Ant Colony Optimization and its Application to Adaptive Routing in Telecommunication Networks

Similar documents
Ant Colony Optimization and its Application to Adaptive Routing in Telecommunication Networks

ANT COLONY OPTIMIZED ROUTING FOR MOBILE ADHOC NETWORKS (MANET)

Bee-Inspired Protocol Engineering

Adhoc Network Routing Optimization and Performance Analysis of ACO Based Routing Protocol

Contents Introduction A Comprehensive Survey of Nature-Inspired Routing Protocols

[Jagtap*, 5 (4): April, 2016] ISSN: (I2OR), Publication Impact Factor: 3.785

Ant Colony Optimization

Network routing problem-a simulation environment using Intelligent technique

The Ant Colony Optimization Meta-Heuristic 1

SWARM INTELLIGENCE -I

LECTURE 20: SWARM INTELLIGENCE 6 / ANT COLONY OPTIMIZATION 2

International Journal of Advancements in Research & Technology, Volume 2, Issue 9, September-2013 SN

Swarm Intelligence (Ant Colony Optimization)

ACO and other (meta)heuristics for CO

Performance evaluation of AODV, DSDV and AntHocNet in video transmission

Self-Organization Swarm Intelligence

A Review: Optimization of Energy in Wireless Sensor Networks

Ant Colony Optimization for dynamic Traveling Salesman Problems

Solving the Traveling Salesman Problem using Reinforced Ant Colony Optimization techniques

The Ant Colony Optimization Metaheuristic: Algorithms, Applications, and Advances

Ant Algorithms. Simulated Ant Colonies for Optimization Problems. Daniel Bauer July 6, 2006

International Journal of Current Trends in Engineering & Technology Volume: 02, Issue: 01 (JAN-FAB 2016)

QUERY LOCALIZATION USING PHEROMONE TRAILS: A SWARM INTELLIGENCE INSPIRED APPROACH. Nupur Kothari, Vartika Bhandari and Dheeraj Sanghi

A Quality of Service Routing Scheme for Packet Switched Networks based on Ant Colony Behavior

IMPLEMENTATION OF ACO ALGORITHM FOR EDGE DETECTION AND SORTING SALESMAN PROBLEM

An Ant Approach to the Flow Shop Problem

International Journal of Advanced Research Trends in Engineering and Technology (IJARTET) Vol. 4, Issue 8, August 2017

A heuristic approach to find the global optimum of function

Coupling Ant Colony System with Local Search

A Swarm-based Distance Vector Routing to Support Multiple Quality of Service (QoS) Metrics in Mobile Adhoc Networks

Ant Colonies, Self-Organizing Maps, and A Hybrid Classification Model

Intuitionistic Fuzzy Estimations of the Ant Colony Optimization

Routing in Dynamic Network using Ants and Genetic Algorithm

Ant Colony Optimization: Overview and Recent Advances

TWO ANT COLONY ALGORITHMS FOR BEST-EFFORT ROUTING IN DATAGRAM NETWORKS

ANALYSIS OF ANTHOCNET AND AODV PERFORMANCE USING NS2

Ant Colony Optimization

Image Edge Detection Using Ant Colony Optimization

Navigation of Multiple Mobile Robots Using Swarm Intelligence

Hierarchical routing in traffic networks

Ant Colony Optimization: Overview and Recent Advances

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

Research Article International Journals of Advanced Research in Computer Science and Software Engineering ISSN: X (Volume-7, Issue-6)

Ant Algorithms for Discrete Optimization

ACO for Maximal Constraint Satisfaction Problems

Solving Travelling Salesmen Problem using Ant Colony Optimization Algorithm

Ant Algorithms for Discrete Optimization

Ant Algorithms for Discrete Optimization

Modified Greedy Methodology to Solve Travelling Salesperson Problem Using Ant Colony Optimization and Comfort Factor

