important step in quantitative morphology of the brain. The segmentation of MR Brain images aids in detection of various brain diseases like Multiple Sclerosis, Alzheimer s disease, epilepsy and others. Manual Segmentation is time consuming and also it leads to intra and inter observer variability. Hence automatic segmentation methods are in research focus and wide range of methods are proposed in the literature. The standard GMM and EM for estimating the model parameters is widespread method for image segmentation. The drawbacks of the method are that it is sensitive to noise and it does not take into account the spatial correlation between the pixels. Koen Van Leemput et al. [3 5] developed the model based method for automated classification of MR brain images. The method applies an iterative Expectation Maximization algorithm that interleaves pixel classification with estimation of class distribution and bias field parameters, improving the likelihood of the parameters at each iteration. Nathalie Richard et al. proposed distributed Markovian segmentation

2 R.Meena Prakash, R.Shantha Selva Kumari performed under a collabarative and decentralized strategy to ensure the consistency of segmentation over neighbouring zones.[6]. Thanh Minh Nguyen and Q. M. Jonathan Wu proposed an algorithm which incorporates the spatial relationship between neighboring pixels by replacing each pixel value in an image with the average value of its neighbors including itself.[1].zexuan Ji, Yong Xia et al. proposed the fuzzy local gaussian mixture model in which a truncated gaussian kernel function is used to impose the spatial constraint and fuzzy memberships are employed to balance the contribution of each GMM.[2]. To overcome the effects of bias field and noise in segmentation accuracy, a wide range of techniques are being referenced. Since the GMM is preserved in the local image blocks, block based EM segmentation is suggested to remove the effect of bias field in segmentation. Also, to incorporate the spatial correlation among the neighboring pixels, Nonsubsampled contourlet transform low pass filter is employed. 2 Gaussian Mixture Model and EM Segmentation The EM algorithm is a general technique for finding Maximum Likelihood parameter estimates in problems with hidden data.[3 5]. It first estimates the hidden data based on the current parameter estimates. The initial parameters mean and variance of the classes are calculated from the histogram of the image. The estimated completed data consisting of both observed and hidden data are then used to estimate the parameters through maximizing the likelihood of the complete data. It consists of two steps E step and M step. The E step computes expectation of the unobserved data. The M step computes Maximum Likelihood estimates of the unknown parameters. The process is repeated until it converges. The likelihood increases with each iteration. For segmentaiton problem, the observed data are the signal intensities, the missing data are the classification of images, and the parameters are class-conditional intensity distribution parameters. Each voxel value is selected at random from one of K classes. The EM algorithm then interleaves class-conditional parameter estimation and it performs statistical classification of the image voxel into K classes. Each class is modeled by a normal distribution G σ (y µ) with mean µ and variance σ 2. The probability density that class j has generated the voxel value y i at position i is p(y i /Γ i = j, θ j ) = G σj (y i µ j ) (1) with Γ i ɛ{j/j = 1...K} the tissue class at position i and θ j = {µ j, σ j }, the distribution parameters for class j. Defining θ = {θ j } as the model parameters, the overall probability density for y i is p(y i /θ) = j p(y i /Γ i = j, θ j )p(γ i = j) (2) which is a mixture of normal distributions. Since all the voxel intensities are assumed to be statistically independent, the probability density for the image y

Modified EM for Automatic Segmentation of MR Brain Images 3 given the model is p(y/θ) = i (p(y i /θ)) (3) The maximum likelihood estimates for the parameters µ j and σ j can be found by maximization of p(y/θ), equivalent to minimization of i log e(p(y i /θ)). The expression for µ j is given by the condition that µ j ( i log e ( j p(y i /Γ i = j, θ j )p(γ i = j))) = 0 (4) Differentiating and substituting p(y i /Γ i = j), θ j by the Gaussian distribution 1 yields p(γ i = j/y i, θ)(y i µ j ) = 0 (5) where Bayes rule was used. i p(γ i = j/y i, θ) = p(y i/γ i = j, θ j )p(γ i = j) j (p(y i/γ i = j, θ j )p(γ i = j) (6) Rearranging the terms yields the expression for µ j. µ j = i y ip(γ i = j/y i, θ) i p(γ i = j/y i, θ) i σ 2 j = p(γ =j/y i, θ)(y i µ j ) 2 i p(γ (8) i = j/y i, θ) Equation 6 performs classification while 7 and 8 are parameter estimates. The algorithm fills in the missing data during step 1 and then finds the parameters that maximize the likelihood for the complete data during step 2. The likelihood is guaranteed to increase at each iteration. The method is simple when compared to other segmentation methods like fuzzy classification, deformable model etc.,. The drawbacks observed in the method are that it treats each pixel as independent and it does not take into account the spatial relationship between pixels. This leads to misclassification of the pixels to different classes and hence the observed accuracy is low. Also if the noise level and intensity in-homogeneity increase, the accuracy decreases rapidly. (7) 3 Nonsubsampled Contourlet Transform The NSCT is constructed by combining non sub sampled pyramids and non sub sampled directional filter banks as shown in fig (1). The Nonsubsampled pyramid structure results the multi scale property. The Nonsubsampled directional filter bank results the directional property. The NSCT has similar subband decomposition as that of contourlets but without up samplers and down samplers.the standard GMM considers each pixel as independent and does not take

