Music/Voice Separation using the Similarity Matrix. Zafar Rafii & Bryan Pardo

Similar documents
Subspace clustering. Clustering. Fundamental to all clustering techniques is the choice of distance measure between data points;

Structural Analysis of Musical Signals for Indexing and Thumbnailing

Fuzzy Filtering Algorithms for Image Processing: Performance Evaluation of Various Approaches

Reducing Frame Rate for Object Tracking

Parallelism for Nested Loops with Non-uniform and Flow Dependences

Content Based Image Retrieval Using 2-D Discrete Wavelet with Texture Feature with Different Classifiers

Outline. Self-Organizing Maps (SOM) US Hebbian Learning, Cntd. The learning rule is Hebbian like:

Outline. Type of Machine Learning. Examples of Application. Unsupervised Learning

Unsupervised Learning

Modeling Inter-cluster and Intra-cluster Discrimination Among Triphones

Tsinghua University at TAC 2009: Summarizing Multi-documents by Information Distance

SIGGRAPH Interactive Image Cutout. Interactive Graph Cut. Interactive Graph Cut. Interactive Graph Cut. Hard Constraints. Lazy Snapping.

Image Representation & Visualization Basic Imaging Algorithms Shape Representation and Analysis. outline

Hierarchical clustering for gene expression data analysis

A B-Snake Model Using Statistical and Geometric Information - Applications to Medical Images

Feature Extraction and Test Algorithm for Speaker Verification

Extraction of Uncorrelated Sparse Sources from Signal Mixtures using a. Clustering Method

A PATTERN RECOGNITION APPROACH TO IMAGE SEGMENTATION

Term Weighting Classification System Using the Chi-square Statistic for the Classification Subtask at NTCIR-6 Patent Retrieval Task

Real-time interactive applications

A Modified Median Filter for the Removal of Impulse Noise Based on the Support Vector Machines

Improvement of Spatial Resolution Using BlockMatching Based Motion Estimation and Frame. Integration

Discriminative Dictionary Learning with Pairwise Constraints

COMPARISON OF ENHANCED SCHEMES FOR AUDIO CLASSIFICATION

Automatic Control of a Digital Reverberation Effect using Hybrid Models

PCA Based Gait Segmentation

Video Classification and Retrieval with the Informedia Digital Video Library System

A Gradient Difference based Technique for Video Text Detection

Lecture 13: High-dimensional Images

SECOND FIDDLE IS IMPORTANT TOO: PITCH TRACKING INDIVIDUAL VOICES IN POLYPHONIC MUSIC

A Gradient Difference based Technique for Video Text Detection

Positive Semi-definite Programming Localization in Wireless Sensor Networks

Comparative Study of Techniques to minimize packet loss in VoIP Shveni P Mehta

Unsupervised Learning and Clustering

Determining the Optimal Bandwidth Based on Multi-criterion Fusion

Query Clustering Using a Hybrid Query Similarity Measure

Research Article GPU Acceleration of Melody Accurate Matching in Query-by-Humming

Audio Event Detection and classification using extended R-FCN Approach. Kaiwu Wang, Liping Yang, Bin Yang

A NEW AUDIO WATERMARKING METHOD BASED

Programming in Fortran 90 : 2017/2018

High resolution 3D Tau-p transform by matching pursuit Weiping Cao* and Warren S. Ross, Shearwater GeoServices

Keyword-based Document Clustering

Progressive Filtering Using Multiresolution Histograms for Query by Humming System

Classification of Face Images Based on Gender using Dimensionality Reduction Techniques and SVM

Hybrid Non-Blind Color Image Watermarking

AN EFFICIENT ALGORITHM FOR REAL-TIME SPECTROGRAM INVERSION. Gerald T. Beauregard Xinglei Zhu Lonce Wyse. Research, Singapore

Learning the Kernel Parameters in Kernel Minimum Distance Classifier

Key-Selective Patchwork Method for Audio Watermarking

Conditional Speculative Decimal Addition*

Quantization Noise Power Injection In Subband Audio Coding Using Low Selectivity Filter Banks

Fuzzy C-Means Initialized by Fixed Threshold Clustering for Improving Image Retrieval

A Fast Content-Based Multimedia Retrieval Technique Using Compressed Data

Separation of Image Sources Using AMMCA Algorithm

A Binarization Algorithm specialized on Document Images and Photos

Brushlet Features for Texture Image Retrieval

A Novel Video Retrieval Method Based on Web Community Extraction Using Features of Video Materials

A Webpage Similarity Measure for Web Sessions Clustering Using Sequence Alignment

Universität Augsburg. Institut für Informatik. PLSA on Large Scale Image Databases. Rainer Lienhart and Malcolm Slaney.

