Building a profitable wireless network to deliver an exceptional customer experience

Similar documents
Global LTE outlook: forecast, technology, devices and pricing strategies

Carrier WiFi and Small Cells in LTE and Beyond: Market Opportunities and Forecasts

Converging LTE networks

THE GLOBAL M2M/IOT COMMUNICATIONS MARKET

Wireless Network Infrastructure Market (2G, 3G, LTE, WiMAX, WiFi):

Session December 2013 Islamic Republic of Iran

Evolution to 5G from a 4G/LTE World

Building the Business Case for Mobile Broadband The HSPA Evolution Path

LPWA NETWORKS FOR IoT: WORLDWIDE TRENDS AND FORECASTS

Global Mobile Data Forecast, : Still Growing and No Signs of Slowing Market Study First Quarter 2017

CELLULAR M2M DEVICE CONNECTIONS AND REVENUE: WORLDWIDE TRENDS AND FORECASTS

Roadmap for 5G Enhancements to Communication Technology

THE GLOBAL M2M/IOT COMMUNICATIONS MARKET

WIRELESS NETWORK DATA TRAFFIC: WORLDWIDE TRENDS AND FORECASTS

Smartphones for all: reality or fiction?

The Voice over Mobile Broadband (VoMBB) Market:

The future of VoIP. European Summit 2013: Enabling innovation, driving profitability. Stephen Sale. The future of VoIP.

Orange s commitment to RCS

VoLTE // MOVING FROM DELAY TO DEPLOY

ITU Arab Forum on Future Networks: "Broadband Networks in the Era of App Economy", Tunis - Tunisia, Feb. 2017

2018 Interim Result Presentation

Financial Statements for 2000 & Business and Strategy Overview

#ericssonlive Slide title 70 pt CAPITALS Slide subtitle minimum 30 pt

About Vodafone Group Plc. November 2015/ Presenter / Other info

THE NEXT GENERATION OF WIRELESS NETWORKS: 5G OPPORTUNITIES AND CHALLENGES

4G DEVICE AVAILABILITY AND TAKE-UP: CHALLENGES IN EMERGING ASIA PACIFIC

LTE in Industry Verticals: Market Opportunities and Forecasts

The 5G consumer business case. An economic study of enhanced mobile broadband

Tellabs End of Profit study executive summary

About Vodafone Group Plc. August 2017

About Vodafone Group Plc. April 2018

Considerations for VoLTE Implementation

1 INTRODUCTION OBJECTIVES OF THE STUDY MARKET DEFINITION MARKET SCOPE... 15

4G Demystified: The Plain Truth About LTE and WiMAX. Business Planning Considerations

Cost of Ownership: CDMA 2000 Competitive Advantage. Paul Edwards Chairman Starcomms, Nigeria

Spectrum Audit - What does the mobile world look like today?

WHITE PAPER. The 450 MHz Band Ecosystem

CONNECTED CARS: WORLDWIDE TRENDS AND FORECASTS

5G Commercial realization: From standards to deployments

hits top gear Fiber-optic broadband Main Topic

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA technology and deployment status

Managed Network Services. Managing your network to enable your digital business

Network. Gediz SEZGİN CAPITAL MARKETS DAY 2018

Public Consultation on the BEREC Work Programme 2018

FIXED MOBILE CONVERGENCE: A RETAIL PERSPECTIVE

THE WIRELESS ACCESSIBILITY WORKSHOP

NEXT-GENERATION WIRELESS NETWORK INVESTMENT: LTE WILL FILL THE 5G GAP FOR OPERATORS AND VENDORS

The Growth and Evolution of CDMA2000 1xEV-DO

Global Tier 1 5G Deployments and X-Hauling

Build VoLTE Services using NFV & Cloud Reduce complexity and increase RoI

LTE Media Round Table Feb Ulf Ewaldsson Head of Radio & OSS Ericsson AB

COPYRIGHTED MATERIAL. Introduction. Harri Holma and Antti Toskala. 1.1 WCDMA in Third-Generation Systems

About Vodafone Group Plc. November 2018

The Journey to 5G. PhD David Hammarwall Head of Product Line 5G RAN

Alan Hadden, President, GSA. Juliana Pinho Moderadora TelecomWebinar. Global mobile Suppliers Association.