RELEVANCE OF ARTIFICIAL BEE COLONY ALGORITHM OVER OTHER SWARM INTELLIGENCE ALGORITHMS

ENHANCED BEE COLONY ALGORITHM FOR SOLVING TRAVELLING SALESPERSON PROBLEM

An Ant Colony Optimization approach to solve Travelling Salesman Problem

Dynamic Routing and Wavelength Assignment in WDM Networks with Ant-Based Agents

First approach to solve linear system of equations by using Ant Colony Optimization

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

Self-Organization in Sensor and Actor Networks

CT79 SOFT COMPUTING ALCCS-FEB 2014

A Study on Association Rule Mining Using ACO Algorithm for Generating Optimized ResultSet

Solving a combinatorial problem using a local optimization in ant based system

MIRROR SITE ORGANIZATION ON PACKET SWITCHED NETWORKS USING A SOCIAL INSECT METAPHOR

PERFORMANCE ANALYSIS OF QUALITY OF SERVICE ENABLED TEMPORALLY ORDERED ROUTING ALGORITHM USING ANT COLONY OPTIMIZATION IN MOBILE AD HOC NETWORKS

Ant Algorithms for the University Course Timetabling Problem with Regard to the State-of-the-Art

Ant Colony Optimization based Hybrid Routing Protocol for MANETs 1

Ant Colony Optimization: The Traveling Salesman Problem

Hybrid Ant Colony Optimization and Cuckoo Search Algorithm for Travelling Salesman Problem

Review on Ant Colony Optimization Routing Algorithms in MANETs

MANET routing protocols based on swarm intelligence

AntHocNet: an Ant-Based Hybrid Routing Algorithm for Mobile Ad Hoc Networks

An adaptive multi-agent routing algorithm inspired by ants behavior

METAHEURISTICS. Introduction. Introduction. Nature of metaheuristics. Local improvement procedure. Example: objective function

Université Libre de Bruxelles

Parallel Implementation of Travelling Salesman Problem using Ant Colony Optimization

Abstract. Keywords 1 Introduction 2 The MAX-W-SAT Problem

Ahadjitse, Yaovi(1) Mohamed Shawky(2) (1)Université du Québec en Outaouais, Gatineau, Canada (2) Universitéde Technologiede Compiégne, France

Hybrid Bee Ant Colony Algorithm for Effective Load Balancing And Job Scheduling In Cloud Computing

Information Sciences

Preface MOTIVATION ORGANIZATION OF THE BOOK. Section 1: Basic Concepts of Graph Theory

Scalability of a parallel implementation of ant colony optimization

Ant Colony Optimization: A Component-Wise Overview

Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem

A New Algorithm for the Distributed RWA Problem in WDM Networks Using Ant Colony Optimization

IMPLEMENTATION OF OPTIMIZED ANT BASED ROUTING ALGORITHM FOR MANET

Optimization of Ant based Cluster Head Election Algorithm in Wireless Sensor Networks

A SURVEY ON ANT SYSTEM BASED MULTICAST ROUTING IN MOBILE AD HOC NETWORKS

A New Approach to Ant Colony to Load Balancing in Cloud Computing Environment

Automated Selection of Appropriate Pheromone Representations in Ant Colony Optimisation

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

Parallel Implementation of the Max_Min Ant System for the Travelling Salesman Problem on GPU

SWARM INTELLIGENCE BASED DYNAMIC SOURCE ROUTING FOR IMPROVED QUALITY OF SERVICE

An Experimental Study of the Simple Ant Colony Optimization Algorithm

ISSN: (Online) Volume 3, Issue 6, June 2015 International Journal of Advance Research in Computer Science and Management Studies

Ant Colony Optimization: A New Meta-Heuristic

Routing Problem: MANET And Ant Colony Algorithm

Ant Colony Optimization (ACO) For The Traveling Salesman Problem (TSP) Using Partitioning

Ant colonies for Adaptive Routing in Packet-switched Communications Networks

A combination of clustering algorithms with Ant Colony Optimization for large clustered Euclidean Travelling Salesman Problem