LECTURE : MANIFOLD LEARNING

Related-Mode Attacks on CTR Encryption Mode

KEYWORDS: Digital Image Watermarking, Discrete Wavelet Transform, General Regression Neural Network, Human Visual System. 1.

A New Token Allocation Algorithm for TCP Traffic in Diffserv Network

6.854 Advanced Algorithms Petar Maymounkov Problem Set 11 (November 23, 2005) With: Benjamin Rossman, Oren Weimann, and Pouya Kheradpour

Machine Learning: Algorithms and Applications

A Background Subtraction for a Vision-based User Interface *

We Two Seismic Interference Attenuation Methods Based on Automatic Detection of Seismic Interference Moveout

FEATURE EXTRACTION. Dr. K.Vijayarekha. Associate Dean School of Electrical and Electronics Engineering SASTRA University, Thanjavur

K-means and Hierarchical Clustering

SLAM Summer School 2006 Practical 2: SLAM using Monocular Vision

UB at GeoCLEF Department of Geography Abstract

Scale Selective Extended Local Binary Pattern For Texture Classification

Skew Angle Estimation and Correction of Hand Written, Textual and Large areas of Non-Textual Document Images: A Novel Approach

MULTISPECTRAL IMAGES CLASSIFICATION BASED ON KLT AND ATR AUTOMATIC TARGET RECOGNITION

Algorithm for Human Skin Detection Using Fuzzy Logic

The Research of Ellipse Parameter Fitting Algorithm of Ultrasonic Imaging Logging in the Casing Hole

S1 Note. Basis functions.

GSLM Operations Research II Fall 13/14

Shape Representation Robust to the Sketching Order Using Distance Map and Direction Histogram

Radial Basis Functions

Help for Time-Resolved Analysis TRI2 version 2.4 P Barber,

Unsupervised Learning and Clustering

Editorial Manager(tm) for International Journal of Pattern Recognition and

Wavelet based recursive identification of modal parameters

Efficient Distributed File System (EDFS)

Simulation Based Analysis of FAST TCP using OMNET++

Performance Evaluation of Surveillance Systems Under Varying Conditions

Local Tri-directional Weber Rhombus Co-occurrence Pattern: A New Texture Descriptor for Brodatz Texture Image Retrieval

Data Modelling and. Multimedia. Databases M. Multimedia. Information Retrieval Part II. Outline

Signed Distance-based Deep Memory Recommender

AUTOMATED METHOD FOR STATISTICAL PROCESSING OF AE TESTING DATA

A Hybrid Semi-Blind Gray Scale Image Watermarking Algorithm Based on DWT-SVD using Human Visual System Model

Research and Application of Fingerprint Recognition Based on MATLAB

On Supporting Identification in a Hand-Based Biometric Framework

Learning a Class-Specific Dictionary for Facial Expression Recognition

Mathematics 256 a course in differential equations for engineering students

A NEW FUZZY C-MEANS BASED SEGMENTATION STRATEGY. APPLICATIONS TO LIP REGION IDENTIFICATION

Lecture 5: Multilayer Perceptrons

CS 534: Computer Vision Model Fitting

Smoothing Spline ANOVA for variable screening

Lecture 7 Real Time Task Scheduling. Forrest Brewer

Transcription:

Musc/Voce Separaton usng the Smlarty Matrx Zafar Raf & Bryan Pardo

Introducton Muscal peces are often characterzed by an underlyng repeatng structure over whch varyng elements are supermposed Propellerheads - Hstory Repeatng - 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 2

Introducton The REpeatng Pattern Extracton Technque (REPET) was proposed to extract the repeatng structure from the non-repeatng structure Repeatng Structure Mxture REPET Non-repeatng Structure /2/2 Zafar Raf & Bryan Pardo 3