Transforming networks and services for communications service providers

Internet Accessibility Continental Comparison. Marcus Leaning Professor of Digital Media Education University of Winchester U.K.

Presentation to PPC Cost to communicate (2) 7 November 2014

Improving digital infrastructure for a better connected Thailand

WIRELESS NETWORK DATA TRAFFIC: WORLDWIDE TRENDS AND FORECASTS

FORGING A TRUE GLOBAL CONNECTION - BROADBAND PASSES 500 MILLION SUBSCRIBERS

hird Q uarter R eport

Orange. On the road to. Jean Michel SERRE CEO of Orange Japan-Korea

MAXIMIZING THE WIRELESS OPPORTUNITY TO CLOSE THE DIGITAL GAP

Technology Options for Evolution from Existing Mobile Systems to IMT-2000 IMT-2000 Seminar Section 3.2.2

Scope 3 Introduction 3 TD-LTE Overview 4 TD-LTE Market Status 5 Evolution to TD-LTE 6 Why Samsung 7 Conclusion 8

LTE Here and now Technology Services Business

WHITE PAPER. The Economics of 450 MHz Band for the Smart Grid and Smart Metering

World Broadband Statistics: Q Fiona Vanier December 2008


AdMob Mobile Metrics Report

Trends in Global Communications (presentation)

Huawei: China's Leading Equipment Vendor Returns to Growth

About Vodafone Group Plc. June 2018

Mobile Broadband Wireless: Path toward 4G

Mobile Device Trends An analysis of GCF device certifications in 2016

UMTS Forum Operators Group. Operators HSPA experience and path towards LTE. Peter Zidar, M.Sc.

Technology Lifecycle Management Assessment. Know your network - achieve business agility

White Paper. Massive Capacity Can Be Easier with 4G-Optimized Microwave Backhaul

Crucial backhaul economics

Energy Efficiency : Green Telecom

For personal use only

Will 3G Networks Cope?

Nokia Siemens Networks TD-LTE whitepaper

The 13 th Progress Report on the Single European Telecoms Market 2007: Frequently Asked Questions

Huawei 1.9GHz LTE TDD Solutions in China

Mobile broadband technology opportunities in emerging markets

Mobile Backhaul Business Class Ethernet Wave Division Multiplexing Aggregation Switching SERVICE PROVIDER

Excerpt Poland: LTE and Fiber Rollouts to Turn Telecom Market Around, M&A to Continue

Naresh Soni CTO, InterDigital

For personal use only

The importance of RAN to Core validation as networks evolve to support 5G

Trends and Opportunities in the Global Printing Market. Thayer Long President Association for Print Technologies May 2018

Building a Global VoIP Network. Michael Burrell, Senior Manager Orange Business Services. August 22, 2006

Analysys Mason Research Key Themes for 2013

GLOBAL MOBILE PAYMENT METHODS: FIRST HALF 2016

Business Result for the Second Quarter ended September 30, 2017 Regional Market Environments and Projections

END OF YEAR REPORT SPONSORED BY: INSIDE THIS REPORT: 20 Annual survey results : 4G LTE, Wi-Fi, small cells and NFV to the fore

Planning a scalable long-term wireless strategy

Beyond 4G Introduction and LTE evolution

Transcription:

MENA Summit 2013: Enabling innovation, driving profitability Building a profitable wireless network to deliver an exceptional customer experience 6 November 2013 Franck Chevalier EVENT PARTNERS:

2 Operators embracing LTE on a global scale LTE technology advances service options Key factors to consider for LTE network deployment Total cost of ownership analysis Conclusions

