Multi-objective Optimization Algorithm based on Magnetotactic Bacterium

Similar documents
Decomposition of Multi-Objective Evolutionary Algorithm based on Estimation of Distribution

Experimental Study on Bound Handling Techniques for Multi-Objective Particle Swarm Optimization

Multi-objective Optimization

SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2

DEMO: Differential Evolution for Multiobjective Optimization

An Evolutionary Multi-Objective Crowding Algorithm (EMOCA): Benchmark Test Function Results

Recombination of Similar Parents in EMO Algorithms

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague.

Adaptive Multi-objective Particle Swarm Optimization Algorithm

GECCO 2007 Tutorial / Evolutionary Multiobjective Optimization. Eckart Zitzler ETH Zürich. weight = 750g profit = 5.

Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms

Evolutionary multi-objective algorithm design issues

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems

Performance Assessment of DMOEA-DD with CEC 2009 MOEA Competition Test Instances

A Similarity-Based Mating Scheme for Evolutionary Multiobjective Optimization

An External Archive Guided Multiobjective Evolutionary Approach Based on Decomposition for Continuous Optimization

ScienceDirect. Differential Search Algorithm for Multiobjective Problems

Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls

Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

Performance Evaluation of Vector Evaluated Gravitational Search Algorithm II

Efficient Hybrid Multi-Objective Evolutionary Algorithm

SPEA2: Improving the strength pareto evolutionary algorithm

Investigating the Effect of Parallelism in Decomposition Based Evolutionary Many-Objective Optimization Algorithms

Multi-Objective Optimization using Evolutionary Algorithms

Multiobjective Prototype Optimization with Evolved Improvement Steps

Multi-objective Optimization

Multi-Objective Optimization using Evolutionary Algorithms

An Improved Multi-Objective Evolutionary Algorithm with Adaptable Parameters

Handling Multi Objectives of with Multi Objective Dynamic Particle Swarm Optimization

A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences

Finding Sets of Non-Dominated Solutions with High Spread and Well-Balanced Distribution using Generalized Strength Pareto Evolutionary Algorithm

EVOLUTIONARY algorithms (EAs) are a class of

Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts

The Multi-Objective Genetic Algorithm Based Techniques for Intrusion Detection

Combining Convergence and Diversity in Evolutionary Multi-Objective Optimization

Improved Pruning of Non-Dominated Solutions Based on Crowding Distance for Bi-Objective Optimization Problems

EFFECTIVE CONCURRENT ENGINEERING WITH THE USAGE OF GENETIC ALGORITHMS FOR SOFTWARE DEVELOPMENT

Particle Swarm Optimization to Solve Optimization Problems

On The Effects of Archiving, Elitism, And Density Based Selection in Evolutionary Multi-Objective Optimization

GENERIC SCHEME OF A RESTART META-HEURISTIC OPERATOR FOR MULTI-OBJECTIVE GENETIC ALGORITHMS

Multiobjective hboa, Clustering, and Scalability. Martin Pelikan Kumara Sastry David E. Goldberg. IlliGAL Report No February 2005

International Journal of Computer Techniques - Volume 3 Issue 2, Mar-Apr 2016

Approximation Model Guided Selection for Evolutionary Multiobjective Optimization

Parallel Multi-objective Optimization using Master-Slave Model on Heterogeneous Resources

Adaptive Reference Vector Generation for Inverse Model Based Evolutionary Multiobjective Optimization with Degenerate and Disconnected Pareto Fronts

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

A Model-Based Evolutionary Algorithm for Bi-objective Optimization

X/$ IEEE

Parallel Multi-objective Optimization using Master-Slave Model on Heterogeneous Resources

International Conference on Computer Applications in Shipbuilding (ICCAS-2009) Shanghai, China Vol.2, pp

A gradient-based multiobjective optimization technique using an adaptive weighting method

Two Heuristic Operations to Improve the Diversity of Two-objective Pareto Solutions

A HYBRID PARTICLE SWARM EVOLUTIONARY ALGORITHM FOR CONSTRAINED MULTI-OBJECTIVE OPTIMIZATION. Jingxuan Wei. Yuping Wang. Hua Wang

NCGA : Neighborhood Cultivation Genetic Algorithm for Multi-Objective Optimization Problems

Development of Evolutionary Multi-Objective Optimization

Deconstructing Multi-objective Evolutionary Algorithms: An Iterative Analysis on the Permutation Flow-Shop Problem

An efficient multi-objective optimization algorithm based on swarm intelligence for engineering design

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL., NO., MONTH YEAR 1

Evolutionary Multi-Objective Optimization Without Additional Parameters

A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II

Communication Strategies in Distributed Evolutionary Algorithms for Multi-objective Optimization