Step Step 2 Step 3 REPET Mxture Sgnal x 5 Mxture Spectrogram V Beat Spectrum b.8.6 5 2.9.8.7.4.2 25 3.6.5.4 -.2 -.4 -.6 -.8 -.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 35 4 45 p 5 55.3.2. 5 5 2 25 3 35 4 45 5 55 V p 2 3 2p 4 5 6 5 5 2 25 3 35 4 45 5 55 Medan 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55.2.4.6.8.2.4.6.8 2 55.2.4.6.8.2.4.6.8 2.2.4.6.8.2.4.6.8 2 Repeatng Segment S 5 S V 5 Repeatng Spectrogram W 5 Tme-Frequency Mask M 5 5 5 2 2 2 25 25 25 3 3 3 35 35 35 4 4 4 45 45 45 5 5 5 55 mn mn mn 55 55 Zafar Raf & Bryan Pardo 4

Step Step 2 Step 3 Adaptve REPET.8.6.4.2 -.2 -.4 -.6 -.8-5 5 2 25 3 35 4 45 5 55 5 5 5 2 25 5 3 2 35 25 4 3 45 35 5 4 55 45 5 55 Mxture Sgnal x.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 V -p 3 +p 5 6 2 4 V U 2 3 4 5 mn 6 5 5 2 25 3 35 4 45 Mxture Spectrogram V Beat Spectrogram B p 5 55 Medan Repeatng Spectrogram U 5 5 5 5 5 5 5 5 2 2 2 2 25 25 25 25 3 3 3 3 35 35 35 35 4 4 4 4 45 45 45 45 5 5 5 5 55 55 -p 55 2 2 3 2 3 4 3 4 5 554 5 6 5 6 6 +p Repeatng Spectrogram W Tme-Frequency Mask M 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55 55 Zafar Raf & Bryan Pardo 5.9.8.7.6.5.4.3.2.

Lmtatons Both the orgnal and the adaptve REPET assume perodcally repeatng patterns Mxture Beat spectrogram Perodcally repeatng background perod fnder /2/2 Zafar Raf & Bryan Pardo 6

Lmtatons Repettons can also happen ntermttently or wthout a global (or local) perod Mxture Beat spectrogram Non-perodcally repeatng background perod fnder /2/2 Zafar Raf & Bryan Pardo 7

Lmtatons Instead of lookng for perodctes, we can look for smlartes, usng a smlarty matrx Mxture Smlarty matrx +smlar +dssmlar Non-perodcally repeatng background /2/2 Zafar Raf & Bryan Pardo 8

Smlarty Matrx The smlarty matrx s a matrx where each bn measures the (ds)smlarty between any two elements of a sequence gven a metrc 2 Sequence metrc Smlarty matrx 2 +smlar +dssmlar /2/2 Zafar Raf & Bryan Pardo 9

frequency (khz) Smlarty Matrx In audo, the SM can help to vsualze the tme structure and fnd repeatng/smlar patterns 2 Spectrogram 2 4 6 8 2 cosne 2 8 6 4 2 Smlarty Matrx 2 4 6 8 2 +smlar +dssmlar.8.6.4.2 /2/2 Zafar Raf & Bryan Pardo

frequency (khz) frequency (khz) frequency (khz) Assumptons Gven a mxture of musc + voce: The repeatng background s dense & low-ranked The non-repeatng foreground s sparse & vared Mxture Spectrogram Background Spectrogram Foreground Spectrogram 2 2 2 2 4 6 8 2 2 4 6 8 2 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo

frequency (khz) frequency (khz) Assumptons The SM of a mxture s then lkely to reveal the structure of the repeatng background 2 Mxture Spectrogram 2 4 6 8 2 2 8 6 4 2 Smlarty Matrx 2 4 6 8 2.8.6.4.2 Background Spectrogram 2 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 2

REPET-SIM REPET wth Smlarty Matrx!. Identfy the repeatng/smlar elements 2. Derve a repeatng model 3. Extract the repeatng structure Repeatng Structure Mxture Sgnal REPET- SIM Non-repeatng Structure /2/2 Zafar Raf & Bryan Pardo 3

REPET-SIM Advantages compared wth REPET: Can handle ntermttent repeatng elements Can handle fast-varyng repeatng structures Can handle full-track songs Repeatng Structure Mxture Sgnal REPET- SIM Non-repeatng Structure /2/2 Zafar Raf & Bryan Pardo 4

Practcal Interests Audo post processng Melody extracton Karaoke gamng Interests Intellectual Interests Musc percepton Musc understandng Smply based on self-smlarty! /2/2 Zafar Raf & Bryan Pardo 5