4 R.Meena Prakash, R.Shantha Selva Kumari Fig. 1: Nonsubsampled Contourlet Transform into account the spatial correlation between the neighboring pixels. The Nonsubsampled pyramid decomposition is used in the proposed algorithm to obtain the low pass sub band which facilitates incorporation of spatial correlation among neighbouring pixels. 4 Method The algorithm is summarized in the following steps. 1. Skull Stripping is done to extract the brain region using threshold and morphological operations 2. The Nonsubsampled Contourlet Transform is applied to decompose the image into low pass sub band and band pass directional subbands. 3. The low pass sub band image is divided into 16 blocks each of 60 x 60 pixels. 3. Then Expectaion Maximization Segmentation is applied to each block. 4. The number of classes for EM segmentation is selected as 5. 5. The tissues are labeled as Gray Matter, White Matter and Cerebro Spinal Fluid(CSF). 5 Results and Discussion In this section, the performance of the algorithm on 12 MR brain volumes of MRBRAINS13 test data is presented.the system configuration used is Intel Core 2 Duo CPU @2.53GHz with 1.98GB of RAM. The algorithm is executed using Matlab.Only T1 weighted images are used and no training data is used. 5.1 Performance Metrics Dice Metrics The Dice Similarity (DS) is a measure of the similarity between manual segmentation (X) and the automatic segmentation (Y). The equation for calculation can be written as DS = 2 X Y X + Y

Modified EM for Automatic Segmentation of MR Brain Images 5 Fig. 2: Algorithm Absolute Volume Difference The total volume of the segmentation is divided by the total volume of the reference. From this number 1 is subtracted, the absolute value is taken and the result is multiplied by 100. This value is 0 for a perfect segmentation and larger than zero otherwise. 5.2 Discussion In order to overcome the drawbacks of the standard EM for MR brain image segmentation, a modified EM is proposed and implemented. The experimental results prove that the method achieves overall Dice Similarity Index of 0.79, 0.64 for GM and 0.77 for WM. The results achieved are comparable to that of the state-of-the art algorithms. The computational complexity is very much reduced and only T1 weighted images are used.the method is a fully unsupervised technique and as such no training data are required. The time required for segmentation of a single volume is around 300 to 350 seconds which include the time for brain extraction also. The method may be extended for pathology identification and segmentation like Multiple Sclerosis lesion segmentation. The method also can be used to segment MR brain images with more bias field and noise.

6 R.Meena Prakash, R.Shantha Selva Kumari Fig. 3: MRBRAINS13 TEST DATA SET 1-SLICES 25,35 Left:Input Image Right: Modified EM Segmented Output Fig. 4: MRBRAINS13 TEST DATA SET 6-SLICES 10,20 Left:Input Image Right: Modified EM Segmented Output

Modified EM for Automatic Segmentation of MR Brain Images 7 Fig. 5: EVALUATION RESULTS FOR MODIFIED EM SEGMENTATION METHOD ON 12 TEST SCANS 6 Conclusion A fully automatic MR brain image segmentation is proposed. A block based EM is proposed for the segmentation of MR brain image into GM, WM and CSF. Also Nonsubsampled Contourlet Transform is employed to incorporate the spatial correlation among the neighbouring pixels. The method greatly reduces the computational complexity. 7 BibTeX Entries References 1. Thanh Minh Nguyen and Q. M. Jonathan Wu, Gaussian-Mixture-Model-Based Spatial Neighborhood Relationships for Pixel Labeling Problem, IEEE Transactions on Systems, Man, and CyberneticsPART B: Cybernetics, VOL. 42, No. 1, February 2012. 2. Zexuan Ji, Yong Xia, Member, IEEE, Quansen Sun, Qiang Chen, Member, IEEE, Deshen Xia, and David Dagan Feng, Fellow, IEEE, Fuzzy Local Gaussian Mixture Model for Brain MR Image Segmentation, IEEE Transactions on Information Technology in Biomedicine, vol. 16, no. 3, MAY 2012, pp.339-347. 3. Koen Van Leemput, Frederik Maes, Dirk Vandermeulen, and Paul Suetens, Automated Model-Based Tissue Classification of MR Images of the Brain, IEEE Transactions On Medical Imaging, Vol. 18, No. 10, October 1999, pp.897-908. 4. Koen Van Leemput, Frederik Maes, Dirk Vandermeulen, and Paul Suetens, A Unifying Framework for Partial Volume Segmentation of Brain MR Images, IEEE Transactions On Medical Imaging, Vol. 22, No. 1, January 2003, pp.105-119. 5. Koen Van Leemput, Frederik Maes, Dirk Vandermeulen, and Paul Suetens, Automated Model-Based Bias Field Correction of MR Images of the Brain, IEEE Transactions on Medical Imaging, Vol.18, No.10, October 1999, pp.885-896. 6. Nathalie Richard, Michel Dojat, Catherine Garbay, Distributed Markovian segmentation: Application to MRbrain scans Elsevier, Pattern Recognition 40 (2007) pp. 3467 3480 7. Yongyue Zhang, Michael Brady, and Stephen Smith, Segmentation of brain MR images through a Hidden Markov Random Field and the Expectation Maximization Algorithm, IEEE Transactions On Medical Imaging, Vol.20, No.1, January 2001.

8 R.Meena Prakash, R.Shantha Selva Kumari 8. Arthur L. da Cunha, J. Zhou and Minh N. Do, Nonsubsampled Contourlet Transform: Filter Design and Applications in Denoising, IEEE International Conference on Image Processing, September 2005. 9. Minh N. Do, Martin Vetterli, The Contourlet Transform: An Efficient Directional Multiresolution Image Representation, IEEE Transactions on Image Processing, Vol.14, No.12, December 2005. 10. Arthur L. da Cunha, Jianping Zhou, Minh N. Do, The Nonsubsampled Contourlet Transform:Theory, Design and Applications, IEEE Transactions on Image Processing, Vol.15, No.10, October 2006. 11. C. A. Cocosco,V.Kollokian, R. K.-S.Kwan, and A. C. Evans, BrainWeb: Online interface to a 3D MRI simulated brain database, NeuroImage, vol. 5, no. 4, p. 425, 1997.