ABSTRACT DYNAMIC ADAPTIVE ROUTING IN MOBILE AD HOC NETWORKS. Department of Electrical Engineering

Structural Advantages for Ant Colony Optimisation Inherent in Permutation Scheduling Problems

Ant Colony based Routing for Mobile Ad-Hoc Networks towards Improved Quality of Services

Update Vehicle Traffic Routing Using Ant Colony Optimization Algorithm

Transcription:

UNIVERSITÉ LIBRE DE BRUXELLES FACULTÉ DES SCIENCES APPLIQUÉES Ant Colony Optimization and its Application to Adaptive Routing in Telecommunication Networks Gianni Di Caro Dissertation présentée en vue de l obtention du grade de Docteur en Sciences Appliquées Bruxelles, September 2004 PROMOTEUR: PROF. MARCO DORIGO IRIDIA, Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle ANNÉE ACADÉMIQUE 2003-2004

Abstract In ant societies, and, more in general, in insect societies, the activities of the individuals, as well as of the society as a whole, are not regulated by any explicit form of centralized control. On the other hand, adaptive and robust behaviors transcending the behavioral repertoire of the single individual can be easily observed at society level. These complex global behaviors are the result of self-organizing dynamics driven by local interactions and communications among a number of relatively simple individuals. The simultaneous presence of these and other fascinating and unique characteristics have made ant societies an attractive and inspiring model for building new algorithms and new multi-agent systems. In the last decade, ant societies have been taken as a reference for an ever growing body of scientific work, mostly in the fields of robotics, operations research, and telecommunications. Among the different works inspired by ant colonies, the Ant Colony Optimization metaheuristic (ACO) is probably the most successful and popular one. The ACO metaheuristic is a multi-agent framework for combinatorial optimization whose main components are: a set of ant-like agents, the use of memory and of stochastic decisions, and strategies of collective and distributed learning. It finds its roots in the experimental observation of a specific foraging behavior of some ant colonies that, under appropriate conditions, are able to select the shortest path among few possible paths connecting their nest to a food site. The pheromone, a volatile chemical substance laid on the ground by the ants while walking and affecting in turn their moving decisions according to its local intensity, is the mediator of this behavior. All the elements playing an essential role in the ant colony foraging behavior were understood, thoroughly reverse-engineered and put to work to solve problems of combinatorial optimization by Marco Dorigo and his co-workers at the beginning of the 1990 s. From that moment on it has been a flourishing of new combinatorial optimization algorithms designed after the first algorithms of Dorigo s et al., and of related scientific events. In 1999 the ACO metaheuristic was defined by Dorigo, Di Caro and Gambardella with the purpose of providing a common framework for describing and analyzing all these algorithms inspired by the same ant colony behavior and by the same common process of reverse-engineering of this behavior. Therefore, the ACO metaheuristic was defined a posteriori, as the result of a synthesis effort effectuated on the study of the characteristics of all these ant-inspired algorithms and on the abstraction of their common traits. The ACO s synthesis was also motivated by the usually good performance shown by the algorithms (e.g., for several important combinatorial problems like the quadratic assignment, vehicle routing and job shop scheduling, ACO implementations have outperformed state-of-the-art algorithms). The definition and study of the ACO metaheuristic is one of the two fundamental goals of the thesis. The other one, strictly related to this former one, consists in the design, implementation, and testing of ACO instances for problems of adaptive routing in telecommunication networks. This thesis is an in-depth journey through the ACO metaheuristic, during which we have (re)defined ACO and tried to get a clear understanding of its potentialities, limits, and relationships with other frameworks and with its biological background. The thesis takes into account all the developments that have followed the original 1999 s definition, and provides a formal and comprehensive systematization of the subject, as well as an up-to-date and quite comprehensive review of current applications. We have also identified in dynamic problems in telecommuni-