Step 3 Step 2 Step REPET-SIM.8.6.4.2 -.2 -.4 -.6 -.8-5 5 2 25 3 35 4 45 5 55 5 5 5 2 25 5 3 2 35 25 4 3 45 35 5 4 55 45 5 55 Mxture Sgnal x.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 V j V U j 2 = j 3 2 3 4 5 mn 6 Mxture Spectrogram V 6 5 5 4 5 2 3 25 3 2 35 4 45 Smlarty Matrx S 5 55 Medan Repeatng Spectrogram U 5 5 5 5 5 5 5 5 2 2 2 2 25 25 25 25 3 3 3 3 35 35 35 35 4 4 4 4 45 45 45 45 5 5 5 5 55 55 j 55 2 2 3 2 3 4 3 4 5 554 5 6 5 6 6 j 2 j 3 Repeatng Spectrogram W Tme-Frequency Mask M 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55 55 Zafar Raf & Bryan Pardo 6 j 3 j 2 j

Step 3 Step 2 Step. Repeatng Elements.8.6.4.2 -.2 -.4 -.6 -.8-5 5 2 25 3 35 4 45 5 55 5 5 5 2 25 5 3 2 35 25 4 3 45 35 5 4 55 45 5 55 Mxture Sgnal x.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 V j V U j 2 = j 3 2 3 4 5 mn 6 Mxture Spectrogram V 6 5 5 4 5 2 3 25 3 2 35 4 45 Smlarty Matrx S 5 55 Medan Repeatng Spectrogram U 5 5 5 5 5 5 5 5 2 2 2 2 25 25 25 25 3 3 3 3 35 35 35 35 4 4 4 4 45 45 45 45 5 5 5 5 55 55 j 55 2 2 3 2 3 4 3 4 5 554 5 6 5 6 6 j 2 j 3 Repeatng Spectrogram W Tme-Frequency Mask M 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55 55 Zafar Raf & Bryan Pardo 7 j 3 j 2 j

frequency (khz). Repeatng Elements We take the cosne smlarty between any two pars of columns and get a smlarty matrx 2 Mxture Spectrogram 2 cosne 6 2 4 6 8 2 2 4 2 2 8 Smlarty Matrx 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 8

frequency (khz) frequency (khz). Repeatng Elements The SM reveals for every frame, the frames j k that are the most smlar to frame Mxture Spectrogram Smlarty Matrx Mxture Spectrogram 2 2 2 cosne 8 j 3 2 4 6 8 2 6 4 2 j 2 j 2 4 6 8 2 j 2 j j 3 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 9

Step 3 Step 2 Step. Repeatng Elements.8.6.4.2 -.2 -.4 -.6 -.8-5 5 2 25 3 35 4 45 5 55 5 5 5 2 25 5 3 2 35 25 4 3 45 35 5 4 55 45 5 55 Mxture Sgnal x.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 V j V U j 2 = j 3 2 3 4 5 mn 6 Mxture Spectrogram V 6 5 5 4 5 2 3 25 3 2 35 4 45 Smlarty Matrx S 5 55 Medan Repeatng Spectrogram U 5 5 5 5 5 5 5 5 2 2 2 2 25 25 25 25 3 3 3 3 35 35 35 35 4 4 4 4 45 45 45 45 5 5 5 5 55 55 j 55 2 2 3 2 3 4 3 4 5 554 5 6 5 6 6 j 2 j 3 Repeatng Spectrogram W Tme-Frequency Mask M 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55 55 Zafar Raf & Bryan Pardo 2 j 3 j 2 j

Step 3 Step 2 Step 2. Repeatng Model.8.6.4.2 -.2 -.4 -.6 -.8-5 5 2 25 3 35 4 45 5 55 5 5 5 2 25 5 3 2 35 25 4 3 45 35 5 4 55 45 5 55 Mxture Sgnal x.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 V j V U j 2 = j 3 2 3 4 5 mn 6 Mxture Spectrogram V 6 5 5 4 5 2 3 25 3 2 35 4 45 Smlarty Matrx S 5 55 Medan Repeatng Spectrogram U 5 5 5 5 5 5 5 5 2 2 2 2 25 25 25 25 3 3 3 3 35 35 35 35 4 4 4 4 45 45 45 45 5 5 5 5 55 55 j 55 2 2 3 2 3 4 3 4 5 554 5 6 5 6 6 j 2 j 3 Repeatng Spectrogram W Tme-Frequency Mask M 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55 55 Zafar Raf & Bryan Pardo 2 j 3 j 2 j

