Flow Around Nuclear Rod Bundles Simulations Based on RANS and LES Method Respectively

Similar documents
EVALUATION OF A NUMERIC PROCEDURE FOR FLOW SIMULATION OF A 5X5 PWR ROD BUNDLE WITH A MIXING VANE SPACER

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils

Investigation of mixing chamber for experimental FGD reactor

ISSN(PRINT): ,(ONLINE): ,VOLUME-1,ISSUE-1,

CFD V&V Workshop for CFD V&V Benchmark Case Study. ASME 2015 V&V Symposium

Coupled Analysis of FSI

WESTINGHOUSE CFD MODELING AND RESULTS FOR EPRI NESTOR CFD ROUND ROBIN EXERCISE OF PWR ROD BUNDLE TESTING

CFD Best Practice Guidelines: A process to understand CFD results and establish Simulation versus Reality

INVESTIGATING REACTOR COMPONENTS WITH THE COARSE- GRID-METHODOLOGY

NUMERICAL INVESTIGATION OF THE FLOW BEHAVIOR INTO THE INLET GUIDE VANE SYSTEM (IGV)

CFD METHODOLOGY AND VALIDATION FOR SINGLE-PHASE FLOW IN PWR FUEL ASSEMBLIES

Pressure Drop Evaluation in a Pilot Plant Hydrocyclone

Simulation of Flow Development in a Pipe

Microwell Mixing with Surface Tension

UTSR Fellowship Christopher J. Paul 05/23/ /12/2011

HIGH PERFORMANCE LARGE EDDY SIMULATION OF TURBULENT FLOWS AROUND PWR MIXING GRIDS

CFD Simulation of a dry Scroll Vacuum Pump including Leakage Flows

Verification and Validation in CFD and Heat Transfer: ANSYS Practice and the New ASME Standard

Introduction to ANSYS CFX

An Investigation on the Geometric Effects of a Vertical-Downward Elbow on Two-Phase Flow

Computational Fluid Dynamics (CFD) use in the simulation of the death end ventilation in tunnels and galleries

Influence of mesh quality and density on numerical calculation of heat exchanger with undulation in herringbone pattern

CFD STUDY OF MIXING PROCESS IN RUSHTON TURBINE STIRRED TANKS

RSP 0298 FINAL REPORT. R522.1a: International CFD Benchmark Problem. Contract Final Report. Project: Title:

Modeling and Simulation of Single Phase Fluid Flow and Heat Transfer in Packed Beds

CIBSE Application Manual AM11 Building Performance Modelling Chapter 6: Ventilation Modelling

Analysis of Gas Duct Movement in Corex Process Y.P. Reddy 2, Sinhgad College of Engg, Pune

EVALUATION OF COMPUTATIONAL FLUID DYNAMIC METHODS FOR REACTOR SAFETY ANALYSIS (ECORA)

CFD Analysis of a Fully Developed Turbulent Flow in a Pipe with a Constriction and an Obstacle

Computational Fluid Dynamics (CFD) Simulation in Air Duct Channels Using STAR CCM+

Simulation of Turbulent Axisymmetric Waterjet Using Computational Fluid Dynamics (CFD)

CFD modelling of thickened tailings Final project report

Design Optimization of a Weather Radar Antenna using Finite Element Analysis (FEA) and Computational Fluid Dynamics (CFD)

Numerical Analysis and Geometry Optimisation of Vertical Vane of Room Air-conditioner

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Turbulent Premixed Combustion with Flamelet Generated Manifolds in COMSOL Multiphysics

Numerical and experimental investigations into liquid sloshing in a rectangular tank

Ryian Hunter MAE 598

Flow and Heat Transfer in a Mixing Elbow

THE INFLUENCE OF ROTATING DOMAIN SIZE IN A ROTATING FRAME OF REFERENCE APPROACH FOR SIMULATION OF ROTATING IMPELLER IN A MIXING VESSEL

CFD Modeling of a Radiator Axial Fan for Air Flow Distribution

Speed and Accuracy of CFD: Achieving Both Successfully ANSYS UK S.A.Silvester

THE INFLUENCE OF MESH CHARACTERISTICS ON OPENFOAM SIMULATIONS OF THE DRIVAER MODEL

CFD design tool for industrial applications

Tutorial: Modeling Liquid Reactions in CIJR Using the Eulerian PDF transport (DQMOM-IEM) Model

Effect of suction pipe leaning angle and water level on the internal flow of pump sump

Three Dimensional Numerical Simulation of Turbulent Flow Over Spillways

Flat-Plate As stated earlier, the purpose of the flat-plate study was to create an opportunity for side-by-side comparison of ÒfastÓ RNG and

Numerical Simulation of Heat Transfer by Natural Convection in Horizontal Finned Channels

Coupling of STAR-CCM+ to Other Theoretical or Numerical Solutions. Milovan Perić

RAPID DESIGN AND FLOW SIMULATIONS FOR TUBOCHARGER COMPONENTS

ANSYS AIM Tutorial Steady Flow Past a Cylinder

COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF ORIFICE PLATE METERING SITUATIONS UNDER ABNORMAL CONFIGURATIONS

Simulation of Turbulent Flow in an Asymmetric Diffuser

Calculate a solution using the pressure-based coupled solver.