cation networks the most appropriate domain of application for the ACO ideas. According to this understanding, in the most applicative part of the thesis we have focused on problems of adaptive routing in networks and we have developed and tested four new algorithms. Adopting an original point of view with respect to the way ACO was firstly defined (but maintaining full conceptual and terminological consistency), ACO is here defined and mainly discussed in the terms of sequential decision processes and Monte Carlo sampling and learning. More precisely, ACO is characterized as a policy search strategy aimed at learning the distributed parameters (called pheromone variables in accordance with the biological metaphor) of the stochastic decision policy which is used by so-called ant agents to generate solutions. Each ant represents in practice an independent sequential decision process aimed at constructing a possibly feasible solution for the optimization problem at hand by using only information local to the decision step. Ants are repeatedly and concurrently generated in order to sample the solution set according to the current policy. The outcomes of the generated solutions are used to partially evaluate the current policy, spot the most promising search areas, and update the policy parameters in order to possibly focus the search in those promising areas while keeping a satisfactory level of overall exploration. This way of looking at ACO has facilitated to disclose the strict relationships between ACO and other well-known frameworks, like dynamic programming, Markov and non-markov decision processes, and reinforcement learning. In turn, this has favored reasoning on the general properties of ACO in terms of amount of complete state information which is used by the ACO s ants to take optimized decisions and to encode in pheromone variables memory of both the decisions that belonged to the sampled solutions and their quality. The ACO s biological context of inspiration is fully acknowledged in the thesis. We report with extensive discussions on the shortest path behaviors of ant colonies and on the identification and analysis of the few nonlinear dynamics that are at the very core of self-organized behaviors in both the ants and other societal organizations. We discuss these dynamics in the general framework of stigmergic modeling, based on asynchronous environment-mediated communication protocols, and (pheromone) variables priming coordinated responses of a number of cheap and concurrent agents. The second half of the thesis is devoted to the study of the application of ACO to problems of online routing in telecommunication networks. This class of problems has been identified in the thesis as the most appropriate for the application of the multi-agent, distributed, and adaptive nature of the ACO architecture. Four novel ACO algorithms for problems of adaptive routing in telecommunication networks are throughly described. The four algorithms cover a wide spectrum of possible types of network: two of them deliver best-effort traffic in wired IP networks, one is intended for quality-of-service (QoS) traffic in ATM networks, and the fourth is for best-effort traffic in mobile ad hoc networks. The two algorithms for wired IP networks have been extensively tested by simulation studies and compared to state-of-the-art algorithms for a wide set of reference scenarios. The algorithm for mobile ad hoc networks is still under development, but quite extensive results and comparisons with a popular state-of-the-art algorithm are reported. No results are reported for the algorithm for QoS, which has not been fully tested. The observed experimental performance is excellent, especially for the case of wired IP networks: our algorithms always perform comparably or much better than the state-of-the-art competitors. In the thesis we try to understand the rationale behind the brilliant performance obtained and the good level of popularity reached by our algorithms. More in general, we discuss the reasons of the general efficacy of the ACO approach for network routing problems compared to the characteristics of more classical approaches. Moving further, we also informally define Ant Colony Routing (ACR), a multi-agent framework explicitly integrating learning components into the ACO s design in order to define a general and in a sense futuristic architecture for autonomic network control. Most of the material of the thesis comes from a re-elaboration of material co-authored and published in a number of books, journal papers, conference proceedings, and technical reports. The detailed list of references is provided in the Introduction.