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization

An Empirical Comparison of Several Recent Multi-Objective Evolutionary Algorithms

Incrementally Maximising Hypervolume for Selection in Multi-objective Evolutionary Algorithms

R2-IBEA: R2 Indicator Based Evolutionary Algorithm for Multiobjective Optimization

Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search

Approximation-Guided Evolutionary Multi-Objective Optimization

Evolutionary Multi-Objective Optimization and its Use in Finance

Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design

Evolutionary Computation

Best Order Sort: A New Algorithm to Non-dominated Sorting for Evolutionary Multi-objective Optimization

A New Ranking Scheme for Multi and Single Objective Problems

STUDY OF MULTI-OBJECTIVE OPTIMIZATION AND ITS IMPLEMENTATION USING NSGA-II

MLPSO: MULTI-LEADER PARTICLE SWARM OPTIMIZATION FOR MULTI-OBJECTIVE OPTIMIZATION PROBLEMS

Effects of Discrete Design-variable Precision on Real-Coded Genetic Algorithm

A novel Ranking-based Optimal Guides Selection Strategy in MOPSO

Multiobjective Formulations of Fuzzy Rule-Based Classification System Design

Evolutionary Multiobjective Bayesian Optimization Algorithm: Experimental Study

An Evolutionary Algorithm with Advanced Goal and Priority Specification for Multi-objective Optimization

Procesamiento Paralelo para Problemas Multiobjetivo en Entornos Dinámicos

Indicator-Based Selection in Multiobjective Search

Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-Objective Optimization

Survey of Evolutionary Algorithms Used in Multiobjective Optimization

Part II. Computational Intelligence Algorithms

Multi-Objective Evolutionary Algorithms

Multi-objective optimization using Trigonometric mutation multi-objective differential evolution algorithm

Novel Multiobjective Evolutionary Algorithm Approaches with application in the Constrained Portfolio Optimization

Decomposable Problems, Niching, and Scalability of Multiobjective Estimation of Distribution Algorithms

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

A Predictive Pareto Dominance Based Algorithm for Many-Objective Problems

Multi-objective Ranking based Non-Dominant Module Clustering

Kursawe Function Optimisation using Hybrid Micro Genetic Algorithm (HMGA)

Adjusting Parallel Coordinates for Investigating Multi-Objective Search

A Multi-objective Evolutionary Algorithm of Principal Curve Model Based on Clustering Analysis

Design of Curves and Surfaces Using Multi-Objective Optimization

Effectiveness and efficiency of non-dominated sorting for evolutionary multi- and many-objective optimization

GIS NSGA-II GIS .NSGA-II :

Transcription:

Vol.78 (MulGrab 24), pp.6-64 http://dx.doi.org/.4257/astl.24.78. Multi-obective Optimization Algorithm based on Magnetotactic Bacterium Zhidan Xu Institute of Basic Science, Harbin University of Commerce, Harbin, China xuzhidanivy@63.com Abstract. In this paper, based on Magnetotactic Bacteria Optimization Algorithm (MBOA), magnetotactic bacterium multi-obective optimization algorithm (MBMOA) is proposed for solving multi-obective optimization problems (MOPs). Magnetotactic bacterium optimization algorithm is a novel random research algorithm which simulate the process of magnetotactic bacteria (MTB) producing magnetosomes(mts) to regulate cell moment and make the magnetostatic energy reaches the minimum.the algorithm MBOA proposed three operators named by MTS producing, MTS amplification and MTS replacement by imitating the development process of magnetosomes, the adustment process of magnetosomes moment and the replacement process of magnetosome with worse moment. In MBMOA, MBOA is applied to produce the next population, while non-dominated feasible solutions gained by MBOA are conserved in the archive, then the evaluation method of SPEA2 is adopted to update the archive, at the last through benchmark functions test and classic algorithm comparison, the simulation results show that the MBMOA is feasible and effective for solving multi-obective optimization problems. Keywords: Magnetotactic bacteria optimization algorithm, Magnetosomes regulation, Multi-obective optimization Introduction Many real-world problems require the simultaneous optimization of several conflicting obectives which lead their optimal solutions to become a set of Paretooptimal solutions []. Many kinds of evolutionary algorithms (EAs) have been proved successful for multi-obective optimization problems(mops) because they can attain multiple Pareto-optimal solutions in a run and were not restricted to the features of research region, such as genetic algorithm (GA), which includes non-dominated sorting genetic algorithm and NSGA Ⅱ [2],Multi-Obective genetic algorithm (MOGA)[3], and SPEA2 [4] and the Pareto archived evolution strategy (PAES)[5].Besides that, swarm intelligence had also been applied to MOPs [6], In those algorithms, different schemes were presented to choose the global best positions for each particle of the swarm from Pareto optimal solutions set. Because of different optimization strategies inspired by biology systems, they exhibited a varying degree of success for MOPs. ISSN: 2287-233 ASTL Copyright 24 SERSC