LTE is spreading around the world, thanks to flexible spectrum utilisation, and mobile broadband services There were more than 200 million LTE connections worldwide by the end of 2013, accounting for just 3% of mobile connections. Total LTE connections will reach 1.5 billion by 2018. Emerging Asia Pacific is set to become the dominant world LTE market, with its 420 million connections accounting for 27% of LTE connections worldwide by 2018. Only 11% of that region s connections will have migrated to LTE, so there will still be considerable untapped potential for further take-up of LTE in that region. Top 10 countries: number of LTE connections in 2013 Australia 2.1% Nordics 2.4% Japan 12.7% South Korea 21.5% Germany 2.0% UAE 0.1% 2013 Saudi Arabia 0.4% Italy 0.2% USA 57.6% Russia 1.0% 3

LTE is spreading around the world, thanks to flexible spectrum utilisation, and mobile broadband services 4 There were more than 200 million LTE connections worldwide by the end of 2013, accounting for just 3% of mobile connections. Total LTE connections will reach 1.5 billion by 2018. Emerging Asia Pacific is set to become the dominant world LTE market, with its 420 million connections accounting for 27% of LTE connections worldwide by 2018. Only 11% of that region s connections will have migrated to LTE, so there will still be considerable untapped potential for further take-up of LTE in that region. Top 10 countries: number of LTE connections in 2018 South Korea 5% France 5% Russia 5% Germany 5% India 5% UK 5% Japan 12% Brazil 4% 2018 China 24% USA 30%

LTE trials show progress in both emerging and developed regions LTE trials by region LATAM 3% NA DVAP 3% 5% MENA 9% SSA 10% WE 20% CEE 26% EMAP 24% The largest number of LTE network trials are in Central and Eastern Europe (CEE 26), Emerging Asia Pacific (EMAP 24) and Western Europe (20). Trials in CEE and EMAP in particular are driven by the adoption of the technology by regional operators such as Bharti Airtel, China Mobile, Reliance Infotel and SoftBank. Infrastructure vendors including Huawei, Ericsson, NSN, Samsung and ZTE demonstrate network upgrade and transition options. 5 For further details see Analysys Mason s Wireless networks tracker. Available at: www.analysysmason.com/wnt.

Today s FD-LTE deployments and planned networks will provide near-worldwide coverage by 2015 6 Key FD-LTE planned network deployments or trials in progress FD-LTE operational network

North America remains at odds with the rest of the world, and Africa is likely to join the APT700 plan The USA is the single largest 700MHz market in the world, and is incompatible with most of the rest of the world, making it an LTE island. 7 Key APT700 plan adopted APT700 plan recommended NAM700 plan adopted

8 Operators embracing LTE on a global scale LTE technology advances service options Key factors to consider for LTE network deployment Total cost of ownership analysis Conclusions

The LTE-A Releases 10 12 will change the way operators use and manage spectrum for mobile services 9 LTE-A core features: Carrier Aggregation HetNet SON Release 10 initial LTE-A release (available in 2013) CA, Improved network performance and HetNets Release 11 (available 2014) Gigabit download speeds and improved automated management functions Release 12 (available about 2015) Improved operations benefits and technology upgrades

150Mbps LTE service is here, and 300Mbps mobile broadband is within sight 10 SK Telecom and LG Uplus launched LTE-A CA services in 2013. SK Telecom: largest commercial launch initiated with 150Mbps speeds and about 250 000 subscribers at September 2013. Telstra: trialled 900MHz and 1800MHz in July 2013, but will use will use larger blocks of 700MHz and 1.8GHz spectrum to deliver 300Mbps download speeds for commercial launch in 2015. Philippines operator Smart Communications trials showing speeds of over 210Mbps. Country Operator Maximum download speeds (Mbps) Australia Telstra 300 (expected) Austria A1 Telekom Austria 580 (trial) China China Mobile 233 (TD-LTE) Japan DoCoMo 300 (expected) Philippines Smart 210 Portugal Optimus 300 Russia Yota 300 South Africa Telkom Mobile (8ta) South Korea Turkey USA SK Telecom LG Uplus Turkcell AT&T, T-Mobile, Verizon 210 (TD-LTE) 150 150 900 (lab) 150 150 (expected)