Contents List of Figures List of Tables List of Algorithms List of Examples List of Abbreviations xii xiii xv xvii xix 1 Introduction 1 1.1 Goals and scientific contributions............................. 4 1.1.1 General goals of the thesis............................. 4 1.1.2 Theoretical and practical relevance of the thesis goals............. 6 1.1.3 General scientific contributions.......................... 8 1.2 Organization and published sources of the thesis.................... 10 1.3 ACO in a nutshell: a preliminary and informal definition............... 17 I From real ant colonies to the Ant Colony Optimization metaheuristic 21 2 Ant colonies, the biological roots of Ant Colony Optimization 23 2.1 Ants colonies can find shortest paths........................... 24 2.2 Shortest paths as the result of a synergy of ingredients................. 27 2.3 Robustness, adaptivity, and self-organization properties................ 30 2.4 Modeling ant colony behaviors using stigmergy: the ant way............. 31 2.5 Summary........................................... 34 3 Combinatorial optimization, construction methods, and decision processes 37 3.1 Combinatorial optimization problems.......................... 39 3.1.1 Solution components................................ 43 3.1.2 Characteristics of problem representations................... 44 3.2 Construction methods for combinatorial optimization................. 46 3.2.1 Strategies for component inclusion and feasibility issues........... 49 3.2.2 Appropriate domains of application for construction methods........ 51 3.3 Construction processes as sequential decision processes................ 52 3.3.1 Optimal control and the state of a construction/decision process...... 54 3.3.2 State graph..................................... 56 3.3.3 Construction graph................................. 61 3.3.4 The general framework of Markov decision processes............. 67 3.3.5 Generic non-markov processes and the notion of phantasma......... 72

viii CONTENTS 3.4 Strategies for solving optimization problems...................... 75 3.4.1 General characteristics of optimization strategies............... 76 3.4.2 Dynamic programming and the use of state-value functions......... 80 3.4.3 Approximate value functions........................... 87 3.4.4 The policy search approach............................ 88 3.5 Summary........................................... 92 4 The Ant Colony Optimization Metaheuristic (ACO) 95 4.1 Definition of the ACO metaheuristic........................... 97 4.1.1 Problem representation and pheromone model exploited by ants...... 98 4.1.1.1 State graph and solution feasibility.................. 98 4.1.1.2 Pheromone graph and solution quality................ 99 4.1.2 Behavior of the ant-like agents.......................... 102 4.1.3 Behavior of the metaheuristic at the level of the colony............ 107 4.1.3.1 Scheduling of the actions........................ 108 4.1.3.2 Pheromone management........................ 110 4.1.3.3 Daemon actions............................. 112 4.2 Ant System: the first ACO algorithm........................... 112 4.3 Discussion on general ACO s characteristics...................... 115 4.3.1 Optimization by using memory and learning.................. 115 4.3.2 Strategies for pheromone updating........................ 122 4.3.3 Shortest paths and implicit/explicit solution evaluation........... 126 4.4 Revised definitions for the pheromone model and the ant-routing table....... 128 4.4.1 Limits of the original definition.......................... 128 4.4.2 New definitions to use more and better pheromone information....... 129 4.5 Summary........................................... 134 5 Application of ACO to combinatorial optimization problems 137 5.1 ACO algorithms for problems that can be solved in centralized way......... 140 5.1.1 Traveling salesman problems........................... 140 5.1.2 Quadratic assignment problems......................... 147 5.1.3 Scheduling problems................................ 149 5.1.4 Vehicle routing problems............................. 151 5.1.5 Sequential ordering problems........................... 153 5.1.6 Shortest common supersequence problems................... 154 5.1.7 Graph coloring and frequency assignment problems............. 154 5.1.8 Bin packing and multi-knapsack problems................... 156 5.1.9 Constraint satisfaction problems......................... 157 5.2 Parallel models and implementations.......................... 158 5.3 Related approaches..................................... 160 5.4 Summary........................................... 166 II Application of ACO to problems of adaptive routing in telecommunication networks 169 6 Routing in telecommunication networks 171 6.1 Routing: Definition and characteristics.......................... 172 6.2 Classification of routing algorithms............................ 174 6.2.1 Control architecture: centralized vs. distributed................ 175 6.2.2 Routing tables: static vs. dynamic........................ 175