Vol.78 (MulGrab 24) In this paper, Magnetotactic bacterium optimization algorithm (MBOA) is a new random search algorithm. In the single obective optimization problems and real applications, MBOA presents certain advantages especially for the convergence [7]- [8]. However it has no reports on MBOA for solving multi-obective optimization problems, In MBOA, the operator of producing MTS has good exploitation ability in the population information, MTS amplification has good exploration ability and MTS replacement may enhance the diversity of the population. Based on those characters, a novel multi-obective optimization algorithm named by MBMOA is proposed. The rest of the paper is organized as follows. Section 2 introduces the basic idea of Magnetotactic bacteria optimization algorithm (MBOA) for single obective optimization. Section 3 describes the process MBMOA. Section 4 shows the simulation results and analyzes the algorithm. Finally, conclusions are drawn in Section 5. 2 Magnetotactic bacteria optimization algorithm (MBOA) Magnetotactic bacteria (MTB) [9]is a kind of bacteria which can swim by certain direction under the effect of external magnetic field, and it can produce magnetic particles-magnetosomes (MTS) inside bacteria. These MTS has strong sensitivity to magnetic field, hence they can adust the magnetotactic bacteria movement; These MTS size, shape and number has important effect on the interaction energy and efficiency between magnetotactic bacteria and the magnetic field. In fact, some magnetotactic bacteria have been able to adapt to the magnetic field to exist. However, there are some magnetotactic bacteria containing magnetosomes, as they make the magnetic lines curved nearby magnetosome, in order to survive, they must adust the magnetic moment to reduce the magnetostatic energy. Each magnetosome of magnetic bacteria can generate magnetic moment; the total magnetic moment is the sum of moment produced by all the magnetosomes. To make the process of magnetostatic energy minimization Mo[7,8] proposed magnetotactic bacterium optimization algorithm (MBOA) by imitating magnetotactic bacteria producing moment and magnetosomes, In MBOA, the minimum bacteria magnetostatic energy state corresponds to solutions of optimization problems, a cell corresponding to the feasible solution, magnetosomes moment corresponding to decision variable of each cell. The corresponding relation MTB and MBOA is shown in table. Table. The corresponding relation between MTB and MBOA MBOA feasible solution decision variable optimal solution MTB cell magnetosome moment the state of minim magnetostatic energy Copyright 24 SERSC 6

Vol.78 (MulGrab 24) The process that MBOA solving to the problem of optimization corresponds to the process that MTB producing magnetosomes adapting to the earth's magnetic field. MBOA mainly is to get good candidate solution (with smaller magnetostatic energy). By regulating each magnetosome moment. Firstly, the distance between any two cells is computed to achieve the interaction energy between them, and then the moment of each cell is gained. Magnetosomes in MTB is produced based on the interaction energy between cells. By imitating the process, the producing MTS operator of MBOA is designed; After magnetosome formation, they will adust the volume size to obtain a better moment, the process is MTS amplification operator of MBOA; Lastly, worse magnetosome will by replaced which corresponds to MTS replacement of MBOA. MBOA mainly adopts MTS producing, MTS amplification and MTS replacement to generate offspring population, the detail process of MBOA is described in the reference [7]-[8]. 3 Magnetotactic Bacterium Multi-obective Optimization Algorithm (MBMOA) MBMOA mainly adopt the three operator of MBOA to generate the offspring population, and the archive is applied to conserve the non-dominated feasible solutions gained by MBOA, when the size of the archive exceed the fixed size, the evaluation method of individual in SPEA2 is used to delete the individuals with small density value. Based on the merits of MBOA, MBMOA can achieve the optimal solutions set with better convergence and uniform distribution. The process of MBMOA is described as follows: Step: The parameters setting, the size of the population P is N, the size of the archive A is M, the magnetic field strength B, the strength probability mp. Step2: Initialization population P ( X, X 2,, X ), individual X adopts real N i coding and is denoted as X ( x, x,..., x,... x ), where x i i i 2 i il, l r a n d ( u l ) is i the th variable of the individual p, l, u is the upper and lower bounds of adopts i real coding, d is the dimension of decision variable, ra n d is a random number in (,). The archive A and iterative time t. Step3: Rank the individuals in P t and A t by non-dominated relation,the nondominated solutions are conserved in the archive At, if the size of A t is larger than M, compute the nearest neighbor distance of individual in P A, adopt the t t method of SPEA2 to delete the crowding individuals until the size of At is M. Step4: if t g, output A and stop, otherwise go to Step5. max t Step5: Implement MTS producing, MTS amplification and MTS replacement of MBOA[7-8] on A to produce the offspring population B t t. 62 Copyright 24 SERSC