frequency (khz) frequency (khz) 2. Repeatng Model For every frame, we take the medan of ts most smlar frames j k found usng the SM Mxture Spectrogram Mxture Spectrogram 2 2 SM 2 4 6 8 2 2 4 6 8 2 j 2 j j 3 /2/2 Zafar Raf & Bryan Pardo 22

frequency (khz) frequency (khz) frequency (khz) 2. Repeatng Model We obtan an ntal repeatng spectrogram model Mxture Spectrogram Mxture Spectrogram Repeatng Spectrogram 2 2 2 SM medan 2 4 6 8 2 2 4 6 8 2 j 2 j j 3 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 23

Step 3 Step 2 Step 2. Repeatng Model.8.6.4.2 -.2 -.4 -.6 -.8-5 5 2 25 3 35 4 45 5 55 5 5 5 2 25 5 3 2 35 25 4 3 45 35 5 4 55 45 5 55 Mxture Sgnal x.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 V j V U j 2 = j 3 2 3 4 5 mn 6 Mxture Spectrogram V 6 5 5 4 5 2 3 25 3 2 35 4 45 Smlarty Matrx S 5 55 Medan Repeatng Spectrogram U 5 5 5 5 5 5 5 5 2 2 2 2 25 25 25 25 3 3 3 3 35 35 35 35 4 4 4 4 45 45 45 45 5 5 5 5 55 55 j 55 2 2 3 2 3 4 3 4 5 554 5 6 5 6 6 j 2 j 3 Repeatng Spectrogram W Tme-Frequency Mask M 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55 55 Zafar Raf & Bryan Pardo 24 j 3 j 2 j

Step 3 Step 2 Step 3. Repeatng Structure.8.6.4.2 -.2 -.4 -.6 -.8-5 5 2 25 3 35 4 45 5 55 5 5 5 2 25 5 3 2 35 25 4 3 45 35 5 4 55 45 5 55 Mxture Sgnal x.5.5 2 2.5 3 3.5 4 4.5 5 5.5 6 V j V U j 2 = j 3 2 3 4 5 mn 6 Mxture Spectrogram V 6 5 5 4 5 2 3 25 3 2 35 4 45 Smlarty Matrx S 5 55 Medan Repeatng Spectrogram U 5 5 5 5 5 5 5 5 2 2 2 2 25 25 25 25 3 3 3 3 35 35 35 35 4 4 4 4 45 45 45 45 5 5 5 5 55 55 j 55 2 2 3 2 3 4 3 4 5 554 5 6 5 6 6 j 2 j 3 Repeatng Spectrogram W Tme-Frequency Mask M 5 5 5 5 2 2 25 25 3 3 35 35 4 4 45 45 5 5 55 55 Zafar Raf & Bryan Pardo 25 j 3 j 2 j

frequency (khz) 3. Repeatng Structure We take the element-wse mnmum between the repeatng and mxture spectrograms Mxture Spectrogram Repeatng Spectrogram 2 2 2 4 6 8 2 2 4 6tme 8(s) 2 mn /2/2 Zafar Raf & Bryan Pardo 26

frequency (khz) frequency (khz) 3. Repeatng Structure We obtan a refned repeatng spectrogram model for the repeatng background Mxture Spectrogram Repeatng Spectrogram 2 2 2 Repeatng Spectrogram 2 4 6 8 2 2 4 6tme 8(s) 2 mn 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 27

frequency (khz) frequency (khz) frequency (khz) 3. Repeatng Structure The repeatng spectrogram cannot have values hgher than the mxture spectrogram Mxture Spectrogram Repeatng Spectrogram Non-repeatng Spectrogram 2 2 2 2 4 6 8 2 2 4 6 8 2 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 28

frequency (khz) frequency (khz) frequency (khz) 3. Repeatng Structure We dvde the repeatng spectrogram by the mxture spectrogram, element-wse Mxture Spectrogram 2 Repeatng Spectrogram 2 2Mxture Spectrogram 2 4 6 8 2 2 4 6 8 2 2 4 6tme 8(s) 2 tme (sec) dvdes /2/2 Zafar Raf & Bryan Pardo 29