Computer Life (CPL) ISSN: Fluid-structure Coupling Simulation Analysis of Wavy Lip Seals

PDF-based simulations of turbulent spray combustion in a constant-volume chamber under diesel-engine-like conditions

Effect of Position of Wall Mounted Surface Protrusion in Drag Characteristics At Low Reynolds Number

Verification of Laminar and Validation of Turbulent Pipe Flows

Application of Wray-Agarwal Turbulence Model for Accurate Numerical Simulation of Flow Past a Three-Dimensional Wing-body

Simulation of Turbulent Flow over the Ahmed Body

Swapnil Nimse Project 1 Challenge #2

in:flux - Intelligent CFD Software

Fire and Smoke Modelling Matthieu Stasia, Fred Mendonça 24 th June 2014 CD-adapco

EXPERIMENTAL ANALYSIS & SIMULATION OF DOUBLE PIPE HEAT EXCHANGER

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

International Power, Electronics and Materials Engineering Conference (IPEMEC 2015)

NUMERICAL STUDY OF CAVITATING FLOW INSIDE A FLUSH VALVE

Computational Fluid Dynamics (CFD) for Built Environment

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000

EXPERIMENTS AND UNSTEADY CFD-CALCULATIONS OF THERMAL MIXING IN A T-JUNCTION

COMPUTATIONAL FLUID DYNAMICS USED IN THE DESIGN OF WATERBLAST TOOLING

Simulation of Laminar Pipe Flows

CFD METHODOLOGIES FOR A PWR FUEL ROD ASSEMBLY

Research and Design working characteristics of orthogonal turbine Nguyen Quoc Tuan (1), Chu Dinh Do (2), Quach Thi Son (2)

CFD projects at CERN Detector cooling and beyond

Estimation of Flow Field & Drag for Aerofoil Wing

Using the Eulerian Multiphase Model for Granular Flow

ALE Seamless Immersed Boundary Method with Overset Grid System for Multiple Moving Objects

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim

Backward facing step Homework. Department of Fluid Mechanics. For Personal Use. Budapest University of Technology and Economics. Budapest, 2010 autumn

CFD MODELING FOR PNEUMATIC CONVEYING

Define the problem and gather relevant data Formulate a mathematical model to represent the problem Develop a procedure for driving solutions to the

A Comparative CFD Analysis of a Journal Bearing with a Microgroove on the Shaft & Journal

CFD Modelling in the Cement Industry

ESTIMATION OF CROSS-FLOW INFLUENCE ON SPRING-MOUNTED CYLINDER IN TRIANGULAR CYLINDER ARRAY.

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

Flow Field Analysis of Turbine Blade Modeling Based on CFX-Blade Gen

Three-dimensional simulation of floating wave power device Xixi Pan 1, a, Shiming Wang 1, b, Yongcheng Liang 1, c

Non-Newtonian Transitional Flow in an Eccentric Annulus

CFD Simulation of Fractal Impeller and Baffle for Stirred Tank Reactor with a Single Stage 4 Blade Rushton Turbine

Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations

CFD Modelling of Erosion in Slurry Tee-Junction

Coupling STAR-CCM+ with Optimization Software IOSO by the example of axial 8-stages jet engine compressor.

Investigation of the critical submergence at pump intakes based on multiphase CFD calculations

Flow and likely scour around three dimensional seabed structures evaluated using RANS CFD

Tutorial 2. Modeling Periodic Flow and Heat Transfer

2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

2008 International ANSYS Conference

Transcription:

Proceedings of the World Congress on Mechanical, Chemical, and Material Engineering (MCM 2015) Barcelona, Spain July 20-21, 2015 Paper No. 285 Flow Around Nuclear Rod Bundles Simulations Based on RANS and LES Method Respectively Daqiang Yan, Jinghao Li State Nuclear Power Software Development Center (SNPSDC) South Park, Beijing Future Science & Technology City, Changping District, Beijing, China yandaqiang@snptc.com.cn; lijinghao@ snptc.com.cn Abstract -The flow across the rod bundles in reactor pressure vessel is an essential design consideration of nuclear power plants. Experiments and CFD simulations are both effective methods for the rod bundles design and flow mixing analysis. CFD methods have the advantage of timesaving and cheaper, while experiment data is more reliable. Different turbulence models can be chosen in CFD simulation and the results are sensitive to the choice. So two kinds of turbulence model were investigated in this paper to evaluate their applicabilities in rod bundles CFD simulation. They are RANS and LES. The results were compared to experiment data, and the experiment is the flow in 3x3 rod bundles. The comparison between the CFD simulation and experiment data was shown in this paper for validation. The results showed that although there were some difference between the simulation and experiment, RANS and LES are both effective methods in nuclear engineering for simulating flow around rod bundles of fuel assembles. LES simulation can predict the velocity s peak value better and can be used for rod bundles design in nuclear design and research. Keywords: Reactor, rod bundles, CFD, LES,RANS 1. Introduction High performance of rod bundles heat exchange is important to Pressurized Water Reactors fuel assemble design. CFD simulation is required to simulate the flow structure in order to understand and analysis the detail of the turbulence, mixing flow, velocity profile around rod bundles, as previously shown (Mimouni et al., 2010, Chandra et al., 2011). Although CFD has been used as a tool for analysis of reactor systems for more than 35 years(smith et al., 2005), the spread use of CFD for designing a reactor is still limited. Whether the results of CFD simulation are accurate, it is still always in doubt. One reason is that CFD results are sensitively influenced by CFD users experiences or choices. So more and more validation works have been done by many researchers(farkas et al., 2010, Rezende et al., 2012). The most reliable validation is comparing simulation results with analytic solutions in theory or experiment data. In this paper, a 3x3 rod bundle experiment (Xiong et al., 2014) was used to validate the simulation results. The objective of this paper was to evaluate the turbulence model choice in simulating the flow field around rod bundles of fuel assemble in reactors, and with the aid of experiment validation to find a proper turbulence model for engineering and research. 2. Introduction of Experiment and Simulation Methods 2. 1. Experiment Introduction The 3x3 rod bundle experiment simulated in this paper is the facility installed in Shanghai Jiao Tong University. The facility full of water is used to validate the nuclear lumped methods codes for Pressurized Water Reactors. There are measuring window and Laser Doppler Velocimetry(LDV) system to measure the detail of water flow field at 1 atm. So the experiment data can also be used to validate CFD methods. The test section is shown in Fig1. (Xiong et al., 2014) 285-1

Fig. 1. 3x3 rod bundle test section(xiong et al., 2014) The bundles length is 1.5m, their diameter is 9.5mm and the distance between bundles is 3mm. There are three grid spacers along bundles in every 0.48m. The bundles were fixed by the grid spacers. Another function of the spacers is enhancing the flow mixing among bundles, so that the bundles in a real reactor will have good performance for heat exchange. So there are highly mixing and remarkable turbulence flow in the experiment flow field. There is an observation plane, which is shown in Fig2, can be detected through measuring window. The plane, which locates 72mm above the outlet fixing device, is perpendicular to the measuring window. Through the window, axial velocity on the observation plane can be measured by LDV. Fig. 2. the position of observation plane There are some observation lines on the observation plane. They are lines at y=1.25mm, 2.25mm and so on. The coordinate axis is shown in Fig3. Z axis is towards mainstream direction. The axial velocity profile on the observation lines can be obtained. And also there are some subchannels called SC1, SC2, SC3, SC4. They are shown in Fig3. 2. 2. Simulation Methods The flow investigated in this paper is isothermal. So the governing equations are mass and moment equation respectively (ANSYS,Inc,2008). The flow medium is water at 1atm. ρ t = (ρ u) (1) ρ ( + u ) u = P + ρg t (2) 285-2

Fig. 3. the position of the observation lines Two kinds of calculation domain were used in our simulation. The different calculation domain are shown in Fig4. 4.a)whole domain for simulation 4.b)part domain for simulation Fig. 4. two kinds of calculation domain CFX was used to simulate the flowfield. ICEM was used to generate three kinds of mesh. They were coarse mesh, medium mesh and fine mesh. The three kinds of mesh s informations are shown in table1. Table. 1. three kinds of grid Mesh Elements amount Domain Thickness of 1 st layer Coarse mesh 3 437 863 Same as fig1.a 0.5mm Medium mesh 5 077 233 Same as fig1.a 0.2mm Fine mesh 19 404 362 Same as fig1.b 0.03mm The difference between medium mesh and fine mesh on cross section is shown in Fig5. The three kinds of grid were used to investigate the mesh sensitive. The turbulence models used were BSL and LES WALE. BSL is one kind of RANS model. When the RANS model was used, the simulation was steady. While the LES was used, the simulation was transient. The simulation condition was one of experiment condition at Re=15200. When the BSL model was used, the results from fine mesh calculation had the best performance compared with experiment data. Because of our computing resource didn t satisfied the requirement of fine mesh LES calculation, we use medium mesh to simulate LES model. 285-3