Vol.78 (MulGrab 24) 4 The simulation experiment To evaluate the performance of the algorithm MBMOA, benchmark problems ZDT, ZDT3, ZDT4 and ZDT6 are selected to validate the effectiveness of MBMOA for MOPs;. ZDT has a convex Pareto front and converges easily. ZDT3 has a noncontinuous Pareto front. Both have 3 decision variables. ZDT4 has a highly multimodal Pareto front and a total o9 local Pareto front. ZDT6 has solutions which are non-uniformly distributed. Both of them have decision variables. Those problems are commonly used to test performance of multi-obective optimization algorithms. These test problems can effectively test if multi-obective optimization algorithm can approximate the true Pareto front and maintain good diversity and distribution. In MBMOA, real coding is used. The parameters are set follows: the population size; the archive size, and the maximum generations. To demonstrate the performance of MBMOA, ZDT, ZDT3, ZDT4 and ZDT6 are test. The Pareto fronts gained by MBMOA are shown in Fig, where real line denotes the true Pareto fronts, * denotes the optimal Pareto fronts obtained by the algorithm MBMOA It can be seen that, for different types of test function, all the Pareto fronts gained by MBMOA can approximate the true optimal Pareto front and have good diversity and uniform distribution. Especially for ZDT4 with many local optimal solutions, MBMOA can approximate the true Pareto front which shows MBMOA has better convergence. Given all that, MBMOA is effective for solving MOPs..8.6.4.2.2.4.6.8 f.5 -.5 -.2.4 f.6.8.8.6.4.2 (a)zdt.8.6.4.2 (b) ZDT3.2.4.6.8 f.2.4.6.8 f (c)zdt4 (d) ZDT6 Fig.. Pareto front of ZDT,ZDT3,ZDT4,ZDT6 gained by MBMOA Copyright 24 SERSC 63

Vol.78 (MulGrab 24) 5 Conclusions Based on the excellent performance of MBOA for Simple-obective optimization problem, the paper proposes a new multi-obective optimization algorithm MBMOA. The algorithm MBMOA adopts the real coding and the same fitness evaluation method as SPEA2. After evaluation, the operators of MBOA are applied to generate the next generation population. During the evolution, the non-dominated individuals obtained are conserved in the archive. When the size of the archive exceeds the refined size, archive truncation mechanism of SPEA2 is used to update the archive. Benchmark test results show that the proposed algorithm MBMOA is feasible and effective for MOPs. Acknowledgments: This work is partially supported by Foundation of Heilongiang Province Educational Committee, No.25425, the Young Teacher Natural Science Foundation of Harbin Commerce University, No.HCUL233, the Doctoral Research Fund of Commerce University, No. 92589. References. Schaffer J D: Multiple obective optimization with vector evaluated genetic algorithms. In: Proceeding of the First International Conference on Genetic Algorithms and Their Applications, pp. 93. Lawrence Erlbaum, Hillsdale, New Jersey (985) 2. Deb K, Pratap A, Agarwal S, Meyarivan T: A fast and elitist multi-obective genetic algorithm. NSGA-II. IEEE Trans. on Evolutionary Computation, 6(2):82 97 (22) 3. Fonseca C M, Fleming P J: Genetic algorithm for multiobective optimization: Formulation, discussion and generation. In: Forrest S, ed. Proc. of the 5th Int l Conf. on Genetic Algorithms, pp. 46 423. San Mateo: Morgan Kauffman Publishers (993) 4. Zitzler E, Laumanns M, Thiele L: SPEA2: Improving the strength Pareto evolutionary algorithm. In: Giannakoglou K, Tsahalis DT, Périaux J, Papailiou K D, Fogarty T, eds. Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, pp. 95. Berlin: Springer-Verlag (22) 5. Knowles J D, Corne D W: Approximating the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation, 8(2):49 72 (2) 6. Coello Coello C A, Pulido G T, Lechuga M S: Handing multiple obectives with particle Evolutionary Computations, optimization. IEEE Trans on Evolutionary computation, 8(3): 256-279 (24) 7. Mo H.W: Research on magnetotactic bacteria optimization algorithm. In: The Fifth International Conference on Advanced Computational Intelligence, pp.423-428. Naning, China (22) 8. Mo H.W., Xu L. F: Magnetotactic bacteria optimization algorithm for multimodal optimization. Swarm Intelligence (SIS), IEEE Symposium on, pp. 24-247. Singapore (23) 9. Faivre D, Schuler, D: Magnetotactic bacteria and magnetosomes. Chem. Rev., 8: 4875-4898 (28) 64 Copyright 24 SERSC