CONTENTS ix 6.2.3 Optimization criteria: optimal vs. shortest paths................ 177 6.2.4 Load distribution: single vs. multiple paths................... 177 6.3 Metrics for performance evaluation............................ 181 6.4 Main routing paradigms: Optimal and shortest path routing............. 182 6.4.1 Optimal routing................................... 182 6.4.2 Shortest path routing................................ 183 6.4.2.1 Distance-vector algorithms....................... 184 6.4.2.2 Link-state algorithms.......................... 187 6.4.3 Collective and individual rationality in optimal and shortest path routing. 190 6.5 An historical glance at the routing on the Internet................... 192 6.6 Summary........................................... 194 7 ACO algorithms for adaptive routing 197 7.1 AntNet: traffic-adaptive multipath routing for best-effort IP networks....... 200 7.1.1 The communication network model....................... 202 7.1.2 Data structures maintained at the nodes..................... 205 7.1.3 Description of the algorithm........................... 208 7.1.3.1 Proactive ant generation........................ 208 7.1.3.2 Storing information during the forward phase............ 210 7.1.3.3 Routing decision policy adopted by forward ants.......... 210 7.1.3.4 Avoiding loops.............................. 212 7.1.3.5 Forward ants change into backward ants and retrace the path... 213 7.1.3.6 Updating of routing tables and statistical traffic models...... 214 7.1.3.7 Updates of all the sub-paths composing the forward path..... 219 7.1.3.8 A complete example and pseudo-code description......... 221 7.1.4 A critical issue: how to measure the relative goodness of a path?...... 221 7.1.4.1 Constant reinforcements........................ 223 7.1.4.2 Adaptive reinforcements........................ 224 7.2 AntNet-FA: improving AntNet using faster ants.................... 226 7.3 Ant Colony Routing (ACR): a framework for autonomic network routing..... 228 7.3.1 The architecture................................... 231 7.3.1.1 Node managers............................. 232 7.3.1.2 Active perceptions and effectors.................... 237 7.3.2 Two additional examples of Ant Colony Routing algorithms......... 238 7.3.2.1 AntNet+SELA: QoS routing in ATM networks............ 239 7.3.2.2 AntHocNet: routing in mobile ad hoc networks........... 242 7.4 Related work on ant-inspired algorithms for routing.................. 245 7.5 Summary........................................... 254 8 Experimental results for ACO routing algorithms 257 8.1 Experimental settings.................................... 258 8.1.1 Topology and physical properties of the networks............... 259 8.1.2 Traffic patterns................................... 261 8.1.3 Performance metrics................................ 262 8.2 Routing algorithms used for comparison........................ 263 8.2.1 Parameter values.................................. 265 8.3 Results for AntNet and AntNet-FA............................ 266 8.3.1 SimpleNet...................................... 267 8.3.2 NSFNET....................................... 268 8.3.3 NTTnet........................................ 270

x CONTENTS 8.3.4 6x6Net........................................ 274 8.3.5 Larger randomly generated networks...................... 274 8.3.6 Routing overhead.................................. 276 8.3.7 Sensitivity of AntNet to the ant launching rate................. 277 8.3.8 Efficacy of adaptive path evaluation in AntNet................. 278 8.4 Experimental settings and results for AntHocNet.................... 278 8.5 Discussion of the results.................................. 282 8.6 Summary........................................... 287 III Conclusions 289 9 Conclusions and future work 291 9.1 Summary........................................... 291 9.2 General conclusions..................................... 293 9.3 Summary of contributions................................. 297 9.4 Ideas for future work.................................... 301 Appendices A Definition of mentioned combinatorial problems 305 B Modification methods and their relationships with construction methods 309 C Observable and partially observable Markov decision processes 313 C.1 Markov decision processes (MDP)............................ 313 C.2 Partially observable Markov decision processes (POMDP).............. 314 D Monte Carlo statistical methods 317 E Reinforcement learning 319 F Classification of telecommunication networks 321 F.1 Transmission technology.................................. 321 F.2 Switching techniques.................................... 322 F.3 Layered architectures.................................... 323 F.4 Forwarding mechanisms.................................. 325 F.5 Delivered services...................................... 327 Bibliography 328