VoLTE has limited market penetration in 2013, hampered by slow network deployments, and technical concerns 11 Date Event Feb 2011 Verizon Wireless completes first VoLTE Call Aug 2012 SK Telecom deploys first HD VoLTE service LG Uplus launches VoLTE service Aug 2012 MetroPCS (US) launches limited VoLTE service Oct 2012 Korea Telecom launches VoLTE Apr 2013 EE (UK) announces network upgrades to provide support for new services, including VoLTE May 2013 Mobily (Saudi Arabia) completes VoLTE trials Jul 2013 Bharti Airtel (India) requests permission to trial VoLTE 1Q 2014 O2 Germany to demo VoLTE 4Q 2014 China Mobile to launch VoLTE

12 Operators embracing LTE on a global scale LTE technology advances service options Key factors to consider for LTE network deployment Total cost of ownership analysis Conclusions

When implementing an LTE network, mobile network operators have two key deployment strategy choices As demonstrated in the first part of the presentation, LTE is becoming the technology of choice to provide mobile broadband. Before deploying LTE, operators have to formulate a commercial and technical strategy that aims to maximise revenue and minimise costs as well as meeting subscribers performance expectations. Typically, an established mobile operator has multiple access networks (for example, 2G and 3G) and needs to take a holistic view of its legacy multitechnology network to exploit all synergies to identify the optimum LTE deployment solution. There are two key network strategies to consider when introducing LTE: LTE overlay single radio access network (SRAN). 13

14 LTE overlay or single RAN An LTE overlay requires deploying a separate LTE radio access network (RAN) in addition to any legacy 2G and 3G RAN and core networks. An SRAN strategy involves installing a single base station unit that provides both the functionality of a new LTE base station and replaces legacy 2G and 3G base stations. SRAN is rapidly becoming the norm for example, 51% of Vodafone s European sites have already been upgraded to SRAN (as of March 2013), increasing to 80% of the sites by 2015. 1 Overlay LTE deployment GSM Base station Existing Single RAN deployment UMTS Node B New Single RAN Base station (GSM+UMTS+LTE) New LTE enodeb 1 XX Santander Banking & Markets TMT Conference, Anthony Hamilton, Madrid, 19 20 June 2013.

The life-cycle of the 2G network plays an important part in determining the optimum LTE deployment strategy Many legacy 2G RANs are at end-of-life and vendors no longer support them commercially. Maintaining a legacy 2G RAN involves a tailored vendor maintenance contract, which can be very expensive. Operators typically hold spares stock for legacy 2G networks, but these become depleted over time. Additional spare parts are available on the grey market, but the quality and volumes cannot be assured. Reasons why 2G will still exist for several years Terminal is affordable Is well-suited for voice services Is well-suited to low-end users Is required to support roamers Is well-suited to M2M applications In Europe, the GSM switch-off will occur between 2019 and 2025, depending on country and operator strategy, for the reasons cited above. However, there is a requirement to extend the lifetime of 2G networks to provide voice service support for LTE networks. 15

16 The benefits of LTE overlay versus SRAN are well documented, but there is little regarding cost implications Operational benefits LTE overlay Fast time to market Low network disruption Single RAN Single access network to manage Cell site simplification 2G and 3G life extended Technology flexibility Operational challenges Multiple access network to manage Single vendor dependence Significant implementation risk Cost benefits Lower capex? Lower opex? Analysys Mason has developed TCO models to quantify the capex and opex associated with each solution.

17 Operators embracing LTE on a global scale LTE technology advances service options Key factors to consider for LTE network deployment Total cost of ownership analysis Conclusions

We consider three different scenarios to compare the TCO of LTE overlay versus Single RAN deployment A European incumbent fixed and mobile operator with significant 2G, 3G and fixed broadband coverage needed to understand the TCO associated with different LTE deployment strategies in order to make an informed investment decision. To compare the TCO associated with different LTE deployment strategies, we considered three different LTE deployment scenarios. 18 Description 2G 3G 2G/3G core Base case Overlay LTE Keep legacy 2G RAN Keep legacy 3G RAN Keep 2G/3G core Scenario 1 Overlay LTE and 2G refresh New 2G RAN Keep legacy 3G RAN Keep 2G/3G core Scenario 2 Single RAN New 2G New 3G New core