frequency (khz) frequency (khz) frequency (khz) frequency (khz) 3. Repeatng Structure We obtan a soft tme-frequency mask (wth values n [,]) Mxture Spectrogram Repeatng Spectrogram Tme-frequency Mask 2 2Mxture Spectrogram 2 2 2 4 6 8 2 2 4 6 8 2 2 4 6tme 8(s) 2 tme (sec) dvdes 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 3

frequency (khz) frequency (khz) frequency (khz) 3. Repeatng Structure We apply the t-f mask to the mxture STFT and obtan the repeatng background 2 Mxture Spectrogram Background Spectrogram 2 Background Sgnal 2 4 6 8 2.x 2 4 6 8 2 STFT - 2 4 6 8 2 Tme-frequency Mask 2 2 4 6 8 2 Zafar Raf & Bryan Pardo 3

frequency (khz) frequency (khz) 3. Repeatng Structure The non-repeatng foreground s obtaned by subtractng the background from the mxture 2 Mxture Spectrogram Background Spectrogram 2 Background Sgnal 2 4 6 8 2 2 4 6 8 2 STFT - 2 4 6 8 2 Mxture Sgnal Background Sgnal Foreground Sgnal - 2 4 6 8 2-2 4 6 8 2-2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 32

Musc/Voce Separaton Repeatng background musc component Non-repeatng foreground voce component Background Sgnal - Mxture Sgnal 2 4 6 8 2 REPET-SIM. Repeatng elements 2. Repeatng model 3. Repeatng structure - 2 4 6 8 2 Foreground Sgnal - 2 4 6 8 2 /2/2 Zafar Raf & Bryan Pardo 33

Evaluaton Compettve method [Lutkus et al., 22] Adaptve REPET wth automatc perods fnder and soft tme-frequency maskng Compettve method 2 [FtzGerald et al., 2] Medan flterng of the spectrogram at dfferent frequency resolutons to extract the vocals Data set 4 full-track real-world songs (Beach Boys) 3 voce-to-musc mxng ratos (-6,, and 6 db) /2/2 Zafar Raf & Bryan Pardo 34

Evaluaton MMFS = FtzGerald et al. REPET+ = Lutkus et al. Proposed = REPET-SIM /2/2 Zafar Raf & Bryan Pardo 35

Examples REPET-SIM vs. FtzGerald et al. Musc estmate (FtzGerald) Voce estmate (FtzGerald) Wham! - Freedom - 5 5 2 25-5 5 2 25-5 5 2 25 Musc estmate (REPET-SIM) Voce estmate (REPET-SIM) - 5 5 2 25-5 5 2 25 /2/2 Zafar Raf & Bryan Pardo 36

Examples REPET-SIM Blackalcous - Alphabet Aerobcs - 2 4 6 8 2 - - /2/2 Musc estmate 2 4 6 8 2 Voce estmate 2 4 6 8 2 Zafar Raf & Bryan Pardo 37

Examples Adaptve REPET Blackalcous - Alphabet Aerobcs - 2 4 6 8 2 - - /2/2 Musc estmate 2 4 6 8 2 Voce estmate 2 4 6 8 2 Zafar Raf & Bryan Pardo 38

Concluson The analyss of the repettons/smlartes n musc can be used for source separaton Repeatng Structure Mxture Sgnal REPET-SIM. Repeatng elements 2. Repeatng model 3. Repeatng structure Non-repeatng Structure /2/2 Zafar Raf & Bryan Pardo 39

Questons? D. FtzGerald and M. Ganza, Sngle Channel Vocal Separaton usng Medan Flterng and Factorsaton Technques, ISAST Transactons on Electronc and Sgnal Processng, vol. 4, no., pp. 62-73, 2. J. Foote, Vsualzng Musc and Audo usng Self-Smlarty, ACM Internatonal Conference on Multmeda, Orlando, FL, USA, October 3-November 5, 999. A. Lutkus, Z. Raf, R. Badeau, B. Pardo, and G. Rchard, Adaptve Flterng for Musc/Voce Separaton explotng the Repeatng Muscal Structure, IEEE Internatonal Conference on Acoustcs, Speech and Sgnal Processng, Kyoto, Japan, March 25-3, 22. Z. Raf and B. Pardo, A Smple Musc/Voce Separaton Method based on the Extracton of the Repeatng Muscal Structure, IEEE Internatonal Conference on Acoustcs, Speech and Sgnal Processng, Prague, Czech Republc, May 22-27, 2. /2/2 Zafar Raf & Bryan Pardo 4