5.a) medium mesh 5.b)fine mesh Fig. 5. medium mesh and fine mesh on cross section 3. RANS Simulation Results and Experiment Validation RANS turbulence model was used first, and the dimensionless axial velocity contour compared with experiment seemed to be almost the same. The experiment and simulation contour are shown in Fig6. (Xiong et al., 2014) Fig. 6. Comparison of dimensionless axial velocity contour in observation plane between LDV experiment and CFD results But when the quantitative comparison on the observation lines was investigated, some obvious difference can be found, which is shown in Fig7. On line y=2.25mm axial velocity prediction of simulation was much smaller than experiment in domain between SC3 and SC4. On line y=13.15mm and y=14.25mm axial velocity prediction of simulation was larger than experiment in subchannel SC2. The location of lines and subchannels are shown in Fig2 and Fig3. 4. LES Simulation Results and Experiment Validation Peak values of axial velocity on observation lines were not predicted well when the RANS turbulence model was used. So the LES turbulence was used to expect obtain better simulation data. When the LES turbulence model was used, the peak value of axial velocity s prediction was much better than RANS turbulence model. But there were some deviation in the domain near experiment facility wall. This was caused by boundary layer not small enough. But when calculation resource was limited, we had to consider more efficient grid. And medium mesh was used to simulate LES turbulence model. So the axial velocity s prediction near wall was not as good as expected. The fluctuation of axial velocity s contour based on LES transient simulation is shown in Fig9.b), compared with RANS steady simulation. The steady contour was different to transient contour obviously. 285-4

7.a) profile on line y=1.25mm 7.b) profile on line y=2.25mm 7.c) profile on line y=13.15mm 7.d) profile on line y=14.25mm Fig. 7. dimensionless axial velocity profile for RANS on observation lines 8.a) profile on line y=1.25mm 8.b) profile on line y=2.25mm 8.c) profile on line y=13.15mm 8.d) profile on line y=14.25mm Fig. 8. dimensionless axial velocity profile for LES on observation lines 5. Conclusion The experiment of 3x3 bundle flow for nuclear bundle design research was simulated by CFX. The performance of RANS and LES turbulence models for simulating flowfield around bundles were investigated. The simulation results were validated through comparing the experiment data. The CFD contour results showed that reasonable results could be obtained by use of RANS turbulence model. But axial velocity peak value in some domain didn t have good agreement with experiment data. 285-5

9.a) RANS contour 9.b)LES contour Fig. 9. axial velocity contour based on different turbulence model The LES turbulence model was more accurate for predicting the axial velocity. But when the calculation resource is limited, more attention should be paid on the prediction results near walls, especially for the boundary layer grid. Although simulation results was some sensitive to the turbulence model choice, both RANS and LES were highly recommended. Because reasonable results can be obtained no matter which model is chosen. RANS can be used for fast and efficient engineering simulation, while LES can be used for accurate research or design. Acknowledgements This work has been funded by the Chinese National Science and Technology Major Project under contract No. 2013ZX06004-008. References Mimouni, S., & Archambeau, F. (2010). A Second Order Turbulence Model Based On A Reynolds Stress Approach For Two-Phase Boiling Flow And Application To Fuel Assembly Analysis. Nuclear Engineering and Design, 240, 2225 2232. Chandra, L., & Roelofs, F. (2011). CFD Analyses Of Liquid Metal flow In Sub-Channels For Gen IV Reactors [J]. Nuclear Engineering and Design, 241(11), 4391-4403. Smith, B.L. (2005). Assessment Of CFD Codes For Nuclear Reactor Safety Problems, NEA/SEN/SIN/AMA. Farkas, T., & Tóth, I. (2010). Fluent Analysis Of A ROSA Cold Leg Stratification Test. Nuclear Engineering and Design, 240, 2169 2175. Rezende, H. C., & Santos, A.A.C. (2012). Verification And Validation Of A Thermal Stratification Experiment CFD Simulation. Nuclear Engineering and Design, 248, 72 81. Xiong, J., & Yu, Y. (2014). Laser Doppler Measurement And CFD Validation In 3 3 Bundle Flow. Nuclear Engineering and Design, 270, 396 403. ANSYS,Inc,ANSYS Documentation, ANSYS Release 11.0 285-6