We analyse the capex and opex associated with both new LTE networks and existing 2G/3G networks 19 Capital expenditure RAN equipment (LTE, 2G, 3G) Core equipment Backhaul network Support services (such as installation, optimisation and so on) Cost of change (such as additional staff required for implementation of LTE) Operational expenditure Existing network vendor maintenance (2G, 3G) LTE network vendor maintenance Existing infrastructure running costs (such as power, site rental and operational personnel) Incremental infrastructure running costs (such as power, site rental and operational personnel) Other opex

Percentage of base case capex Building a profitable wireless network to deliver an exceptional customer experience 20 The capex associated with an SRAN is lower than an equivalent solution that requires a new 2G network Capex associated with: Capex comparison scenario 1 is 40% higher than the base case because of the refresh of the 2G RAN network. scenario 2 is 31% higher than the base case because of the refresh of 2G and 3G RANs as well as the replacement of 2G/3G core network. Deploying a 3G network using an SRAN solution is very cost effective. 140% 120% 100% 80% 60% 40% 20% 7% 17% 21% 24% 11% 23% 28% 17% 23% 34% 29% 17% 13% 13% 9% 30% 28% 27% Installation and integration services associated with single RAN solution are less expensive than service associated with LTE overlay solution because less integration is required. 0% Base case: overlay LTE LTE RAN 3G RAN RAN services Scenario 1: overlay LTE and 2G RAN Scenario 2: SRAN 2G RAN Core network Core services Cost of change

Percentage of base case opex Building a profitable wireless network to deliver an exceptional customer experience however, the opex associated with SRAN is 32% lower than that associated with an overlay solution 1 21 Opex associated with scenario 2 is 32% lower than for scenario 1, and 28% lower than for the base case. Main opex savings are associated with vendor maintenance contracts. More cost-effective to have a single maintenance contract for an SRAN. SRAN removes the requirement for premium-priced legacy 2G and 3G maintenance contracts. Second opex saving: support staff. Fewer staff needed to operate and maintain an SRAN than individual 2G, 3G and LTE networks. 1 Assuming a refresh of the 2G network. 5-year opex comparison 120% 100% 80% 60% 40% 20% 0% 23% 9% 16% 25% 10% 16% 52% 55% Base case: overlay LTE Vendor maintenance Power consumption Scenario 1: overlay LTE and 2G RAN 28% 32% Site rental 18% 5% 14% 34% Scenario 2: SRAN Support staff

Percentage of base case TCO Building a profitable wireless network to deliver an exceptional customer experience resulting in an SRAN TCO that is 21% lower than that of an equivalent overlay solution 1 TCO for scenario 2 is 21% lower than that for scenario 1, and 10% lower than base case. Opex savings offset additional capex required to deploy the new 2G and 3G networks over 5 years. Opex savings for the SRAN are mainly driven by: single rather than multiple maintenance contracts no need for premium-priced support of end-of-life equipment reduction in the number of support staff. 5-year TCO comparison 120% 100% 80% 60% 40% 20% 0% 68% 32% Base case: overlay LTE 72% 49% 45% 41% Scenario 1: overlay LTE and 2G RAN 10% Scenario 2: SRAN 22 21% 1 Assuming a refresh of the 2G network. Capex Opex

23 Operators embracing LTE on a global scale LTE technology advances service options Key factors to consider for LTE network deployment Total cost of ownership analysis Conclusions

24 Conclusion The regional influence on the LTE ecosystem will change during the next 5 years as Emerging Asia Pacific countries build their LTE networks. LTE is the technology of choice for multi-spectrum networks. VoLTE will continue to lag during the next 5 years, making LTE a technology suitable to primarily deliver data services. In terms of deployment strategy, the SRAN solution attracts the lowest TCO compared with LTE overlay network for the considered case study. However, for cost savings to materialise, SRAN solutions have to be implemented in a big bang approach, which can be challenging for operational teams. Each operator will have a unique starting point in terms of market conditions and cost base that may dictate a different LTE strategy.

25 Thank you for your attention. Any questions? Franck Chevalier Manager franck.chevalier@analysysmason.com